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Abstract: Pathogenic variants in the PHEX gene cause rare and severe X-linked dominant hy-
pophosphataemia (XLH), a form of heritable hypophosphatemic rickets (HR) characterized by renal
phosphate wasting and elevated fibroblast growth factor 23 (FGF23) levels. Burosumab, the approved
human monoclonal anti-FGF23 antibody, is the treatment of choice for XLH. The genetic and pheno-
typic heterogeneity of HR often delays XLH diagnoses, with critical effects on disease course and
therapy. We herein report the clinical and genetic features of two Italian female infants with sporadic
HR who successfully responded to burosumab. Their diagnoses were based on clinical and laboratory
findings and physical examinations. Next-generation sequencing (NGS) of the genes associated with
inherited HR and multiple ligation probe amplification (MLPA) analysis of the PHEX and FGF23
genes were performed. While a conventional analysis of the NGS data did not reveal pathogenic or
likely pathogenic small nucleotide variants (SNVs) in the known HR-related genes, a quantitative
analysis identified two different heterozygous de novo large intragenic deletions in PHEX, and this
was confirmed by MLPA. Our molecular data indicated that deletions in the PHEX gene can be the
cause of a significant fraction of XLH; hence, their presence should be evaluated in SNV-negative
female patients. Our patients successfully responded to burosumab, demonstrating the efficacy of
this drug in the treatment of XLH. In conclusion, the execution of a phenotype-oriented genetic test,
guided by known types of variants, including the rarest ones, was crucial to reach the definitive
diagnoses and ensure our patients of long-term therapy administration.

Keywords: burosumab; FGF23; heterozygous deletion; hypophosphatemic rickets; multiple
ligation probe amplification; next-generation sequencing; PHEX gene; therapy; X-linked dominant
hypophosphataemia

1. Introduction

Despite knowledge advances in the pathophysiology of rare inherited diseases, many
of them do not have an approved treatment. Indeed, only a small fraction of the orphan
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drugs investigated to date obtain regulatory approval each year, and they only do so after
passing rigorous preclinical and clinical studies [1].

The introduction of burosumab, the human monoclonal antibody directed against
fibroblast growth factor 23 (FGF23) [2,3], marked a critical breakthrough in the treatment
of inherited hypophosphatemic rickets (HR), a group of rare, genetically heterogeneous
phosphate wasting disorders (prevalence of 3.9 per 100,000 live births) that impair bone
mineralization and severely impact the quality of life of affected patients.

In association with calcium, phosphorus is required to maintain bone integrity and
mineralization. The maintenance of intracellular and extracellular phosphate levels de-
pends on a complex set of processes occurring in the gut, skeleton, and kidneys, which
are regulated by parathyroid hormone (PTH), 1,25-dihydroxy vitamin D3 (1,25(OH)2D3)
or calcitriol, and FGF23, a phosphaturic hormone produced by bone. PTH stimulates
renal phosphate excretion, calcitriol increases the absorption of phosphate by the intestine
and bones, and FGF23 suppresses proximal tubular phosphate reabsorption and intestinal
phosphate absorption, controls calcitriol degradation, and suppresses PTH production
and secretion. Hypophosphatemia can arise from inadequate phosphorus intake, reduced
intestinal absorption, the redistribution of tissue fluid phosphorus into cells, or excessive
renal wasting [4].

FGF23 excess or hyperactivity causes the waste of urinary phosphate and low levels
of 1,25(OH)2D3, thereby leading to HR with characteristic lower limb deformity, growth
plate abnormalities, and progressive softening of the bones (osteomalacia), as well as a
short stature, muscle and bone pain, weakness, fatigue, joint pain or stiffness, hearing
difficulties, enthesopathy, osteoarthritis, and dental abscesses [5]. Increased FGF23 activity
may depend on (i) an abnormal overexpression, as in the case of the rare tumor-induced
osteomalacia; (ii) specific pathogenic variants in the FGF23 gene leading to mutant proteins
that are resistant to enzymatic processing; and (iii) impaired FGF23 degradation due to
partial or full deficiency of the phosphate-regulating endopeptidase homolog X-linked
(PHEX) gene product [4].

