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Abstract: Brain tumors, along with other diseases that harm the neurological system, are a significant
contributor to global mortality. Early diagnosis plays a crucial role in effectively treating brain tumors.
To distinguish individuals with tumors from those without, this study employs a combination of
images and data-based features. In the initial phase, the image dataset is enhanced, followed by the
application of a UNet transfer-learning-based model to accurately classify patients as either having
tumors or being normal. In the second phase, this research utilizes 13 features in conjunction with a
voting classifier. The voting classifier incorporates features extracted from deep convolutional layers
and combines stochastic gradient descent with logistic regression to achieve better classification
results. The reported accuracy score of 0.99 achieved by both proposed models shows its superior
performance. Also, comparing results with other supervised learning algorithms and state-of-the-art
models validates its performance.

Keywords: transfer learning; brain tumor prediction; data features; healthcare; MRI images; ensemble
learning; UNet; MobileNet

1. Introduction

Rapid advancements in medical imaging techniques have led to significant progress,
enabling the swift identification of various diseases. This breakthrough facilitates early
intervention, which proves particularly beneficial in cases of life-threatening conditions like
cancer, tumors, eye diseases, Alzheimer’s, blood clots, and eye ailments [1]. In diagnosing
these severe disorders, biopsies and imaging of the affected regions play a crucial role.
Biopsies are utilized to confirm the presence of specific illnesses, while images of the
affected areas are commonly employed for early-stage disease detection [2]. In these
situations, highly accurate and easily recognizable depictions of the infected areas are
crucial for aiding in diagnosis. The brain is one of the important organs of the human
body that is essential for managing the body’s organs and making decisions. As a result,
brain tumors seriously endanger human life. Many cancers affect the neurological system,
particularly the brain parenchyma, and are referred to as metastases [3]. The occurrence
rate of brain metastases, which refers to the spread of cancer towards the brain from the
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rest of the body parts, is ten times higher than that of primary brain tumors [4]. Gliomas
represent a specific category of tumors that can exhibit varying degrees of aggressiveness.
Pituitary adenomas and meningiomas can be classified from other types of brain tumors.

Primary brain tumors should be diagnosed and treated as soon as possible because
of their potential to be fatal and malignant. There are numerous strategies available for
managing these malignant tumors, and proper therapy is of the utmost significance. The
course of treatment for brain tumors is determined by several variables including when
the tumor was diagnosed and what kind it was. Accurate diagnosis of brain tumors can
be achieved through the utilization of diagnostic techniques such as magnetic resonance
imaging (MRI) [5]. Making timely decisions about treatment alternatives is made easier
with the help of MRI, which offers crucial information for tumor classification [6]. Detecting
brain tumors at an early stage is of utmost importance in enhancing survival rates and
administering timely and suitable treatment. Manual diagnosis and detection methods are
often less dependable, time-consuming, labor-intensive, and susceptible to human error.
This is where computer-aided imaging technology has made remarkable strides in the
realm of medical image analysis.

Among the non-invasive tools available, MRI has emerged as the most widely utilized
method for brain tumor detection [7]. MRI scans are frequently used for brain analysis
because they can distinguish between soft tissues, giving them an advantage over other
methods in the detection of brain tumors. Additionally, since MRI does not expose the brain
to ionizing radiation, it has no negative effects [8]. The MRI method is frequently used by
radiologists because of its capacity to identify aberrant cell development, including brain
tumors. Zahoor et al. [9] introduced a dual-channel brain tumor detection (DC-BTD) system
for brain tumor detection. The authors used MRI scans and showed few false negatives. For
discriminating, static S-shaped features were used, while the D-channel was used to extract
dynamic features. The study made use of four different machine learning classifiers, data
normalization, and augmentation. The study’s findings demonstrated greater performance,
outperforming earlier research with an accuracy rate of 98.70%. Similar to this, in [10],
ensemble models were used to improve MRI images with an average filter to classify and
identify brain tumors. ResNet-18 and AlexNet were employed as deep learning models
to extract features, and these features were subsequently utilized for classification. The
classification was performed using SoftMax and support vector machine (SVM) algorithms.
The proposed ensemble model AlexNet+SVM scored 95.10% accuracy. MRI scans were
used for the categorization of brain tumors in the investigation by Daz-Pernas et al. [11].
In contrast to earlier investigations, they adopted a method without any pre-processing
steps. Despite no preprocessing, the proposed strategy managed to classify tumors with
an amazing accuracy rate of 97.3%. It is noteworthy that the majority of imaging methods,
including MRI, create grayscale images, but the color Doppler method creates color images.
However, alternative techniques have not produced the required outcomes when it comes
to tissue segmentation in areas like post-processing [12,13].

Deep learning models have been the subject of numerous studies focusing on brain tu-
mor identification. For example, Khan et al. [7] designed an intelligent deep-learning-based
hierarchical deep-learning-based brain tumor (HDL2BT) system to detect brain tumors
precisely. The approach divided brain tumors into three groups: gliomas, meningiomas,
and pituitary tumors. The proposed model’s excellent precision rate of 92.13% was attained
by using convolutional neural networks (CNN). DeepTumorNet [14] developed by Raza et
al. also worked on the topic of three types of brain tumor detection. The CNN GoogLeNet
architecture served as the framework for the system. With an accuracy score of 98.67%,
the researchers had great success evaluating the system using publicly available datasets.
These results illustrate the efficiency of deep learning models in correctly classifying and
identifying brain tumors. Ahmad et al. conducted a study [15] focusing on deep learning
techniques that integrate conventional classifiers with various transfer learning-based deep
learning systems for brain tumor detection. They utilized seven transfer learning models
in their investigation, InceptionResNetV2, ResNet50, VGG-16, Xception, DenseNet201,
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VGG-19, and InceptionV3. The study’s results showed a 98.39% accuracy rate for brain
tumor detection. This demonstrates how well traditional classifiers and transfer learning
can work together to reliably identify brain tumors.

Another subsequent model was proposed by Qureshi et al. [16] for brain tumor
detection using a lightweight (computationally less complex) model. The study focused
on three types of brain tumors. The proposed system relies on an ultra-lightweight deep
learning approach that effectively distinguishes different texture features through the use
of a grey-level co-occurrence matrix (GLCM). To detect brain tumors, an HFS is used with
an SVM. A maximum accuracy of 99.23% was reported while the F1 score was 99%. The
authors discovered a 2% improvement when they compared the study’s findings to those
of the most recent system. A technique using min-max normalization on a CNN-based
dense EfficientNet was proposed in [17]. The authors proposed an EfficientNet system with
dropout layers and dense layers. They combined the min-max with the data augmentation.
The authors intended to improve the contrast between cancer cells. In terms of overall
performance, the proposed method performs better than any other. The findings revealed
that the proposed EfficientNet variation had training and testing accuracy of 99.97% and
98.78%, respectively.

