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Abstract: Researchers commonly use continuous noninvasive blood-pressure measurement (cNIBP)
based on photoplethysmography (PPG) signals to monitor blood pressure conveniently. However,
the performance of the system still needs to be improved. Accuracy and precision in blood-pressure
measurements are critical factors in diagnosing and managing patients’ health conditions. There-
fore, we propose a convolutional long short-term memory neural network (CNN–LSTM) with grid
search ability, which provides a robust blood-pressure estimation system by extracting meaning-
ful information from PPG signals and reducing the complexity of hyperparameter optimization in
the proposed model. The multiparameter intelligent monitoring for intensive care III (MIMIC III)
dataset obtained PPG and arterial-blood-pressure (ABP) signals. We obtained 75,226 signal segments,
with 60,180 signals allocated for training data, 12,030 signals allocated for the validation set, and
15,045 signals allocated for the test data. During training, we applied five-fold cross-validation with
a grid-search method to select the best model and determine the optimal hyperparameter settings.
The optimized configuration of the CNN–LSTM layers consisted of five convolutional layers, one
long short-term memory (LSTM) layer, and two fully connected layers for blood-pressure estimation.
This study successfully achieved good accuracy in assessing both systolic blood pressure (SBP) and
diastolic blood pressure (DBP) by calculating the standard deviation (SD) and the mean absolute
error (MAE), resulting in values of 7.89 ± 3.79 and 5.34 ± 2.89 mmHg, respectively. The optimal
configuration of the CNN–LSTM provided satisfactory performance according to the standards set
by the British Hypertension Society (BHS), the Association for the Advancement of Medical Instru-
mentation (AAMI), and the Institute of Electrical and Electronics Engineers (IEEE) for blood-pressure
monitoring devices.

Keywords: photoplethysmography (PPG); blood pressure; grid search; convolutional neural network;
long short-term memory

1. Introduction

Two methods are available for continuously measuring blood pressure: invasive and
non-invasive. The invasive method involves healthcare professionals inserting a cannula
needle into the artery. This method is used, for example, for patients in intensive care units
(ICUs) with acute functional impairment [1]. However, this method can be inconvenience
and cause side effects such as infection, local bleeding, arterial obstruction, distal limb
ischemia, and vascular injury. Non-invasive techniques such as sphygmomanometers
(cuff-based monitoring) involve inflating a cuff and auscultating blood pulsations, which
may cause arterial compression and which requires precise procedures to obtain continuous
and accurate measurements [2].
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Recently, researchers have been using photoplethysmography (PPG) signals to esti-
mate blood pressure. PPG utilizes the optical signal from light reflected from body tissues
(blood vessels) to measure volumetric changes during the cardiac cycle [3–6]. PPG sensors
emit light onto body tissues and detect the reflected intensity. As blood circulates through
the vessels, the changes in blood volume cause variations in the intensity of reflected light,
resulting in the PPG waveform. Therefore, PPG signals provide valuable information about
pulse rates and characteristics of blood-pressure waveforms related to the cardiac cycle.

Several studies have focused on analyzing blood pressure using important features
extracted from PPG signals. These features include morphological characteristics, fre-
quency components, and the relationship between peaks and troughs in PPG signals [7–12].
Therefore, machine-learning or deep learning techniques have been employed to utilize the
information from PPG signals to generate accurate and reliable blood-pressure predictions.

Zhang et al. and Hasanzadeh et al. proposed conventional machine-learning models
for blood-pressure estimation using PPG features. Zhang et al. focused on unclear di-
chotic pulse waveforms and used parameters such as systolic upstroke time (ST), diastolic
time (DT), and pulse width as features. The mean absolute errors (MAEs) for predict-
ing systolic blood pressure (SBP) and diastolic blood pressure (DBP) were 11.6 and 7.6,
respectively—however, the proposed model had to meet the Institute of Electrical and
Electronics Engineers (the IEEE) standard [7]. Hasanzadeh et al. utilized a morphological
analysis of the PPG signal. They achieved a performance that met the standards of the
Association for the Advancement of Medical Instrumentation (the AAMI) for SBP and DBP
prediction [8]. However, their study had a small sample size and did not meet the minimum
standards set by the IEEE, and no comparison with existing models was conducted.

Furthermore, Samimi et al., in their study, utilized interval-beat PPG signals from the
MIMIC II dataset to analyze the differences between the peak and trough points of the
PPG signal. The average value of these differences was employed to divide the signal into
distinct characteristic segments. Their study aimed to evaluate the accuracy of the mean
peak-to-peak (mPTP) features in estimating blood pressure (BP). Among several proposed
scenarios, their study reported the MAE + SD performance values for DBP and SBP as
4.65 mmHg ± 12.40 mmHg and 5.59 mmHg ± 7.35 mmHg, respectively. However, their
study had limitations, including unsatisfactory performance in estimating blood pressure
and failure to meet the minimum standards set by the IEEE [13].