Conventional treatment for HR consists of multiple daily doses of vitamin D analogs
and phosphate salts administration. However, in the long-term, this therapeutic regimen
has a wide range of side effects, including hypercalcemia, hypercalciuria, nephrolithiasis,
nephrocalcinosis, gastrointestinal disorders, impaired renal function, and potential chronic
kidney disease. Moreover, it may improve radiographic rickets, but it does not normalize
growth. In contrast, burosumab has performed well in different trials in children and adults
with X-linked hypophosphataemia and in patients with tumor-induced osteomalacia since
it improves serum phosphorus levels and mineralization and decreases rickets severity and
pain scores [2–4].

Despite pathogenic sequence variants in at least 20 genes have been to date associ-
ated with hereditary HR, thereby resulting in autosomal dominant, autosomal recessive,
and X-linked dominant and recessive conditions [5–8], only the inherited forms of HR
that are related to FGF23 hyperactivity can be treated with burosumab. These latter con-
ditions include the X-linked dominant hypophosphataemia, which is associated with a
mutation of the PHEX gene (OMIM: *300550); the autosomal dominant HR, which occurs
due to a mutation of the FGF23 gene (OMIM: *605380); the autosomal recessive HR 1 and
2 conditions, which are caused by pathogenic variants in the dentin matrix acidic phospho-
protein 1 (DMP1; OMIM: *600980) and ectonucleotide pyrophosphatase/phosphodiesterase
1 (ENPP1; OMIM: *173335) genes, respectively; osteoglophonic dysplasia, which occurs
due to pathogenic variants in the fibroblast growth factor receptor 1 gene (FGFR1, OMIM:
*136350); Jansen-type metaphyseal chondrodysplasia, which is associated with a mutation
of parathyroid hormone 1 receptor (PTH1R, OMIM: *168468); Raine syndrome, which
is associated with the Golgi-associated secretory pathway kinase FAM20C gene (OMIM:
*611061); and McCune–Albright syndrome, which is associated with the guanine nucleotide-
binding protein G(s) subunit alpha (GNAS) complex gene (GNAS1, OMIM: *139320).
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The most common form of heritable HR related to FGF23 excess, affecting approx-
imately 1:20,000 individuals, is X-linked dominant hypophosphataemia, aka X-linked
hypophosphataemic rickets (XLH; OMIM: #307800), which occurs due to loss-of-function
variants in the PHEX gene on chromosome Xp22.1 [5,8]. Consequently, both hemizygous
males and heterozygous females can be affected by this lifelong progressive and severe
metabolic bone disease. PHEX mutations have been found in 87% of familial cases and in
72% of sporadic cases as a result of de novo mutational events [9,10].

Next-generation sequencing (NGS) methodologies looking for small nucleotide vari-
ants (SNVs) in the genes currently associated with hereditary HR have strongly reduced the
timing of diagnosis. However, conventional NGS analyses can miss copy number variations
(CNVs), mainly represented by large intragenic deletions, especially in heterozygotes [11].

Herein, we report the clinical, radiological, and laboratory findings from two Ital-
ian female children affected by sporadic HR who successfully responded to burosumab
treatment and underwent molecular analysis to obtain definitive diagnosis for therapeutic
purposes and genetic counseling.

2. Materials and Methods

The clinical diagnosis of HR associated with FGF23 excess was formulated accord-
ing to recent recommendations that have suggested evaluating the presence of mus-
cle pain, weakness, and/or fatigue; lower limb deformities, fractures/pseudo-fractures,
tooth abscesses and/or excessive dental caries; bone pain, joint pain, and/or joint stiff-
ness; short stature and gait abnormalities; family history; serum calcium (normal range
8.4–10.2 mg/dL) and phosphate (normal range 3.4–4.5 mg/dL), alkaline phosphatase (ALP;
normal range 44–147 U/L), 25-hydroxy vitamin D (25(OH)2D) (normal range > 30 ng/mL),
and PTH (normal range 14–65 pg/mL) and levels of intact FGF23 (normal range 58.63 to
63.71 pg/mL); and renal functionality assessed by creatinine levels, the estimated glomeru-
lar filtration rate (eGFR; normal range > 90 mL/min/1.73 m2), and ultrasound [2,3,12,13].