Sharma et al. [18] proposed an improved watershed segmentation technique, which
is based on the modified ResNet50, for the precise, accurate, and efficient detection of the
tissues associated with brain tumors. Three fully connected layers and five conventional
layers were used to implement the ResNet50. They made use of high-dimensional, deep
features to achieve the ideal values. The proposed ResNet50-enhanced watershed segmen-
tation scored a 90% accuracy value. Rinesh et al. [19] utilized hyperspectral images in their
research to perform various operations for cancer localization in the brain. They employed
k-based clustering algorithms, specifically k-means clustering and k-nearest neighbor, to
identify the tumor. To determine the appropriate value of k in each experiment, the re-
searchers applied an optimization technique called the firefly method. The different regions
of the brain were labeled using a multilayer feedforward neural network. Results show that
the proposed method achieved 98.24% specificity, 96.32% sensitivity, and 96.47% accuracy.

Milica et al. [20] conducted research on classifying brain tumors utilizing MRI images.
The authors utilized datasets from a medical university and two hospitals for their studies.
The researchers employed two databases and a 10-fold cross-validation method two times
in the experiments. The study’s findings demonstrated that the proposed CNN with 10-fold
cross-validation has a 96.56% accuracy value. A hybrid deep tumor network was proposed
by Amran et al. [21] for the classification of brain tumors. In this investigation, the Br35H
Kaggle dataset was employed. The GoogleNet architecture combined with a CNN model
makes up the proposed ensemble system. The proposed system scored 99.51% accuracy.
They also employed various transfer learning models in the study to compare results. For
the detection and identification of brain tumors, Naeem Ullah et al. [22] used the publicly
accessible dataset. Experimental results demonstrate that the Inceptionresnetv2 transfer
learning method has a classification accuracy of 98.91%.

Along the same directions, Hashmi and Osman [23] employed two datasets for tumor
classification. An attention technique using an extreme gradient boost and a conditional
segmentation approach using a residual network was proposed. Results indicate that the
proposed CNN-CRF-Resnet model has the greatest accuracy for the three classes. For the
classification of brain tumors, Samee et al. [24] proposed the hybrid transfer learning system
GN-AlexNet. They used 10 layers of AlexNet and five layers of GoogleNet in the proposed
system. Five transfer learning models were also used. The study’s findings demonstrate
that the proposed GN-AlexNet performs better than competing ML/DL models and gets
an accuracy rate of 99.51%.

Transfer learning models have been effectively used by several studies for brain tumor
detection [21,22]. CNN and GoogleNet were combined by Amran et al. [21] to create a hy-
brid deep tumor network, which achieved a remarkable accuracy of 98.91%. An accuracy of
98.91% using InceptionResNetV2 is reported in [22]. Similarly, [23] used an attention tech-
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nique based on extreme gradient boosting (XGB) and a conditional segmentation strategy
using a residual network. The CNN-CRFResNet system, derived from this methodology,
achieved remarkable accuracy of 99.56% across all three classes.

A deep-learning-based base ensemble model is proposed by Rasool et al. [17] for the
efficient classification of the three types of brain tumors. They incorporated a fine-tuned
GoogleNet model as part of the ensemble and attained a 93.1% accuracy. However, the
authors obtained a higher accuracy of 98.1% when GoogleNet was used as the feature
extractor. This highlights the effectiveness of using deep learning models for feature ex-
traction in brain tumor classification tasks. Genomic information can play a crucial role in
diagnosing brain cancer by facilitating the classification and segmentation of brain tumors,
given that genetic mutations are a significant contributing factor in their development [25].
The combination of artificial intelligence (AI) methods with radio genomics has displayed
great potential in identifying brain tumors. This is achieved by utilizing the genomic
condition of genetic mutations found in different genes and cellular proteins [26,27]. Con-
sequently, this approach facilitates the recognition of molecular characteristics associated
with the disease through radiological medical images [28].

In previous studies, the same dataset used in this study has been employed, yielding
commendable results. For instance, Dutta et al. [29] utilized a machine-learning-based
approach for the early and accurate detection of brain tumors. The authors compared the
performance of the XGBoost classifier with AdaBoost (ADA), gradient boosting classifier
(GBC), random forest (RF), and extra-trees (ET) classifiers. Among the employed machine
learning models, XGBoost achieved an accuracy of 98.54%, surpassing other models in
terms of accuracy. Similarly, the study by Methil et al. [30] presented a deep-learning-
based architecture for efficient brain tumor detection, which incorporated various image
processing techniques. The authors employed multiple deep learning models and achieved
the highest accuracy of 95%. MRI images play a crucial role in brain tumor detection.
The study conducted by Shah et al. [31] proposes a system that utilizes brain MRI images.
The objective of the research is to identify malignancy in the brain using MRI image data
and enhance the accuracy of brain tumor detection. Various image processing techniques
and data augmentation methods are used to this end. A maximum accuracy of 98.87%
is reported.

This study aims to develop a machine learning and transfer learning model that
leverages both image data and numerical features from data to differentiate between
patients with brain tumors and those without them. In essence, the proposed system
provides the following advantages:

• This study presents a complete framework for the detection of brain tumors using
images and feature-based data. The image-based brain tumor detection is utilizing
data augmentation techniques and the UNet transfer learning model.

• In this research work, the prediction of brain tumors is performed utilizing CNN fea-
tures and a voting ensemble model. Stochastic gradient descent and logistic regression
classifier are ensembles with soft voting mechanisms to determine the ultimate result.

• The performance of models utilizing convolutional features is compared with that of
models that rely on the original features to assess their impact. To perform a perfor-
mance comparison, this study utilizes a diverse set of machine learning and transfer
learning models, including decision tree (DT), Gaussian naive Bayes (GNB), K-nearest
neighbor (KNN), random forest (RF), stochastic gradient descent (SGD), logistic re-
gression (LR), extra-trees classifier (ETC), support vector machine (SVM), gradient
boosting machine (GBM), and MobileNet models. Furthermore, for comparison, the
performance of the proposed system is compared with the various state-of-the-art
methods using well-known evaluation parameters, i.e., accuracy, precision, recall, and
F1 score.

The rest of the paper is structured as follows. Section 2 presents a detailed discussion
of the components and functions of the proposed system, the dataset description, and
the supervised learning models used for brain tumor detection. Section 3 presents the
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results obtained from the experiments. Following that, Section 4 provides discussions on
the performance of the proposed approach. Section 5 encompasses the conclusions.

2. Materials and Methods

This section describes the ’brain tumor’ dataset that is used for tumor detection, which
includes both numerical features and image data. This also provides an overview of the
proposed method and outlines the steps involved in the proposed system. Furthermore,
it briefly describes the machine learning classifiers and transfer learning techniques that
were utilized in this study.