Several studies also adopted featureless and deep learning techniques in estimating
systolic blood pressure (SBP) and diastolic blood pressure (DBP) based on PPG signals.
This approach avoids using complex features and leverages the ability of neural networks
to learn hidden patterns in the signals. A study by Slapnicar et al. applied the residual
network (ResNet) approach using PPG signals, first-order PPG derivatives, and second-
order PPG derivatives from the MIMIC III dataset. Each signal was segmented into 5 s
intervals and fed into the proposed model. The study achieved MAE performances of
9.43 mmHg for SBP estimation and 6.80 mmHg for DBP estimation [10]. However, the use
of residual networks is more sensitive to the choice of hyperparameters, and it training can
be more challenging because of the complex architecture of residual networks. In addition,
multiple hyperparameters need to be determined, such as the number of residual blocks,
network depth, and dropout rate [14,15]. Incorrect choices of these hyperparameters can
lead to overfitting or underfitting the blood-pressure-estimation data.

Ibtehaz et al. focused on transforming PPG signals to arterial blood pressure (ABP)
waveforms, while conserving the waveform characteristics, to determine SBP and DBP [11].
In their study, the MAEs for SBP and DBP were 3.45 mmHg and 5.73 mmHg, respectively.
However, the proposed PPG2ABP pipeline, utilizing two one-dimensional (1D) CNN-based
segmentation networks, may introduce computational complexity and additional resource
requirements. Using deep learning models in the pipeline demands substantial computa-
tional power and longer processing times, potentially limiting its real-time applicability.

Another approach, by Aguirre et al., adopted a method that utilized only 5 s PPG
signals in a recurrent neural network (RNN) model, specifically the RNN encoder and



Diagnostics 2023, 13, 2566 3 of 18

decoder. Their study obtained MAEs of 6.57 mmHg for SBP prediction and 14.39 mmHg
for DBP prediction [12]. However, neither SBP nor DBP met the IEEE standards. This
discrepancy may be attributed to the intricate structures of the RNN encoder and decoder,
which involve the incorporation of frequency in the temporal data processing. Conse-
quently, this process entails long sequences and a high computational time, which affect
the performance and stability of the model.

Li et al. applied an approach that utilized 700 data points from PPG signals in the mul-
tiparameter intelligent monitoring for intensive care II (MIMIC II) dataset and employed a
combined CNN and bidirectional LSTM model (CNN–BiLSTM) for blood-pressure esti-
mation. While this approach demonstrated potential in blood pressure estimation, using
excessively long data points in deep learning models can significantly increase computa-
tional time, mainly when dealing with complex models such as CNN–BiLSTM [16].

Based on the relatively large mean absolute error (MAE) values, the previous studies’
performance in predicting systolic blood pressure (SBP) and diastolic blood pressure (DBP)
has yet to reach the expected standards. Moreover, some previous research has employed
complex techniques, such as deep learning with manually selected hyperparameter. These
tuning processes involve determining the number of residual blocks, the network depth,
and the dropout rates. They can lead to overfitting or underfitting issues in blood-pressure
estimation data if not properly optimized. Consequently, the methods exhibit low per-
formance while the computational time increases, leading to longer processing durations.
Therefore, to address these issues, we proposed the CNN–LSTM model with a grid-search
method for automatic hyperparameter tuning in specific parameter settings to reduce
computational time.

The convolutional neural network (CNN) exhibits effective capabilities in feature ex-
traction from data through convolutional operations to identify specific patterns. Another
advantage of the CNN is its ability to perform parallel data processing, which increases
efficiency in interpreting and analyzing dimension-reduced data [17]. On the other hand,
LSTM plays a crucial role in capturing temporal dependencies and long-term patterns in
sequential data. The combination of CNN and LSTM allows the CNN–LSTM model to
efficiently and effectively handle sequential data, including complex blood-pressure esti-
mation tasks. Therefore, the proposed approach possesses significant potential in achieving
the main goal of this study by providing a highly accurate and reliable computational
system for efficient blood-pressure estimation.

Configuring parameters is crucial in achieving optimal machine-learning performance.
Hyperparameter tuning aims to find the combination of hyperparameter values that yield
the most accurate prediction estimates among all the analyzed possibilities. However, man-
ual parameter adjustment is time-consuming, particularly when the model involves many
parameters. Furthermore, it is essential to consider the significance of proper parameter
settings for achievable prediction performance. Therefore, we address these issues by em-
ploying the grid-search method, which automatically selects the best parameters for each
machine-learning model. This approach enables us to optimize the model’s performance
and reduce the time required for manual parameter adjustment.

2. Materials and Methods

Figure 1 shows the proposed method for estimating SBP and DBP using one-dimensional
(1D) PPG signals. After the preprocessing step, the PPG signals were split into training and
testing sets. The proposed architecture (LSTM, LSTM–autoencoder (LSTM–AE), and CNN–
LSTM) was trained using the training set as the input data, and grid search was used for
hyperparameter tuning to determine the optimal parameters. Furthermore, the best model was
tested using a test set to estimate SBP and DBP values.
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Figure 1. The proposed general block diagram system.