Written informed consent was obtained from the parents prior to participation in the
study. Peripheral blood samples were obtained from the probands and parents. Genomic
DNA was extracted from peripheral blood leukocytes collected in EDTA with a QIAa–mp
DNA Mini Kit (QIAGEN Italia, Milan, Italy) or by using a Maxwell 16 instrument (Promega,
Madison, WI, USA). DNA concentration, purity, and integrity were evaluated using a
Nanodrop spectrophotometer (Thermo Fisher, Waltham, MA, USA) and a Tape Station
analyzer (Agilent, Santa Clara, CA, USA). For the NGS analysis of genomic DNA, library
preparation was carried out with the multi-gene panel (4800 genes) SureSelect Clinical
Research Exome V2, according to the manufacturer’s instructions (Agilent Technologies,
Santa Clara, CA, USA). The libraries that passed quality control were sequenced by the
paired-end sequencing-by-synthesis method with the NextSeq 500 sequencing system
using the High Output PE 300 Cycles flow-cell (Illumina, San Diego, CA, USA). The
paired-end reads of 150 and 100 bp of the lengths were generated in accordance with
the supplied protocol. Genomic target regions were sequenced at a high-depth coverage
(20x minimum, 150x average). FASTQ files were uploaded to the Alissa Clinical Informatic
Platform (Agilent Technologies) to call, annotate, filter, and prioritize the variants, and a
bioinformatics pipeline that incorporates community standards and custom algorithms
was used to analyze the NGS reads and identify single nucleotide variants (SNVs) and
small and large insertions/deletions (indels).

To assess variant pathogenicity according to the American College of Medical Genet-
ics and Genomics and the Association for Molecular Pathology (ACMG) guidelines, we
retrieved the annotations reported in the VarSome platform (https://varsome.com/ ac-
cessed on 30 June 2023) and/or ClinVar (https://www.ncbi.nlm.nih.gov/clinvar/ accessed
on 30 June 2023). In agreement with the ACMG guidelines, variants can be classified as
pathogenic (P), likely pathogenic (LP), variant(s) of uncertain significance (VUS), likely
benign (LB), or benign (B). Only P/LP variants have to be considered to confirm a molecular
diagnosis. VUS variants can be considered as potentially disease-causing variants when

https://varsome.com/
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they are very close to being classified as LP by bioinformatic analyses and additional evi-
dences, e.g., segregation studies, therapeutic responses to specific treatments, or functional
studies, contribute to assigning them a pathogenetic role [14].

To detect exon-level copy number variations (CNVs), the relative quantification of
genomic DNA sequences was carried out through an in-house procedure that calculated
the ratio between the read counts observed for each exon of the PHEX gene (NM_000444.6)
and the average read counts of all the exons of a reference autosomal gene (AGRN) in the
patients relative to the average ratio of the read counts of each PHEX exon normalized to
the average read counts of all the exons of the agrin gene (AGRN) reported in three normal
females. Relative gene dosages were expressed as fold changes (two copies = 0.85 − 1.20
and one copy = 0.35 − 0.65) [15]. The data were analyzed and reported as graphs through
Excel charts.

The presence of heterozygous deletions/duplications in PHEX was further assessed
by multiplex ligation probe amplification (MLPA) with the SALSA MLPA Probemix P223
PHEX (MRC Holland, Amsterdam, The Netherlands) for the detection of deletions or
duplications in the PHEX (RefSeq: NM_000444.6) and FGF23 (RefSeq: NM_020638.3)
genes. MLPA data analysis was carried out by the Coffalyser.Net software (MRC Holland,
Amsterdam, The Netherlands).

3. Results
3.1. Probands’ Clinical Features

Two unrelated female infants were referred to the hospital due to their short statures,
bowing legs, and waddling gaits that delayed their walking milestones. In both cases, the
parents were normal in their heights and physical structures.

The first patient was a 25-month-old girl with a mild short stature (−1.09 SD) and
low weight (+0.36 Z-Score), and her lower limb radiographs showed proximal tibialis
enlargement (Figure 1A).
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Figure 1. X-ray images showing the lower limb features of patient 1 (A) before and (B) 1 year after
burosomab therapy.

Blood tests showed normal kidney function and normal serum calcium levels, though
serum phosphate and 25(OH)2D were low and ALP was elevated. Moreover, the low tubu-
lar maximum reabsorption rate of phosphate to the glomerular filtration rate (TmP/GFR;
normal range 3.25–5.51 mg/dL) indicated renal phosphate wasting (Table 1).
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Table 1. Patients’ main biochemical and physical findings at presentation.