2.1. Brain Tumor Dataset

The selection of a suitable dataset plays a crucial role, and for this particular study, the
publicly available ‘brain tumor’ dataset from Kaggle is used [32]. For a publicly available
dataset, performance validation can be performed by other researchers as well. The
prediction of brain tumor detection is performed utilizing twelve features from the dataset.
There are a total of 3762 records in the dataset. Among the 12 features, the first five are first
order, specifically standard deviation, mean, kurtosis, variance, and skewness, while the
remaining eight are texture features including correlation, homogeneity, angular second
moment (ASM), entropy, dissimilarity, contrast, energy, and coarseness. The target class is
divided into two categories: tumor and non-tumor. Out of the 3762 instances, 2079 belong
to the non-tumor class, while 1683 belong to the tumor class. The dataset also includes
corresponding images, providing both numerical data and image classification information.

2.2. Supervised Learning Algorithms for Brain Tumor Detection

In this study, nine distinct supervised learning algorithms were employed to detect
brain tumors. These algorithms comprise DT, k-NN, LR, RF, SGD, ETC, GNB, SVM, and
GBM. This section of the study provides a concise overview of each of these machine
learning models.

2.2.1. Random Forest

RF is a frequently used machine learning algorithm because of its simplicity, which is
built on tree structure [33,34]. Starting with a single random vector, it proceeds sequentially
to produce numerous independent random vectors that are dispersed among various trees.
As the algorithm advances, the data are divided into child nodes at each node of the tree
until it reaches the leaf nodes. Each node separately classifies the objective variables of the
features in RF, and a voting mechanism then determines the final classification. RF error
can be estimated using the formula below:

PE∗ = P(i,j)( f (i, j) < 0) (1)

The random vectors i and j serve as graphical representations of probabilities. These
random vectors depict the probabilities of different outcomes. The function f calculates the
average number of votes for the desired outcome from all random vectors [35], and one
can compute this number by using the following formula:

f (i, j) = avK I(H(i) = j)−maxy 6=javK I(hk(i) = y) (2)

2.2.2. Decision Tree

DT is a renowned machine learning model that models decisions and possible out-
comes using a tree-like structure. It can be applied to both regression and classification
applications. Each leaf node in DT represents a class label or a numerical value, whereas
each inside node reflects a judgment based on a particular characteristic or attribute [36,37].
To build homogeneous subsets of data at each node, the tree is formed by recursively parti-
tioning the data depending on the values of several attributes. For node split, Gini impurity
or information gain is used. Once a decision tree has been trained on a labeled dataset, it
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can be used to generate predictions about new, unforeseen instances by traversing the tree
from the root to a leaf node based on the instance’s feature values. Because the learned rules
may be represented as a tree structure, decision trees are renowned for their interpretability
and simplicity. However, they can be vulnerable to overfitting, particularly if the trees are
overly complicated. This problem can be minimized and decision trees’ performance can
be enhanced by approaches like trimming and group methods like random forests.

Gini = 1−
classes

∑
i=1

p(it)2 (3)

2.2.3. K-Nearest Neighbor

KNN is a popular classification method that has been used to study brain tumors and
other areas. It does not make any assumptions about the distribution of the data and is
regarded as a nonparametric approach [38,39]. Instead, to assign the new data to the class
that is closest to the existing classes, KNN examines the similarity between an existing
and newly included data point. It can be utilized for recognition and regression issues in
addition to classification activities. Due to its inability to draw rapid conclusions from the
acquisition of training data, KNN is frequently referred to as a “lazy learner” algorithm.

2.2.4. Logistic Regression

LR is a machine learning classifier that relies on statistics and supervised learn-
ing [40–42]. It categorizes input qualities (X: input) into different goal values (Y: out-
put). To calculate the probability of falling into class 0 or class 1, LR employs a logistic
function. As seen in the equation below, the logistic function is typically depicted as an
“S”-shaped curve.

f (x) =
L

1 + e−m(v−vo)
(4)

To predict probabilities, LR uses the sigmoid function. You can determine the sigmoid
function using the formula below.

σ(x) = ex(ex + 1), σ(x) = 1(1 + e−x) (5)

s(x), the sigmoid function’s output accepts values of 0 or 1, while X serves as the
input, and the calculation uses the natural logarithm’s base, e.

LR is frequently used for binary classification tasks and is especially successful for
data that can be separated into linear categories.

2.2.5. Support Vector Machine

SVM is a popular learning algorithm in classification and regression tasks [43]. SVM
operates by creating decision boundaries, in the form of hyperplanes, to effectively separate
the dataset. A significant advantage of SVM is its capability to handle both linear and
nonlinear data efficiently. In cases, where the data can be linearly separated, the hyperplane
divides the dataset into two distinct groups. However, when the data are not linearly
separable, SVM can leverage a technique called the kernel trick. This technique enables
SVM to transform the original input space into a higher-dimensional feature space, where
the data can be separated effectively. The transformed coordinates are denoted as x = f (x),
where f (x) represents the feature mapping function.

2.2.6. Gradient Boosting Machine

The key idea behind GBM is to train new trees that can correct the mistakes made by the
previous trees in the ensemble [44,45]. At each iteration, GBM identifies the shortcomings of
the current ensemble by analyzing the gradients of a loss function concerning the predicted
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values. The loss function measures the discrepancy between the predicted values and the
actual values of the target variable.

y = ax + b + e (6)

where e represents the error term.
The loss function quantifies the disparity between the actual and predicted values,

thereby providing a measure of the performance of the model on a given dataset. This
indicates how well the model captures patterns and makes accurate predictions.

2.2.7. Extra-Trees Classifier

ETC uses the results of various correlated DTs to create the final prediction [46,47].
Using training samples, each DT in the forest is produced and added to the overall classifi-
cation effort. Using random feature subsets, many uncorrelated DTs are built. The Gini
index is used to assess each feature’s quality during tree construction, and feature selection
is performed to discover the best way to split the data. An ensemble of DTs is created
through this iterative method, and this ensemble makes predictions for the ETC model as
a whole.

2.2.8. Gaussian Naive Bayes

GNB’s working is quite simple as during training it learns the probability of each
feature as independent of the other feature [48,49]. It is based on the name of the scientist
and is well-known as the Bayesian theorem. For tasks involving object classification, this
approach is frequently used, especially when the data are evenly distributed. Because of
these features, it is known as the GNB classifier.

2.2.9. Stochastic Gradient Decent

Multiple binary classifiers are integrated into SGD, which has undergone thorough
testing on sizable datasets [50,51]. It is simple to create and comprehend, and regres-
sion approaches are comparable to how it works. It is very important to configure the
hyperparameters for SGD accurately to obtain accurate results. Additionally, SGD is sensi-
tive to feature scaling, emphasizing how crucial it is to scale the features correctly before
implementing the algorithm.

2.3. Feature Engineering

In this study, feature engineering is carried out using a CNN model. The architecture of
the CNN utilized in this study comprises four layers: an embedding layer, a flattened layer,
a max-pooling layer, and a 1D convolutional layer. The embedding layer has a dimension
of 20,000 pixels and incorporates features derived from the brain tumor dataset. The output
dimension of the embedding layer is set to 300. Subsequently, a 1D convolutional layer is
added, featuring a filter size of 5000, and a kernel size of 2 × 2. The proposed approach
utilizes ReLu as an activation function. A max-pooling layer of the size 2 × 2 is added to
obtain the desired output from the 1D convolutional features.