2.1. Dataset

Simultaneous PPG and ABP signals were acquired with a sampling frequency of 125 Hz
and 8-bit precision from the multiparameter intelligent monitoring for intensive care III (MIMIC
III) dataset, accessible on the PhysioNet website. The MIMIC III database comprises patients in
the intensive care unit (ICU), collected by the Beth Israel Deaconess Medical Center (Boston,
MA, USA) and the Massachusetts Institute of Technology (Cambridge, MA, USA) [18].

2.2. Preprocessing

The preprocessing involved several steps, as shown in Figure 2. We utilized Jupyter
Notebook with Python 3.9 and an Intel(R) Core(TM) i7-10700F CPU @2.80 GHz for pre-
processing and prediction tasks. MIMIC III was extracted via WFDB, a Python library
supported by Physionet. Furthermore, to address the presence of low-quality recordings
containing flatlines and flat peaks arising from data acquisition issues, we automatically
removed files containing incomplete ABP and PPG waveform shapes and flat peaks (re-
ferred to as ABP and PLETH). As a result, we successfully collected data from 55 patients
with meticulously preprocessed PPG and ABP data. The primary objective of this effort
was to curate a diverse and authentic dataset encompassing various PPG waveform shapes.
We randomly extracted 37,500 samples (300 s) from each patient for analysis. Due to the
extensive size of the overall database, acquiring the initial data and selecting patients with
high-quality waveforms for machine learning posed significant challenges and required
substantial storage space. To conserve storage space, we randomly selected 100 patients.

Several previous studies used a discrete wavelet decomposition (DWT) filter to min-
imize PPG signal artifacts and baseline drift [19–21]. A one-dimensional (1D) DWT de-
composition divides a signal into two frequency components: the low-frequency (LPF)
component and the high-frequency (HPF) component. The LPF component is used to
extract the approximate coefficient (A), while the HPF component is used to extract the
detail coefficient (D) [21,22]. We applied 1D discrete wavelet decomposition (DWT) with
Daubechies order four (db4) to mitigate baseline drift and artifacts in the PPG signals.
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We employed an eight-level decomposition, resulting in nine sub-bands, including one
approximation (A) coefficient signal and eight detail (D) coefficient signals. The eight-level
DWT composition of the PPG signals with frequency sampling 125 Hz provided the band-
width sub-band that was sufficient to see the components of the PPG signals. Figure 3
illustrates the frequency range calculation for each level of DWT composition.

Figure 2. The proposed preprocessing method.

Figure 3. One-dimensional wavelet decomposition. The PPG signals are passed into the LPF to
produce an approximation component and are passed into HPF to produce the detail component.
In one-dimensional wavelet decomposition, eight-level decomposition generated nine sub-bands,
which consisted of one approximation component and eight detail component sub-bands.

The systolic peak in the PPG waveform reflects the maximum blood volume during
cardiac circulation, indicating the peak pressure exerted on the arterial wall [5,6]. By consid-
ering the interval between consecutive systolic peaks, peak-to-peak measurement captures
the pulsatile changes in blood pressure [5]. Thus, the systolic peak-to-peak approach in PPG
signals represents a comprehensive component of the systolic and diastolic components
of the arterial pulse. The systolic peak-to-peak approach in the PPG signals represents a
comprehensive component of the systolic and diastolic components of the arterial pulse.
Furthermore, the proposed study by Athaya et al. used overlapping segmentation for each
window and achieved superior performance [23]. Therefore, in this study, the PPG signals
were segmented into two cycles of systolic peak-to-peak, with one cycle overlapping.

However, the number of samples in the PPG signal over two cycles may vary among
individuals, depending on their heart-rate conditions. To address this issue, a spline in-
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terpolation method was utilized to achieve uniform sample length in the PPG signal for
all data. The most extended sample length of data was 200 samples. Consequently, the
samples failing to reach a quantity of 200 were extended through the utilization of spline
interpolation. Spline interpolation aims to add new data points between the existing sam-
ples. The spline interpolation function yields a series of interpolated values corresponding
to the given query points [24].

We removed abnormal BP values (SBP ≥ 200, DBP ≥ 120, SBP ≤ 80, and DBP ≤ 40),
based on the blood-pressure range proposed by Chobanian et al. [23,25]. Figure 4 shows
the final distribution of systolic and diastolic blood pressure. The minimum and maximum
values of SBP were 80.21 and 180.47, respectively, while the minimum and maximum
values of DBP were 40 and 80.78, respectively. As a result of preprocessing, we obtained
75,226 signal segments from 55 patients, divided into training sets (60,180), validation
sets (12,030), and testing sets (15,045).

Figure 4. Blood-pressure values distribution.

Variations in the magnitude and variability of the PPG signal in each patient are
caused by the patient’s movements, the patient’s health conditions, or the user device.
To assure consistency in data processing, z-score standardization was implemented during
the training and assessment phases by following Equation (1).

Xstandardization =
X−mean (X)

Standard Deviation (X)
(1)

The average of two PPG pulses can be calculated by adding up all the values in
each PPG pulse and dividing by the total number of values, where X is the PPG signal.
In addition, Equation (2) is used to calculate the standard deviation of two PPG pulses.