Height
(cm)

Weight
(kg)

eGFR
(mL/min/1.73 m2)

25(OH)2D
(ng/mL)

ALP
(IU/L)

P
(mg/dL)

Ca
(mg/dL)

PTH
(pg/mL)

FGF23
(ng/L)

TRP
(%)

TmP/GFR
(mg/dL)

Patient 1 82 ↓ 12.7 ↓ 113 = 15 ↓ 642 ↑ 2.2 ↓ 8.8 = 18 = 79.5 ↑ 77 ↓ 1.86 ↓
Patient 2 79 ↓ 13.5 ↓ 109 = 30 = 808 ↑ 2 ↓ 9 = 16 = 90 ↑ 75 ↓ 1.97 ↓

TRP, tubular reabsorption of phosphorus; ↓, lower than the normal range; =, within the normal range; ↑, higher
than the normal range (see Materials and Methods).

The second patient was a 2-year-old girl. At physical examination, her height
(−2.21 SD) and weight (+0.92 Z-Score) were under the median scores (Table 1). Labo-
ratory tests revealed normal kidney function and normal calcium and 25(OH)2D serum
levels. Her serum phosphate was low and her ALP was elevated, though her PTH levels
were normal. The TmP/GFR level was consistent with renal phosphate wasting (Table 1).
X-rays revealed widening of the proximal tibia (not shown). Due to the clinical findings and
the unremarkable family history, in this case, a diagnosis of sporadic HR was formulated,
and treatment with phosphate supplementation (0.5–1.5 g/day) was started.

Both patients had suboptimal response to traditional therapy, and this was associated
with undesired effects such as nausea, vomiting, and, often, diarrhea, abdominal pain, and
bloating due to the high doses of oral phosphates.

Subsequent laboratory tests revealed, in both children, elevated serum levels of intact
FGF23 (Table 1). Therefore, phosphorus administration was discontinued to start treat-
ment with burosumab (0.8 mg/kg every 15 days), the FGF23-neutralizing monoclonal
antibody [16]. After 1 year of therapy, several beneficial effects on biochemical (Table 2),
physical, and clinical parameters were observed in both the children.

Table 2. Patients’ biochemical findings after 1 year of therapy.

eGFR
(mL/min/1.73 m2)

25(OH)2D
(ng/mL)

ALP
(IU/L)

P
(mg/dL)

Ca
(mg/dL)

PTH
(pg/mL)

TRP
(%)

TmP/GFR
(mg/dL)

Patient 1 111 75 259 3.7 9.5 22 85 3.30
Patient 2 194 65 289 3.7 9.1 23 87 3.25

TRP, tubular reabsorption of phosphorus. All parameters were within the respective normal ranges (see Materials
and Methods).

In addition to increased phosphorus levels and strong decreases in ALP serum levels,
both children reported ameliorated muscle pain and mobility, which resulted in decreased
waddling gaits and associated levels of fatigue. The linear growth, the radiographic
appearance of rickets, the leg deformities, and the bone density levels were also improved
(Figure 1B).

3.2. Molecular Analysis

Given the difficulties in differentiating the multiple possible genetic causes of HR, to
obtain definitive diagnosis, molecular analysis was carried out. In particular, panel-based
NGS analysis targeting exons and flanking exonic sequences of approximately 4800 genes
associated with specific clinical phenotypes, aka clinical exome, was performed and inter-
rogated for SNVs in the 20 genes currently associated with HR, as reported in the medical
literature, as follows: ALPL, CLCN5, CTNS, CYP2R1, CYP27B1, CYP3A4, DMP1, ENPP1,
FAH, FAM20C, FGF23, FGFR1, HNRNPC, KLOTHO, GNAS, PHEX, RAS, SLC34A1, SLC34A3,
and VDR [12]. Genetic data were also interrogated to search for variants in genes associated
with conditions that include the phenotype HP:0004912, e.g., “hypophosphataemic rickets”,
according to the Human Phenotype Ontology (HPO) classification.