To represent the brain tumor dataset, we can denote it as a tuple set ( f si, tci), where
f si represents the feature set of the i-th tuple, tci represents the target class column of the
i-th tuple, and I represents the tuple index. During the training process, the output of the
training set was passed through an embedding layer to obtain the desired results.

EL = embedding_layer(Vs, Os, I) (7)

EOs = EL( f s) (8)

In the CNN architecture, the convolutional layer takes the input from the output of
the embedding layer, which is denoted as EOs. The embedding layer itself is represented as
EL and consists of three parameters: Vs (size of the vocabulary), I (length of the input), and
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Os (size of the output). The architecture of the CNN and the predictive model employed in
this study is illustrated in Figure 1.

Convoluted
Features model(x,y)

SGD

LR

Tumor

Non-Tumor

x

y

Conv (7, @64), Conv (7, @64), 
Max pooling (2), Conv (7, @64), 

  Average pooling (2), Flatten Layer(),
Dropout (0.5), Dense (32 neurons),

optimizer='adam'

Dropout(0.5)

Figure 1. Architecture of proposed voting classifier along with CNN.

2.4. Transfer Learning Models

Transfer learning is a popular technique in machine learning and computer vision that
leverages pre-trained models on large datasets to solve new tasks efficiently. In the context
of brain tumor classification using image data, two commonly used transfer learning
models are U-Net and MobileNet.

2.4.1. U-Net

U-Net, developed by Olaf Ronnenberg et al. in 2015, is a highly influential model in
the field of image segmentation. Originally intended for biomedical image segmentation,
U-Net quickly gained acclaim for its exceptional accuracy and performance [52]. Notably, it
excels at producing impressive results even with limited training data, a common challenge
in medical image segmentation. The model is structured around two main paths, resem-
bling an auto-encoder. The first path, known as the contracting or compressive path, acts
as the encoder and is constructed using a conventional deep CNN network. The decoder
or expanding path (also called the up-sampling or synthesizing path in some publications)
comprises both deconvolutional and convolutional layers. The contracting path downsam-
ples input images to diminish their resolution, but the expanding path recovers the original
image quality and spatial structure utilizing optimized approaches such as concatenating
skip connections. The network learns spatial classification information by providing dense
predictions at a greater resolution along the increasing route. It also enhances the resolution
of the output image, which is then processed through a final convolutional layer to generate
a segmented image with the same dimensions as the input image. Simply put, the network
accepts an image with dimensions (h, w, n) and produces an output image that has the same
dimensions as of input, where the segmented region corresponds to the area of interest (for
example, a brain tumor). This ensures that the shape of the input image remains unchanged
throughout the segmentation process. While classification is significant in medical image
analysis, it alone cannot provide a pixel-level context representation, as it assigns a single
label to the entire image.

U-Net, in conjunction with subsequent optimization methods, was purposely created
to handle multi-dimensional tensors, particularly inputs with three or four dimensions.
The network produces an output that retains the same shape as the input. Since U-Net’s
inception, it has provided a solid foundation for extensive research in medical image
segmentation. Numerous advancements have been made by either modifying the original
U-Net structure or combining it with other architectures.
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2.4.2. Mobilenet

MobileNet is a condensed CNN structure developed to enable efficient processing
on devices that have limited capabilities, like mobile phones [53]. It utilizes depthwise-
separable convolutions, which greatly decrease the number of parameters and computa-
tional complexity while maintaining the effectiveness of the model. MobileNet is frequently
employed for diverse image classification assignments due to its efficiency. By employing
transfer learning with a pre-trained MobileNet model, the valuable features acquired from
extensive image datasets can be utilized to enhance the accuracy of brain tumor classification.

The MobileNet architecture is specifically designed to be efficient and effective, par-
ticularly in scenarios where computational resources are limited or when dealing with
tasks that require minimal features, such as palmprint recognition. Its notable feature is
the depthwise structure, which enables high performance while keeping computational
demands to a minimum. The complexity of a 1 × 1 convolution, known as pointwise
complexity, is a key consideration. The architecture employs ReLU to preserve pointwise
connections while generating deep abstraction layers. Additionally, a resolution multiplier
variable denoted as w is introduced to reduce the dimensionality of both the input image
and the internal representation of each layer. By using this variable, it is possible to alter
the network’s dimensions while maintaining a constant value for “w ” across all layers. By
doing this, the model’s overall effectiveness is improved. The feature vector map has a size
of Fm, the filter has a size of Fs, and the input variable is indicated by the letter p, while the
output variable is denoted by the letter q. The equation below can be used to evaluate the
overall computation efforts for the fundamental abstraction layers of the architecture. The
following is an expression for the computation-related work, indicated by the variable ce:

ce = Fs · Fs · w · αFm + w · ρ · αFm · αFm (9)

In MobileNet, the multiplier variable w has a context-dependent value. It is frequently
selected from the range of 1 to n in experimental investigations for the categorization of
brain tumors. The resolution multiplier variable r is also set to 1. The following equation
can be used to evaluate the computational efforts, symbolized by the variable coste

coste = Fs · Fs · w · ρ · Fm · Fm (10)

2.5. Proposed Voting Classifier

In the previous state-of-the-art research works, different types of machine, deep, and
ensemble learning models are applied for brain tumor detection. All of the research works
are performed on one type of data either feature-based detection or image-based analysis.
None of the previous research work provides complete detection of brain tumors by
targeting both types of datasets. Therefore, in this research work, we focused on a two-way
brain tumor detection framework. The first phase of this research work focuses on brain
tumor detection using image data and the second phase is based on feature-based brain
tumor detection techniques. Figure 2 displays the workflow of the pipeline for detecting
brain tumors using image-based data.

Phase 1: Brain Tumor Detection Using Images Analysis
In the first step of the image-based analysis, all the images of the dataset are converted

to the fixed size of 220 × 220. The second step is the augmentation of data to make the
dataset balanced as tumor images are less than normal images. The dataset contains
1683 tumor images and 2079 normal images. The augmentation makes both label images
3000. The augmentation hyperparameters are shown in Table 1.
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Figure 2. Brain tumor images and feature-based detection framework.

Table 1. Hyper -parameters of data augmentation.

Properties Value

Rotation range 30

Horizontal flip ‘true’

Zoom range 0.2

Width shift range 0.2

The examples of tumor and normal augmented images are shown in Figure 3a,b,
respectively. Following augmentation, the images are split into a 70% training set and a 30%
testing set to train the UNet model. The model’s performance is evaluated using accuracy,
precision, recall, and F1 score.