σ =

√
[
(∑(x− µ)2)

N
] (2)

where σ is the standard deviation of the PPG signal, x is the PPG signal, µ is the average
value of the PPG signal, and N is the total number in the PPG signal. These calculations
reflect how far each value in the PPG pulse is from the average, relatively, in a deviation.

2.3. Hyperparameters Tuning for the Proposed Model

Hyperparameter adjustment is a challenging task in deep learning, as it involves
selecting the appropriate hyperparameters to optimize the algorithm. Hyperparameter
adjustment aims to identify the hyperparameter values that yield models with the best per-
formance that are applicable to various input data problems [26]. However, hyperparameter
selection is time-consuming, requiring repeated experiments and evaluations. One com-
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monly used approach is the grid-search method to facilitate the hyperparameter-selection
process. Grid search works by systematically testing different combinations of pre-defined
hyperparameter values. This method evaluates each combination using cross-validation
schemes to determine the most optimal set of hyperparameters. The advantage of grid
search resides in its ability to comprehensively explore the hyperparameter space, yielding
high learning accuracy and facilitating parallel processing during each machine-learning
training session. Nevertheless, it is essential to acknowledge that the exponential growth in
hyperparameter combinations necessitates substantial computational resources. The charac-
teristics of the data can significantly influence the appropriate selection of hyperparameters
in machine learning. Several studies have investigated the impact of hyperparameters on
the performance of machine-learning models [17,22,27–29]. Hence, in this research, we
constrained the hyperparameter space we explored. We evaluated different optimizers,
including Adam, Adadelta, RMSProp, and SGD, and varying batch sizes (32, 64, and 128).
Additionally, we considered multiple learning rates (0.001, 0.01, 0.005, and 0.05). The cho-
sen optimizers have demonstrated popularity and effectiveness in machine learning. Includ-
ing different batch sizes allowed us to understand their influence on model performance.
Meanwhile, various learning rates were selected to explore different levels of parameter
adjustment in the learning model.

Optimizer, Learning Rate, and Batch Size

Choosing the optimizer is crucial in optimizing performance and predicting results.
Selecting the appropriate optimizer can enhance the speed of convergence and improve
the accuracy of prediction. However, the efficacy of the optimizer is dependent on other
critical factors, such as the learning rate and sample size. The learning rate interacts with
the optimizer to determine the number of samples used in each update. A higher learning
rate can lead to more rapid convergence, while a lower learning rate can result in slow
convergence [30–32]. Similarly, a larger batch size can expedite the training process but
may prevent the model from capturing subtle patterns in the PPG data. Therefore, the
relationship among the learning rate, the optimizer, and the batch size requires careful
consideration to achieve the right balance and attain optimal results in deep learning
simulations using PPG data.

Among the most commonly used optimizers in the various prediction and classification
cases, SGD, RMSprop, Adadelta, and Adam were selected for study. Therefore, we expanded
our analysis using Adam, Adadelta, RMSprop, and SGD optimizers [10,27–29,33–36]. We con-
sidered the merits of each optimizer, including the SGD [33], RMSprop [29], Adam [37],
and Adadelta [29] formulae. However, we only partially depended on the direct applica-
tion of these optimizers. Instead, we incorporated them into the training process using
the grid-search method, which systematically explored combinations of hyperparameters,
including learning rate (0.01, 0.001, 0.05, and 0.005) and batch size (32, 64, 128), to identify
the optimal model performance.

a. The stochastic gradient descent (SGD) optimizer updates the parameters iteratively by
subtracting the gradient multiplied by the learning rate, as described in Equation (3):

Wnew = Wold − α∇L (Wold, xi, yi) (3)

where Wnew is the update weight, Wold the previous weight value, α is the learning
rate, and ∇L (Wold, xi, yi) is the gradient loss of function of L (Wold, xi, yi), which
indicates the direction and magnitude of change required to optimize the model.
The process described by this formula is repeated in the proposed deep learning
simulation until the model reaches convergence or a state where the loss function is
minimized and the prediction of the PPG dataset becomes optimal.

b. Root mean square propagation (RMSprop): The RMSprop optimizer adapts the
learning rate for each parameter based on the gradient changes in the previous
iterations. RMSprop utilizes the average squared estimation of the previous gradients
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to adjust the learning rate at each parameter update step. The formula for RMSprop
is described in Equations (4) and (5), where ρ represents the forgetting factor (set
to 0.9) and t denotes the current time step:

Wnew = Wold −
α√

MeanSqure(W, t)
∇L(Wold) (4)

Mean square (W, t)ρMeanSquare(W, t− 1) + (1− ρ)(∇L(W))2 (5)

c. Adaptive moment estimation (Adam): Adam is the most commonly used optimiza-
tion algorithm in deep learning for training models. The Adam optimizer combines
momentum optimization concepts and RMSprop to effectively update model pa-
rameters during the training process. The Adam optimizer is widely employed in
training deep learning models on time series datasets because it accelerates conver-
gence and achieves superior results. The formula for the Adam optimizer is shown
in Equation (6):

mt = ρ1mt−1 + (1− ρ1)gt (6)

ut = ρ1ut−1 + (1− ρ2)gt
2 (7)

where ρ1 and ρ2 are the exponential decay rates, g is the gradient. By utilizing
Formulae (6) and (7), the correct biases for the first and second moments can be
calculated using Equations (8) and (9), respectively:

m̂t =
mt

1− ρ1t
(8)