Despite that coverage of the exons and flanking splice sites of the targeted HR genes
with a minimum read depth of 20x was 100%, the analysis of genomic data did not detect
any P/LP or VUS variants. However, based on the clinical and biochemical findings and
on the excellent responses to burosumab therapy, we considered the possibility that our
sporadic HR patients could be affected by XLH, the most common form of HR, as conse-
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quence of heterozygous CNVs in the PHEX gene. Therefore, we performed a quantitative
analysis of the read counts relative to each exon of this gene in the patients compared
to three normal females [15]. Surprisingly, for both children, we obtained relative ratios
consistent with the presence of large heterozygous intragenic deletions. In particular, the
deletion found in patient 1 removed the PHEX exons 21–22 whereas the deletion detected
in patient 2 included the PHEX exons 15–22 (Figure 2).
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Figure 2. PHEX gene structure, protein domains, and the deleted coding sequences. (A) Schematic
representation of the 22 PHEX gene exons and the corresponding protein domains with the approxi-
mate positions of the deletions found in the patients (P1 and P2) that removed exons 21–22 and 15–22,
respectively, of the gene (downstream regions untested). UTR, untranslated region; nt, nucleotide.
(B) Boxplot chart of the gene dosage results obtained in patient 1 (P1) and patient 2 (P2) by evaluating
the read depths for each of the 22 exons of the PHEX gene normalized to the median read depths
of all the exons of an autosomal gene (AGRN) (see Materials and Methods), which are represented
as diagnostic indexes (ID) with respect to three normal controls. The red boxes delimit ID values
indicative of heterozygous duplications (dup) or deletions (del) of the analyzed exons. The ID values
included within the green box indicate normal copy numbers. The bars represent the SDs of the IDs
from the patients normalized to three normal control females. (C) Boxplot chart of the MLPA assay
results showing the genomic deletions of the PHEX gene (red circles in the orange area of the graph)
in the two patients.

MLPA analyses confirmed the deletions in the probands and excluded them in the
respective parents, thereby confirming their de novo origin.
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4. Discussion

Hypophosphataemic rickets (HR) with elevated FGF23 serum level represents a group
of rare conditions that can be successfully treated with targeted drug therapies. In fact, the
human anti-FGF23 monoclonal antibody burosumab was the first drug approved in 2018 by
the Food and Drug Administration and the European Medicines Agency for the treatment
of children aged 1–4 years affected by XLH, the X-linked dominant form of HR [2,17,18].

Unlike the conventional therapy for XLH, which aims to counteract the detrimental
effects of FGF23 excess with multiple daily doses of oral phosphate supplements and
active vitamin D analogues, burosumab directly addresses the molecular mechanism of
the condition simply by targeting the deleterious growth factor. Both the treatments are
usually initiated at the time of diagnosis and continued at least until growth completion [3].
However, significantly greater improvements in radiological rickets healing and phosphate,
ALP, and calcitriol concentrations, as well as TmP/GFR, growth, and functional outcomes,
have been observed in children promptly treated with burosumab compared to those
treated with the conventional therapy [19,20].

The two children herein presented had clinical diagnoses of sporadic FGF23-related
HR and were, therefore, promptly and successfully treated with burosumab, bringing
significant clinical improvements from the first months of treatment. However, since HR
is a genetically heterogeneous disorder that may be associated with various Mendelian
transmission modes, in the absence of a positive family history, molecular testing for
the confirmation of clinical suspicion, a differential diagnosis, carrier detection, genetic
counseling, and, if appropriate, admission to long-lasting burosumab therapy is strongly
recommended [2,3,7].

The use of NGS technology is a reliable and sensitive approach for genetic testing for
patients affected by genetically heterogeneous diseases, such as HR. Through the simul-
taneous analysis of thousands of disease-associated genes, NGS can discover a causative
gene and the sequence variants associated with a specific phenotype [21,22]. NGS is highly
sensitive in detecting small nucleotide variants (SNVs) in the target regions of analyzed
genes. Healthcare professionals are becoming more aware that high throughput molecular
screening methodologies are extremely useful, especially for the early diagnoses of rare
inherited diseases with approved therapeutic options [23,24].

Therefore, we applied a multi-gene NGS approach for identifying the molecular cause
of the disease in our HR patients; however, despite that the target regions of the genes
of interest had an excellent coverage (100%, 20x), we did not identify any SNVs that
could explain the patients’ phenotypes. Nevertheless, the clinical and laboratory findings
were consistent with the possibility that our patients had XLH, which is associated with
pathogenic hemizygous/heterozygous null variants in the PHEX gene [8,25]. Indeed, the
hallmarks of our HR children were the elevated levels of FGF23, which could reasonably
have been due to inactivated PHEX gene, which is the most common cause of heritable
HR [5,8].