Phase 2: Feature-Based Brain Tumor Detection: Figure 3 shows the workflow of the
voting classifier. To accomplish tumor detection, the proposed approach combines LR
and SGD. When using the proposed approach, two possibilities are investigated. The first
scenario employs all 13 variables of the brain tumor dataset to predict brain tumors. In
the second experiment, a CNN is used to extract dataset features. Supervised learning
algorithms are employed to classify the tumorous patients among the normal. LR and
SGD are joined using soft voting criteria. The architecture of the voting classifier, which
implements the soft voting approach, is depicted in Figure 4. In soft voting, the final
output is determined by considering the outcome with the highest probability among the
combined models.

Soft voting criteria can be represented as

p̂ = argmax
n

∑
i

LRi,
n

∑
i

SGDi (11)

The probability values for each test sample in the soft voting technique are given
by ∑n

i LRi and ∑ inSGDi, which represent the probabilities assigned by the LR and SGD
models, respectively. These probability values are then fed into the soft voting process, as
shown in Figure 4, to obtain the final prediction. Each sample that has been processed by
the LR and SGD models is assigned a probability score.
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(a) Normal image augmentation. (b) Tumor image augmentation.

Figure 3. Class-wise data augmentation of images.

LR

 C(Tumor)

C(Normal)= (C LR + C SGD )/2
C(Tumor)= (C LR + C SGD)/2

Final Prediction= argmax{C(Normal), C(Tumor)}

Brain Tumor Features

SGD

C(Normal)C(Normal)  C(Tumor)

Figure 4. Feature-based brain tumor detection proposed ensemble model.
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2.6. Evaluation Metrics

The performance of the trained machine learning models is used to assess their efficacy.
Confusion matrix-based evaluation parameters are employed for this purpose. Where TP,
TN, FP, and FN stand for true positive, true negative, false positive, and false negative,
respectively. For the classification of brain tumors, precision, accuracy, F1 Score, and
recall are used. These measures have values between 0 and 1 and are calculated using
these equations

Accuracy =
TP + TN

TP + TN + FP + FN
(12)

Precision =
TP

TP + FP
(13)

Recall =
TP

TP + FN
(14)

F1score = 2× Precision× Recall
Precision + Recall

(15)

Accuracy is the proportion of correct predictions (both true positives and true neg-
atives) over the total number of samples in the dataset. In the context of brain tumor
detection, it signifies the percentage of correctly classified images, including both correctly
identified tumor images and correctly identified normal images.

Precision measures the proportion of true positive predictions (correctly identified
tumor images) over the total number of positive predictions (all predicted tumor images).
A high precision value indicates that the model has a low false positive rate, meaning that
it accurately identifies tumor images without misclassifying normal images as tumors.

Recall (also known as sensitivity or true positive rate), measures the proportion of
true positive predictions over the total number of actual positive samples (all actual tumor
images). High recall indicates that the model effectively detects most of the positive samples,
minimizing false negatives, which are tumors incorrectly classified as normal images.

The F1 score is the harmonic mean of precision and recall. It provides a balanced
measure of the model’s performance, considering both false positives and false negatives.
A high F1 score indicates a good balance between precision and recall, demonstrating the
overall effectiveness of the model in correctly classifying both tumor and normal images.

3. Results

The two main scenarios we used in our experiments include using image data and
numerical features from data. A CNN is used as the feature engineering method for
numerical data. For the image data, two transfer learning models, U-Net and MobileNet,
are used.

3.1. Experiment Set-Up

The performance analysis of the proposed approach involves conducting several
experiments and a thorough evaluation of its performance in comparison to alternative
learning models. The experiments are conducted on a computer running Windows 10 and
equipped with an Intel Core i7 processor from the 7th generation. The implementation of
the proposed technique and other learning models is based on TensorFlow, Sci-kit Learn,
and Keras libraries in the Python programming language. The experiments are carried out
in two different contexts. In the first scenario, numerical features from data are used with
CNN as the feature engineering technique. The tumor dataset is employed to extract CNN
features. In the second scenario, image data are utilized to train transfer learning models.
Table 2 provides the details of experimental setup.
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Table 2. Experimental setup for the proposed system.

Component Details

Libraries Scikitlearn, TensorFlow

Language Python 3.8

RAM 8 GB

OS 64-bit window 10

CPU Core i7, 7th Gen with 2.8 GHz processor

GPU Nvidia, 1060, 8 GB

This study uses several machine learning models for performance comparison with
the proposed approach. Each model is optimized using hyperparameter fine-tuning to
obtain a better performance. A complete list of hyperparameters for all models is provided
in Table 3.

Table 3. Hyperparameter values of all models used in this research work.

Classifiers Parameters

RF no. of trees=100, random state=25, max depth=20
DT no. of trees=100, random state=25, max depth=20
k-NN algorithm=‘auto’, neighbors=7, leaf size=20, weights=‘uniform’
LR penalty=‘l2’, solver=‘lbfgs’

SVM C=2.0, cache size=200, gamma=‘auto’, kernel=‘linear’, maximum
iteration=−1, probability=False, random state=25, tol=0.001

GBM no. of trees=100, random state=25, max depth=20, learning rate=0.1
ETC no. of trees=100, random state=25, max depth=20,
GNB alpha=1.0, binarize=0.0
SGD penalty=‘l2’, loss=‘log’
VC criteria=‘soft’

CNN
Conv (7, @64), Conv (7, @64), Max pooling (2), Conv (7, @64), Aver-
age pooling (2), Flatten Layer(), Dropout (0.5), Dense (32 neurons),
optimizer=‘adam’

UNET
Conv (3, @8), Conv (3, @16), Max pooling (2), Conv (3, @128), Av-
erage pooling (2), Flatten Layer(), Dropout (0.5), padding (same),
optimizer=‘adam’

MobileNET
Conv (3, @8), Conv (3, @16), Max pooling (2), Conv (3, @128), Av-
erage pooling (2), Flatten Layer(), Dropout (0.5), padding (same),
optimizer=‘adam’

3.2. Performance of Machine Learning Models Using Featuristic Data

In the first series of experiments, the numerical dataset is used to train the models.
It is further divided into two parts. The first part uses CNN as the feature engineering
technique, while the second uses the original features.

3.2.1. Performance of Models Using Original Features

Table 4 displays the outcomes of the machine learning models utilizing the numerical
dataset. The findings show that SGD and LR have the highest accuracy of 88.1% and 86.9%,
respectively, among all the models. The accuracy of RF is 85.4%, whereas the accuracy for
the ensemble model LR+SGD is 84.5%. The accuracy of the tree-based ETC model is 82.9%.
GNB, on the other hand, performed the worst with an accuracy of 76.9%. It is important to
point out that when employing the original feature set, the linear models LR, SGD, and
their ensemble outperform other models.
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Table 4. Brain tumor detection experimental results using original features and machine learn-
ing models.