ût =
ut

1− ρ2t
(9)

Finally, the parameters of the machine-learning model are updated according to the
following Equation (10), where ε = 10−8 is the small constant that is used to ensure
numerical stability:

Wnew = Wold+∆W (10)

∆W = −α
m̂t√

ût + ε
(11)

d. Adadelta is an extension from AdaGrad, which is calculated by using Equation (12),
where RMS is root mean square error:

Wi+1 = Wt −
RMS [∆W]i−1

RMS[g]t
gt (12)

2.4. Proposed Deep Learning Model for Estimating BP
2.4.1. Long Short Term-Memory (LSTM) Architecture

Recurrent networks (RNNs) are commonly used to analyze time-series data, owing
to their ability to store memory accurately and to recognize patterns. However, RNNs
cannot predict data stored in long-term memory. Therefore, LSTM is a modification of
the RNN, which complements the weakness of the RNN. LSTM can predict information
based on past information stored for a long time. Thus, LSTM can remember a collection of
information that has been stored for an extended period and delete information that is no
longer relevant [38]. The proposed LSTM architecture is shown in Figure 5. We used two
LSTM layers, with 25 and 50 units in the first and second layers, respectively. Each unit
included an input gate and forget gate, which determined how the information would be
added to the cell state. Moreover, an output gate was used to determine the status of the
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hidden layer. The final LSTM output was the current cell state and the hidden layer state.
To avoid overfitting, a dropout rate function of 0.2 and batch normalization were used after
the processing of the LSTM units.

Figure 5. The proposed LSTM architecture.

2.4.2. LSTM-Based Autoencoder

There are two stages in the autoencoder concept: encoding and decoding, as shown in
Figure 6. First, the encoder receives the compressed input data and implements them in the
hidden layer. Then, the compressed input data from the previous stage are reconstructed
using the decoder stage. As the last layer of the encoder stage does not return a sequence, a
repeat vector is required to convert the output into a sequence with the same time-step as
the model input. We proposed an LSTM–autoencoder model comprising four LSTM layers
each in the encoder and decoder layers. We used a dropout rate of 0.2 and Glorot Normal
as the initializer kernel, to avoid overfitting [39].

Figure 6. The proposed LSTM–autoencoder architecture.

2.4.3. CNN–LSTM Architecture

As shown in Figure 7, the proposed CNN–LSTM model consisted of five CNN layers
for morphological feature extraction and one LSTM layer for temporal feature extraction.
They were connected to a dropout layer with a dropout rate of 0.1 to prevent overfitting.
The CNN layers consisted of five convolutional layers followed by a max-pooling layer,
and each layer used a rectified linear unit (ReLU) as the activation function. Maximum
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pooling followed the convolutional layer to reduce feature map dimensions and accelerate
computation. Furthermore, the feature maps were reshaped by flattening to generate a
feature vector. The LSTM layer was then connected to two fully connected layers to predict
the SBP and DBP. The CNN method involved feature extraction in the convolution layer
and was capable of automatically extracting features. An advantage of the LSTM was its
ability to remember long-term sequences because of the increased number of memory cells
in the LSTM architecture. Therefore, we combined the CNN and LSTM methods to achieve
the optimum performance.

Figure 7. The proposed 1D CNN–LSTM architecture.

2.5. Metrics and Evaluation

In this study, we used mean square error (MSE) as a metric evaluation. Therefore, the
proposed model was evaluated with three standard evaluations: those of the Association
for the Advancement of Medical Instrumentation (the AAMI), the British Hypertension
Society (the BHS), and the Institute of Electrical and Electronics Engineers (the IEEE).

The IEEE standard: For analyzing the performance, the IEEE standard was proposed
using the MAEs as the parameters, as used in the current standard [40]. As shown in
Table 1, an A grade was attained when the mean absolute difference (MAD) ≤ 5 mmHg.
The MAE was the average difference between the actual and predicted values, as shown in
Equation (13). Here, n is for the data size, pi is the test measurement and yi is the average
of reference measurement.

MAD =
(
∑n

i=1|pi − yi|
)

/n (13)

Table 1. Performance requirements based on evaluations of three standards: the IEEE standard, the
BHS standard, and the AAMI standard. MAE: mean absolute difference, CP: cumulative percentage,
ME: mean error, SD: standard deviation.

BHS

Grade CP
5 mmHg

CP
10 mmHg

CP
15 mmHg

IEEE

Grade MAD
(mmHg)

AAMI

Grade ME
(mmHg)

SD
(mmHg)

A 60% 85% 95% A ≤5

Pass ≤5 ≤8
B 50% 75% 90% B 5–6
C 40% 65% 85% C 6–7
D Lower than C D Lower than C

British Hypertension Society (BHS) standard: The BHS is a standard used to assess
BP measurement devices and methods. According to the BHS standard, the performance is
determined by the absolute error, which is divided into three categories: A, B, and C. If the
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evaluation score was less than grade C, the study failed to meet the minimum requirements
of the BHS standard. As per the standard, the absolute percentage error of prediction must
be ≤5, 10, and 15 mmHg to achieve grades A, B, and C, respectively [41].