The PHEX gene spans a genomic region of approximately 210 kb on chromosome
Xq 22.11. It contains 22 exons and encodes the phosphate-regulating neutral endopepti-
dase PHEX, a glycoprotein of 749 amino acids (NP_000435.3) that belongs to the type II
integral membrane zinc-dependent endopeptidase family. The PHEX protein has a large
extracellular C-terminal domain, which contains the active sites and glycosylation sites, a
transmembrane domain, and an N-terminal cytoplasmic tail [26,27]. It is predominantly
expressed in osteoblasts, osteocytes, cartilage, and odontoblasts, and in these cells, PHEX
deficiencies impair the cellular trafficking, endopeptidase activity, and FGF23 signaling that,
in turn, reduce renal phosphate reabsorption, resulting in abnormal bone mineralization
and hypophosphatemia [7]. The regulatory mechanism between PHEX and FGF23 remains
unclear, but a recent study demonstrated that PHEX is a direct transcriptional inhibitor of
the FGF23 gene [28].

Currently, more than 900 unique pathogenic or likely pathogenic variants have been re-
ported in PHEX (NM_000444.6), and more than 85% of them are SNVs, including nonsense,
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missense, splicing, and frameshift variants (LOVD; https://databases.lovd.nl/shared/
variants/PHEX accessed on 30 June 2023; Human gene mutation database, HGMD®, ac-
cessed on 30 June 2023), which are distributed throughout the whole gene with no hot spots.
Approximately 10–15% of the reported mutations are CNVs that are mainly represented by
large intragenic deletions [8,25].

Chromosomal deletions of variable sizes that remove single exons or eliminate a
whole gene and, sometimes, various contiguous genes are frequent causes of numerous
X-linked genetic diseases [29,30]. The relatively high incidence of deletions indicates that
chromosome X is predisposed to genomic rearrangements; indeed, X-linked diseases often
appear sporadically in a family as consequence of de novo mutational events, including
large deletions [29].

Large deletions can be easily detected in hemizygous males by both PCR- and NGS-
based DNA analysis; in contrast, heterozygous deletions in carrier females can escape
detection because they are masked by the intact allele [13].

To address the possibility that our probands had CNVs, we performed a quantitative
analysis of the read counts relative to each exon of PHEX. Surprisingly we found that both
patients were heterozygous for large intragenic deletions removing, respectively, exons
21–22 and 15–22 of this gene, as was also confirmed by the MLPA analyses. In both cases,
the deletions resulted in null alleles that lacked genomic sequences encoding the PHEX
extracellular C-terminal domain [27].

Despite that burosumab has been approved for children, adolescents, and adults with
XLH, it has shown variable effectiveness [31,32]. Real-word data may provide further
insight regarding the potential for early intervention, the adverse events, and the long-term
impacts on skeletal development and quality of life in XLH children treated with this
new drug [33,34]. Consequently, since XLH remains a condition that severely impacts
the quality of life of an affected patient, for families in which a pathogenic PHEX variant
has been detected, a prenatal molecular diagnosis remains one of the possible prevention
options [27,35].

5. Conclusions

Our overall data emphasized the importance of considering the clinical and metabolic
manifestations of HR when preliminary NGS genetic analysis does not contribute to the
diagnosis. Indeed, based on the key clinical features and medical histories of our patients,
we expanded the NGS data analyses and, lastly, provided molecular diagnoses by iden-
tifying heterozygous large deletions in the PHEX gene, a type of genomic variation that
is often missed by NGS-based methodologies. Therefore, since the CNVs in PHEX genes
appear to account for a significant proportion of XLH cases, we recommend evaluating
their presence, especially in SNV-negative HR females. A conclusive diagnosis of XLH
ensures long-lasting access to burosumab therapy, which was shown to be highly effective
in our patients, and it was essential for genetic counseling on the reproductive options in
the parents and in the other family members. Lastly, the identification of the molecular
alterations associated with XLH contributes to increasing our knowledge about the correla-
tion between the PHEX genotypes and disease severity and/or therapy response, which
are not yet fully understood [31–34].
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