Model Accuracy Class Precision Recall F1 Score

Voting Classifier 0.845

Tumor 0.865 0.899 0.878

Non-Tumor 0.748 0.799 0.776

Micro Avg. 0.824 0.858 0.856

Weighted Avg. 0.807 0.843 0.825

GBM 0.805

Tumor 0.795 0.818 0.807

Non-Tumor 0.818 0.818 0.818

Micro Avg. 0.805 0.819 0.827

Weighted Avg. 0.808 0.814 0.826

GNB 0.769

Tumor 0.777 0.788 0.777

Non-Tumor 0.744 0.766 0.755

Micro Avg. 0.766 0.777 0.766

Weighted Avg. 0.766 0.777 0.766

ETC 0.829

Tumor 0.806 0.806 0.806

Non-Tumor 0.815 0.815 0.815

Micro Avg. 0.805 0.805 0.805

Weighted Avg. 0.809 0.820 0.811

LR 0.869

Tumor 0.866 0.899 0.877

Non-Tumor 0.888 0.899 0.888

M Avg. 0.855 0.902 0.883

W Avg. 0.855 0.884 0.876

SGD 0.881

Tumor 0.903 0.892 0.893

Non-Tumor 0.923 0.924 0.922

Micro Avg. 0.922 0.922 0.911

Weighted Avg. 0.919 0.919 0.919

RF 0.854

Tumor 0.827 0.858 0.834

Non-Tumor 0.844 0.806 0.828

Micro Avg. 0.844 0.844 0.833

Weighted Avg. 0.833 0.833 0.833

DT 0.829

Tumor 0.806 0.822 0.811

Non-Tumor 0.805 0.833 0.814

Micro Avg. 0.807 0.809 0.818

Weighted Avg. 0.818 0.804 0.804

SVM 0.788

Tumor 0.788 0.800 0.799

Non-Tumor 0.777 0.788 0.788

Micro Avg. 0.788 0.799 0.800

Weighted Avg. 0.788 0.799 0.800
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Table 4. Cont.

Model Accuracy Class Precision Recall F1 Score

KNN 0.828

Tumor 0.788 0.822 0.800

Non-Tumor 0.777 0.811 0.800

Micro Avg. 0.777 0.811 0.800

Weighted Avg. 0.799 0.824 0.824

The ensemble model demonstrates notable improvements in performance compared
to previous linear models. While LR and SGD individually achieved good results on the
original feature set, their combined utilization further enhanced the performance. However,
the accuracy of the proposed voting ensemble model does not surpass that of earlier
studies. To address this issue, additional experiments are conducted, employing ensemble
learning models and CNN as a feature engineering technique. These experiments aimed
to enhance the accuracy of brain tumor classification and increase the effectiveness of the
categorization process.

3.2.2. Performance of Models Using CNN Features

In order to extract significant features from the dataset, the second set of experiments
utilizes CNN features to train the machine learning models. The performance of the
proposed ensemble model, as well as other models, is evaluated with the aim of enhancing
the feature set and improving accuracy. The results of the machine learning models that
utilized CNN as a feature engineering approach are presented in Table 5.

Table 5. rain tumor detection experimental results using CNN features and machine learning models.

Model Accuracy Class Precision Recall F1 score

Voting Classifier 0.995

Tumor 0.999 0.999 0.999

Non-Tumor 0.999 0.999 0.999

Micro Avg. 0.999 0.999 0.999

Weighted Avg. 0.999 0.999 0.999

GBM 0.905

Tumor 0.928 0.944 0.926

Non-Tumor 0.915 0.923 0.914

Micro Avg. 0.927 0.931 0.924

Weighted Avg. 0.915 0.935 0.918

GNB 0.866

Tumor 0.877 0.888 0.877

Non-Tumor 0.844 0.866 0.855

Micro Avg. 0.866 0.877 0.877

Weighted Avg. 0.855 0.877 0.866

ETC 0.926

Tumor 0.907 0.903 0.905

Non-Tumor 0.914 0.918 0.914

Micro Avg. 0.913 0.913 0.913

Weighted Avg. 0.900 0.900 0.900
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Table 5. Cont.

Model Accuracy Class Precision Recall F1 score

LR 0.989

Tumor 0.966 0.999 0.977

Non-Tumor 0.988 0.999 0.988

M Avg. 0.977 0.999 0.988

W Avg. 0.977 0.999 0.988

SGD 0.987

Tumor 0.985 0.997 0.986

Non-Tumor 0.999 0.986 0.988

Micro Avg. 0.988 0.988 0.988

Weighted Avg. 0.988 0.988 0.988

RF 0.958

Tumor 0.927 0.954 0.935

Non-Tumor 0.944 0.960 0.952

Micro Avg. 0.944 0.960 0.952

Weighted Avg. 0.934 0.954 0.944

DT 0.936

Tumor 0.900 0.928 0.914

Non-Tumor 0.900 0.934 0.912

Micro Avg. 0.900 0.900 0.915

Weighted Avg. 0.914 0.900 0.900

SVM 0.978

Tumor 0.974 0.922 0.955

Non-Tumor 0.977 0.944 0.944

Micro Avg. 0.977 0.933 0.944

Weighted Avg. 0.988 0.955 0.966

KNN 0.982

Tumor 0.988 0.988 0.988

Non-Tumor 0.977 0.977 0.977

Micro Avg. 0.966 0.966 0.966

Weighted Avg. 0.977 0.977 0.977

From Table 5, it can be seen that the proposed ensemble model achieves the highest
accuracy score of 0.995 among all other models. The ensemble model’s accuracy is signifi-
cantly higher, surpassing the original feature set by 0.15. Moreover, incorporating CNN
features enhances the performance of the various models. The SGD model achieves an
accuracy score of 0.987, while the LR model achieves an accuracy score of 0.989. How-
ever, the probability-based model GNB performs poorly on the CNN features, with an
accuracy score of 0.866. It is noteworthy that GNB outperforms the original features by a
significant margin.

3.2.3. Performance of the Transfer Learning Models Using Image Data

In this set of experiments, two transfer learning models, U-Net and MobileNet, are
employed. The performance results of these transfer learning models using the image
dataset are presented in Table 6.
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Table 6. Performance of transfer learning models.

Model Accuracy Precision Recall F1 score

U-Net 99.64% 99% 98% 98%

MobileNet 97.28% 97% 97% 97%

Results of the transfer learning model shown in the above table depict that the transfer
learning model U-Net attained an accuracy score of 99.64% and the MobileNet achieved an
accuracy value of 97.28%. Overall, the performance of the transfer learning model is well
and outperformed the machine learning model’s performance on the numerical data.

3.2.4. Performance Comparison of Model on Featuristic and Image Data

To evaluate the effectiveness of the transfer learning model (U-Net), we conducted
a comparison of the machine learning model and transfer learning models’ performance
on the numerical data and the image data. The results clearly demonstrate a substantial
improvement in the performance of the transfer learning models, which is 0.14% better than
the machine learning model results on CNN features (numerical data) and 15.14% better
than the original features (numerical data). Table 7 presents a comprehensive overview
of the outcomes obtained by the machine learning models in both scenarios, facilitating a
thorough analysis of their performance.