Association for the Advancement of Medical Instrumentation (AAMI) standard:
The AAMI standard is used to evaluate SBP and DBP measurement devices and algorithms.
This evaluation assesses the mean error (ME) and standard deviation (SD) [42]. As shown in
Table 1, the ME should be ≤5 mmHg, and the SD should be ≤8 mmHg. The ME represents
the average error between the predicted and actual values, as shown in Equation (14).
The estimated values ŷ = [y1, y2, . . ., yn] and yi = [y1, y2, . . ., yn] are the ground truth values
and N is the total sample size.

Mean error =
1
N
∗∑n

i=1(yi − ŷ) (14)

The SD represents the average value used to determine data distribution in a sample.
Additionally, it indicates how closely the data is related to the mean. The SD value was
used as an indicator of error dispersion [43]. The lower the SD value, the closer the data
is to the average value. Conversely, the higher the SD value, the more comprehensive the
range of data variations. The SD equation is shown in Equation (15), where n is the number
of data points in the dataset, y = [y1, y2, y3, . . ., yn] is the value of the ith point in the dataset,
and y is the mean value of the dataset.

SD =

√
1

n− 1 ∑n
i=1(yi − y)2 (15)

3. Results

This study evaluated the performance of LSTM, LSTM–autoencoder, and CNN–LSTM
in estimating SBP and DBP. We used a grid-search method with five-fold cross-validation
to acquire the optimal model during the training process. The training data consisted
of 65,000 and 65,235 PPG signal segments for predicting the SBP and DBP, respectively.
The model was then evaluated using test data consisting of 14,763 and 15,423 PPG segments
to predict SBP and DBP, respectively. Table 2 summarizes the prediction performance of
each model, based on MAE and SD.

Table 2. Evaluation of the performances of the proposed method with the prior studies in estimating
systolic blood pressure (SBP) and diastolic blood pressure (DBP) using mean absolute error (MAE)
and standard evaluation (SD).

Author Method Input Dataset
SBP DBP

MAE SD MAE SD

Proposed work LSTM PPG MIMIC III 14.2 20.7 7.53 10.01
Proposed work LSTM–Autoencoder PPG MIMIC III 13.45 19.01 5.71 7.67
Proposed work CNN + LSTM PPG MIMIC III 3.64 7.04 2.39 3.79

[44] SVR PPG MIMIC II 8.54 - 4.34 -
[7] SVM PPG Queensland 11.6 8.2 7.6 6.7

[10] Spectro-temporal ResNet PPG MIMIC III 9.43 - 6.88 -
[13] ANN PPG MIMIC II 9.74 12.40 4.65 6.29
[12] RNN PPG MIMIC III 12.08 15.67 5.56 7.32
[11] U-Net PPG MIMIC III 5.73 - 3.45 -
[45] CNN PPG Private dataset - 14.03 - -
[8] AdaBoost PPG MIMIC II 8.22 10.38 4.17 4.22

[16] CNN–BiLSTM PPG UCI (MIMIC II) 7.85 8.41 4.42 4.80

After implementing the grid-search method, the best hyperparameter for the LSTM
model was identified as the AdaDelta optimizer, with an LR of 0.001 and a batch size
of 32 for predicting the SBP. Meanwhile, RMSprop was selected as the optimizer for
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predicting the DBP with an LR of 0.001 and a batch size of 64. Subsequently, for the LSTM-
autoencoder, the Adadelta optimizer with an LR of 0.001 and a batch size of 64 was selected
as the best parameter for predicting the SBP. Furthermore, the Nadam optimizer with an
LR of 0.001 and a batch size of 32 was selected as the best hyperparameter setting for the
predicted DBP. For the CNN–LSTM prediction model, the grid-search method selected the
Adadelta optimizer with an LR of 0.001 and a batch size of 64 for predicting SBP and the
RMSprop optimizer with an LR of 0.001 and a batch size of 64 for predicting DBP.

The Bland–Altman plots in Figure 8a,b show the average and different values of the
real and estimated values of SBP and DBP. The x-axis represents pressure ranges of 75 to
180 and 40 to 90 mmHg for SBP and DBP, respectively. The y-axis denotes errors of −90 to
+70 mmHg for SBP and −40 to +30 mmHg for DBP. The average errors between the real
and predicted values were approximately (−50, 100) mmHg for SBP and (−30, 30) mmHg
for DBP, as shown in Figure 8c,d. Among the histograms in Figure 8c,d, the deviation
of the predicted SBP value was two times higher than the predicted DBP. Therefore, the
results of the SBP and DBP predicted using the LSTM failed to satisfy the IEEE, AAMI,
and BHS standards, as shown in Table 3. Furthermore, the cumulative percentages of
the predicted SBP and DBP falling within the error range of ±5 mmHg were 30.92% and
45.14%, respectively.