Table 7. Performance analysis of feature-based and image-based techniques.

Numerical Features from Data Image Data

Machine Learning Models’ Results Transfer Learning Models’ Results

Models Original Features CNN Features Models Accuracy

VC (LR+SGD) 84.5% 99.5% U-Net 99.64%

SGD 88.1% 98.7% MobileNet 97.28%

4. Discussion

This section provides discussions on the performance of the proposed approach and
its limitations.

4.1. Performance Comparison with State-of-the-Art Approaches

A comparison with existing state-of-the-art research works is performed to assess
the performance of the proposed approach (Table 8). Several recently published articles
are chosen to present the most recent developments in the topic. The NGBoost model
was used for brain tumor diagnosis in the research by Dutta et al. [29] and achieved an
accuracy score of 0.985. Similarly, ref. [30] used the same dataset as the current work and
reported an accuracy score of 0.950 using a CNN deep learning model. Other research [31]
employed an EfficientNet-B0 model for brain tumor identification and attained an accuracy
score of 0.988. In comparison to these existing techniques, the current work is based on
an ensemble voting method with CNN features for accurate brain tumor identification,
yielding improved results. The proposed model has a classification accuracy of 0.995,
showing that it is very accurate and outperforms existing techniques in this domain.
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Table 8. Brain tumor detection performance comparison of previous studies.

Reference Year Approach Accuracy

[29] 2020 NGBoost 0.985
[30] 2021 CNN 0.950
[31] 2022 EfficientNet-B0 0.988

Proposed 2023 Ensemble learning with CNN features 0.995
Proposed 2023 UNet model with data augmentation 0.996

4.2. Results of K-fold Cross-validation

For further validation of the proposed approach, k-fold cross-validation is carried
out and results are given in Table 9. Results reveal that the proposed approach provides
better results with an average accuracy of 99.89%, while per-fold accuracy varies. Similarly,
average precision, recall, and F1 scores are 99.52%, 99.49%, and 99.11%, respectively.

Table 9. Results of 5-fold cross-validation.

Model Accuracy Precision Recall F1 score

1st fold 99.52 99.13 99.61 99.12

2nd fold 99.25 98.34 99.74 99.23

3rd fold 99.64 99.67 99.98 99.81

4th fold 99.08 99.78 99.99 99.85

5th fold 99.98 99.15 99.86 99.33

Average 99.89 99.52 99.49 99.11

4.3. Limitations of Study

The proposed two-way brain tumor detection framework combines image-based
analysis and feature-based techniques. While data augmentation helps balance the dataset,
it may introduce noise, which could impact model performance. Proper selection and
fine-tuning of the constituent classifiers (LR and SGD) in the voting classifier are crucial for
optimal results. Additionally, the lack of interpretability in deep learning models may raise
concerns in medical applications, demanding further research in this aspect.

5. Conclusions

This research presents a two-way brain tumor detection framework that combines
image-based analysis and feature-based techniques. By integrating the strengths of deep
learning models like UNet with the interpretability of traditional classifiers such as LR
and SGD, this study has unlocked new avenues for enhanced accuracy and robustness
in brain tumor identification and accurately predicting brain tumors in patients with an
accuracy of 0.996. Second-phase experimental results indicate that utilizing convolutional
features yields superior accuracy compared to using the original features. Additionally, the
proposed ensemble classifier surpasses individual models in performance. Comparative
analysis with state-of-the-art research demonstrates that the proposed method achieves a
higher accuracy score of 0.995, outperforming existing approaches.

This novel approach holds immense potential for early detection and personalized
treatment of brain tumors, and its impact extends to transforming medical image analysis
and precision medicine. The synergy of cutting-edge technology with traditional method-
ologies opens exciting possibilities for future exploration, such as transfer learning and
ensemble approaches. This work inspires interdisciplinary research in healthcare and
highlights the transformative potential of AI in advancing medical practice for a brighter
and healthier future.
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20. Badža, M.M.; Barjaktarović, M.Č. Classification of brain tumors from MRI images using a convolutional neural network. Appl.
Sci. 2020, 10, 1999. [CrossRef]

21. Amran, G.A.; Alsharam, M.S.; Blajam, A.O.A.; Hasan, A.A.; Alfaifi, M.Y.; Amran, M.H.; Gumaei, A.; Eldin, S.M. Brain Tumor
Classification and Detection Using Hybrid Deep Tumor Network. Electronics 2022, 11, 3457. [CrossRef]

22. Ullah, N.; Khan, J.A.; Khan, M.S.; Khan, W.; Hassan, I.; Obayya, M.; Negm, N.; Salama, A.S. An Effective Approach to Detect and
Identify Brain Tumors Using Transfer Learning. Appl. Sci. 2022, 12, 5645. [CrossRef]

23. Hashmi, A.; Osman, A.H. Brain Tumor Classification Using Conditional Segmentation with Residual Network and Attention
Approach by Extreme Gradient Boost. Appl. Sci. 2022, 12, 10791. [CrossRef]

24. Samee, N.A.; Mahmoud, N.F.; Atteia, G.; Abdallah, H.A.; Alabdulhafith, M.; Al-Gaashani, M.S.; Ahmad, S.; Muthanna, M.S.A.
Classification Framework for Medical Diagnosis of Brain Tumor with an Effective Hybrid Transfer Learning Model. Diagnostics
2022, 12, 2541. [CrossRef]

25. DeAngelis, L.M. Brain tumors. N. Engl. J. Med. 2001, 344, 114–123. [CrossRef]
26. Fathi Kazerooni, A.; Bagley, S.J.; Akbari, H.; Saxena, S.; Bagheri, S.; Guo, J.; Chawla, S.; Nabavizadeh, A.; Mohan, S.; Bakas, S.; et al.

Applications of radiomics and radiogenomics in high-grade gliomas in the era of precision medicine. Cancers 2021, 13, 5921.
[CrossRef]

27. Habib, A.; Jovanovich, N.; Hoppe, M.; Ak, M.; Mamindla, P.; Colen, R.R.; Zinn, P.O. MRI-based radiomics and radiogenomics in
the management of low-grade gliomas: Evaluating the evidence for a paradigm shift. J. Clin. Med. 2021, 10, 1411. [CrossRef]
[PubMed]

28. Jena, B.; Saxena, S.; Nayak, G.K.; Balestrieri, A.; Gupta, N.; Khanna, N.N.; Laird, J.R.; Kalra, M.K.; Fouda, M.M.; Saba, L.; et al.
Brain tumor characterization using radiogenomics in artificial intelligence framework. Cancers 2022, 14, 4052. [CrossRef]

29. Dutta, S.; Bandyopadhyay, S.K. Revealing Brain Tumor Using Cross-Validated NGBoost Classifier. 2020. Available online:
https://www.researchsquare.com/article/rs-47048/v1 (accessed on 20 June 2023).

30. Methil, A.S. Brain tumor detection using deep learning and image processing. In Proceedings of the 2021 International Conference
on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India, 25–27 March 2021; pp. 100–108.