Figure 8. Bland–Altman plots of the proposed LSTM model: (a) systolic blood pressure and (b) diastolic
blood pressure. Error histogram predicted systolic blood pressure (c) and diastolic blood pressure (d).

Figure 9 shows the Bland–Altman plots and histogram error distributions of the
real and predicted blood pressures with the LSTM–autoencoder. The Bland–Altman
plots in Figure 9a,b reveal that the ME for SBP is −0.94, with a confidence interval of
(−38.2 mmHg, 36.3 mmHg), and the ME for DBP is −0.56 mmHg with a confidence in-
terval of (−15.56 mmHg, 14.48 mmHg), respectively. Several SBP values were predicted
with high differences, as shown in Figure 9c,d. Therefore, the DBP-predicted performance
obtained a B grade in the AAMI evaluation standard and passed the IEEE evaluation
standard. Furthermore, in accordance with an error range of ±5 mmHg, the conference
cumulative percentages of the estimated SBP and DBP were 26.94 and 56.674, respectively.
Based on the BHS protocols, the predicted SBP performance obtained a D grade, and the
DBP values obtained a C grade.
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Table 3. Performance evaluation of the proposed model for the estimation of systolic blood pressure
(SBP) and diastolic blood pressure (DBP) by using three evaluation standards: the IEEE standard, the
BHS standard, and the AAMI standard. MAE: mean absolute error, MAPD: mean absolute percentage
differences, CP: cumulative percentages, ME: mean differences, SD: standard deviations.

Assessment
Evaluation

IEEE Standard AAMI Standard BHS Standards

MAD
(≤4 mmHg)

MAPD
(%) Grade ME

(<5 mmHg)
SD

(<8 mmHg)
CP5

(>60%)
CP10

(>85%)
CP15

(>95%) Grade

LSTM proposed model

SBP 14.281 0.12 D −0.49 20.7 30.92 53.07 67.37 D

DBP 7.53 0.133 C −0.21 10.01 45.14 72.02 86 C

LSTM–autoencoder proposed model

SBP 26.94 0.11 D −0.93 19.01 27 52.5 68.70 D

DBP 5.71 0.01 B −0.56 7.67 56.67 83.8 92.98 B

CNN–LSTM proposed model

SBP 5.34 0.04 B 0.13 7.04 63.4 85.9 92.78 B

DBP 2.89 0.05 A 0.48 3.79 81.70 98.28 100 A

Figure 9. Bland–Altman plots of the proposed LSTM–autoencoder model (a) systolic blood pressure
and (b) diastolic blood pressure. Error histogram predicted systolic blood pressure (c) and diastolic
blood pressure (d).

Finally, compared to the other LSTM and LSTM–autoencoder models, CNN–LSTM out-
performed the other models, as shown in Table 3. The Bland–Altman plots of the predicted
SBP and DBP using CNN–LSTM are shown in Figure 10a,b, respectively. The difference
between the real and predicted SBPs ranged from −40 to 40 mmHg, while the difference
between the real and predicted DBPs ranged from −10 to 10 mmHg. The ME of the SBP
difference was −0.13 mmHg, with a confidence interval of (−15.6 mmHg, 15.32 mmHg),
and the ME performance for the difference of DBP performance was 0.45 mmHg, with a
confidence interval of (−6.8 mmHg, 7.8 mmHg). Therefore, the error distribution was ap-
proximately 0 mmHg, as shown in Figure 10c,d. In addition, the deviation in the estimated



Diagnostics 2023, 13, 2566 14 of 18

SBP values was higher than that in the predicted DBP values, as shown in Tables 2 and 3.
The cumulative percentages of the predicted SBP and DBP values were 63.4% and 81.70%,
respectively, with an error range of 5 mmHg. According to the BHS evaluation, the pre-
dicted values of SBP and DBP obtained grades of B and A, respectively.

Figure 10. Bland–Altman plots of the proposed CNN–LSTM model (a) systolic blood pressure and
(b) diastolic blood pressure. Error histogram predicted systolic blood pressure (c) and diastolic blood
pressure (d).

4. Discussion

The machine-learning approach has been a primary focus in several studies to estimate
SBP and DBP using PPG signals. These studies presented innovative and high-performing
approaches to optimizing blood-pressure estimation, involving in-depth analysis of var-
ious aspects of PPG signals, including using features, raw data, and signal derivatives.
The datasets used in these studies differed in terms of the number of patients, preprocess-
ing techniques, prediction algorithms, and evaluation metrics employed. Therefore, we
summarized the existing research and compared the performances based on MAE and SD,
as shown in Table 2. The obtained performance metrics, including MAE and SD, indicated
the level of precision and variation in the BP estimation attained by the proposed method.

Liu et al. used a combination of features extracted from the PPG and second-derivative
PPG (SDPPG) domains from the MIMIC II dataset and used support vector regression
(SVR) to estimate SBP and DBP. They used 70% of 910 PPG pulse cycles as training
data and the remaining 30% as test data. According to the results, the MAEs obtained
were 8.54 and 4.34 for estimating SBP and DBP, respectively [44]. Hasanzadeh et al. used
14 PPG features as input into AdaBoost with 200 decision tree estimators and applied 10-fold
cross-validation to select the optimal model for measuring SBP and DBP. Based on the BHS
evaluation, the performance obtained grades of A and C for predicting DBP and SBP, respec-
tively [8]. Shimazaki et al. used a pulse wave of one beat, velocity plethysmography (VPG),
accelerated plethysmography (APG), third-derivative pulse wave, and fourth-derivative
pulse wave in a proposed one-dimensional (1D) CNN model to estimate BP. A limitation
of their study was that they estimated only the SBP value with SD performances of 13.20,
and not DBP [45]. Zhang et al. used a dataset from the University of Queensland Vital
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Signs Dataset for estimating BP using PPG signals. More than 7000 PPG heartbeats with
different blood-pressure values were processed to extract the nine characteristic parameters
based on each the maximum and minimum of each pulse wave. Furthermore, they used
75% of the data as training and 25% of the data as testing, and used the SVM model for
predicting SBP and DBP, respectively [7]. In addition, Slapničar et al. used short segments
of raw PPG, PPG, and PPG” from MIMIC III as temporal-domain inputs into the ResNet
architecture. Their study obtained MAE performances of 9.43 and 6.88 for estimating SBP
and DBP, respectively. However, their study required a high computational time during
the training with ResNet because the full network had to be trained several times [10].

The utilization of peak-to-peak PPG (photoplethysmography) signals in machine
learning for blood-pressure estimation offers three distinct advantages. First, it provides
valuable insights into the systolic and diastolic characteristics of the arterial pulse by
measuring the distance between the maximum and minimum peaks within the PPG
waveform. Second, peak-to-peak PPG signals exhibit reduced sensitivity to motion artifacts
compared to other signal features, as the measurement of peak-to-peak distances primarily
focuses on the overall amplitude of the waveform, thereby minimizing the impact of motion
artifacts during the estimation process. Finally, peak-to-peak PPG signals can capture the
systolic and diastolic components of the arterial pulse, thus offering a comprehensive
representation of the blood-pressure waveform [5,6]. Therefore, we used two cycles of
the PPG signal peaks as inputs for the proposed model. We developed a non-invasive
method for continuous blood-pressure estimation based on the PPG signal from the MIMIC
III system using LSTM, LSTM–autoencoder, and CNN–LSTM models with a grid-search
method to find the optimal hyperparameters of the proposed model. As presented in
Table 2, the proposed CNN–LSTM is superior to the LSTM and LSTM–autoencoder models,
because each convolution layer extracts essential features from the PPG signal and improves
the quality of the information.

Using a grid-search approach, this study proposed a machine-learning algorithm
with the best hyperparameter settings. Our findings contribute to advancing non-invasive
and continuous BP monitoring techniques and, offering potential improvements in pa-
tient care and cardiovascular health management. The application of grid search can
reduce the processing time compared with the manual consideration of the appropriate
parameters from each model prediction and increase the performances even though only
PPG signals are used. However, this study has several limitations. First, based on the
assessment guideline, we used 55 subjects, which passed only the IEEE standard, which
has a minimum of 45 required subjects. However, the AAMI and BHS guidelines require
more than 85 participants. Second, more prominent data points are necessary, because
the long-term monitoring model of the LSTM performance relies on time-measurement
data [46]. The grid-search technique, particularly in CNN–LSTM, offers significant advan-
tage. This method enables comprehensive exploration of the predefined hyperparameter
space by systematically and thoroughly searching through all possible combinations. Grid
search facilitates the determination of optimal values for each hyperparameter, leading
to improved performance. Moreover, tuning the hyperparameter automatically reduces
the computational time required for hyperparameter tuning. Therefore, the integration
of grid search in CNN–LSTM represents an effective and optimal choice to achieve better
performance and efficiency in hyperparameter tuning for deep learning models.

5. Conclusions

The development of continuous and non-invasive blood-pressure-measurement meth-
ods is a highly intriguing research topic. In this study, we proposed a continuous and
non-invasive estimation method for systolic blood pressure (SBP) and diastolic blood
pressure (DBP) based on convolutional neural network-long short-term memory (CNN–
LSTM), using peak-to-peak signals from photoplethysmography (PPG) to detect early-stage
blood-pressure health and to assist in early-stage identification of blood-pressure-related
health issues. We also compared the CNN–LSTM method with the classical LSTM and
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LSTM–autoencoder approaches. Additionally, using optimal hyperparameters obtained
through grid-search methodology improved the prediction performance of SBP and DBP.
The SBP and DBP estimation results obtained from the CNN–LSTM method complied with
the standards set by the Association for the Advancement of Medical Instrumentation (the
AAMI), the British Hypertension Society (the BHS), and the Institute of Electrical and Elec-
tronics Engineers (the IEEE) when compared to the classical LSTM and LSTM–autoencoder
methods. Nevertheless, this research requires validation using a more substantial dataset
to verify the clinical feasibility of our proposed model.
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