31. Shah, H.A.; Saeed, F.; Yun, S.; Park, J.H.; Paul, A.; Kang, J.M. A Robust Approach for Brain Tumor Detection in Magnetic
Resonance Images Using Finetuned EfficientNet. IEEE Access 2022, 10, 65426–65438. [CrossRef]

32. Bohaju, J. Brain Tumor Database. Available online: https://www.kaggle.com/datasets/jakeshbohaju/brain-tumor (accessed on
10 January 2023).

33. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
34. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
35. Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [CrossRef]
36. Manzoor, M.; Umer, M.; Sadiq, S.; Ishaq, A.; Ullah, S.; Madni, H.A.; Bisogni, C. RFCNN: Traffic accident severity prediction based

on decision level fusion of machine and deep learning model. IEEE Access 2021, 9, 128359–128371. [CrossRef]
37. Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [CrossRef]
38. Juna, A.; Umer, M.; Sadiq, S.; Karamti, H.; Eshmawi, A.; Mohamed, A.; Ashraf, I. Water Quality Prediction Using KNN Imputer

and Multilayer Perceptron. Water 2022, 14, 2592. [CrossRef]
39. Keller, J.M.; Gray, M.R.; Givens, J.A. A fuzzy k-nearest neighbor algorithm. IEEE Trans. Syst. Man. Cybern. 1985, 580–585.

[CrossRef]
40. Besharati, E.; Naderan, M.; Namjoo, E. LR-HIDS: Logistic regression host-based intrusion detection system for cloud environments.

J. Ambient. Intell. Humaniz. Comput. 2019, 10, 3669–3692. [CrossRef]
41. Khammassi, C.; Krichen, S. A NSGA2-LR wrapper approach for feature selection in network intrusion detection. Comput. Netw.

2020, 172, 107183. [CrossRef]
42. Kleinbaum, D.G.; Dietz, K.; Gail, M.; Klein, M.; Klein, M. Logistic Regression; Springer: Berlin/Heidelberg, Germany, 2002.
43. Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [CrossRef]
44. Ashraf, I.; Narra, M.; Umer, M.; Majeed, R.; Sadiq, S.; Javaid, F.; Rasool, N. A Deep Learning-Based Smart Framework for

Cyber-Physical and Satellite System Security Threats Detection. Electronics 2022, 11, 667. [CrossRef]
45. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
46. Umer, M.; Sadiq, S.; Nappi, M.; Sana, M.U.; Ashraf, I.; Karamti, H.; Eshmawi, A.A. ETCNN: Extra Tree and Convolutional

Neural Network-based Ensemble Model for COVID-19 Tweets Sentiment Classification. Pattern Recognit. Lett. 2022, 164, 224–231.
[CrossRef]

47. Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [CrossRef]
48. Majeed, R.; Abdullah, N.A.; Faheem Mushtaq, M.; Umer, M.; Nappi, M. Intelligent Cyber-Security System for IoT-Aided Drones

Using Voting Classifier. Electronics 2021, 10, 2926. [CrossRef]

http://dx.doi.org/10.3390/e24060799
http://dx.doi.org/10.1155/2022/7348344
http://dx.doi.org/10.1155/2022/2761847
http://dx.doi.org/10.3390/app10061999
http://dx.doi.org/10.3390/electronics11213457
http://dx.doi.org/10.3390/app12115645
http://dx.doi.org/10.3390/app122110791
http://dx.doi.org/10.3390/diagnostics12102541
http://dx.doi.org/10.1056/NEJM200101113440207
http://dx.doi.org/10.3390/cancers13235921
http://dx.doi.org/10.3390/jcm10071411
http://www.ncbi.nlm.nih.gov/pubmed/33915813
http://dx.doi.org/10.3390/cancers14164052
https://www.researchsquare.com/article/rs-47048/v1
http://dx.doi.org/10.1109/ACCESS.2022.3184113
https://www.kaggle.com/datasets/jakeshbohaju/brain-tumor
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1007/s11749-016-0481-7
http://dx.doi.org/10.1109/ACCESS.2021.3112546
http://dx.doi.org/10.1007/s10462-011-9272-4
http://dx.doi.org/10.3390/w14172592
http://dx.doi.org/10.1109/TSMC.1985.6313426
http://dx.doi.org/10.1007/s12652-018-1093-8
http://dx.doi.org/10.1016/j.comnet.2020.107183
http://dx.doi.org/10.1038/nbt1206-1565
http://dx.doi.org/10.3390/electronics11040667
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.1016/j.patrec.2022.11.012
http://dx.doi.org/10.1007/s10994-006-6226-1
http://dx.doi.org/10.3390/electronics10232926


Diagnostics 2023, 13, 2544 21 of 21

49. Rish, I. An empirical study of the naive Bayes classifier. In Proceedings of the IJCAI 2001 Workshop on Empirical Methods in
Artificial Intelligence, Seattle, WA, USA, 4–10 August 2001; Volume 3, pp. 41–46.

50. Umer, M.; Sadiq, S.; Missen, M.M.S.; Hameed, Z.; Aslam, Z.; Siddique, M.A.; Nappi, M. Scientific papers citation analysis using
textual features and SMOTE resampling techniques. Pattern Recognit. Lett. 2021, 150, 250–257. [CrossRef]

51. Bottou, L. Stochastic gradient descent tricks. In Neural Networks: Tricks of the Trade, 2nd ed.; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 421–436.

52. Hou, Y.; Liu, Z.; Zhang, T.; Li, Y. C-UNet: Complement UNet for remote sensing road extraction. Sensors 2021, 21, 2153. [CrossRef]
53. Srinivasu, P.N.; SivaSai, J.G.; Ijaz, M.F.; Bhoi, A.K.; Kim, W.; Kang, J.J. Classification of skin disease using deep learning neural

networks with MobileNet V2 and LSTM. Sensors 2021, 21, 2852. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.patrec.2021.07.009
http://dx.doi.org/10.3390/s21062153
http://dx.doi.org/10.3390/s21082852

	Introduction
	Materials and Methods 
	Brain Tumor Dataset
	Supervised Learning Algorithms for Brain Tumor Detection
	Random Forest
	Decision Tree
	K-Nearest Neighbor
	Logistic Regression
	Support Vector Machine
	Gradient Boosting Machine
	Extra-Trees Classifier
	Gaussian Naive Bayes
	Stochastic Gradient Decent

	Feature Engineering
	Transfer Learning Models
	U-Net
	Mobilenet

	Proposed Voting Classifier
	Evaluation Metrics

	Results
	Experiment Set-Up
	Performance of Machine Learning Models Using Featuristic Data
	Performance of Models Using Original Features
	Performance of Models Using CNN Features
	Performance of the Transfer Learning Models Using Image Data
	Performance Comparison of Model on Featuristic and Image Data


	Discussion
	Performance Comparison with State-of-the-Art Approaches
	Results of K-fold Cross-validation
	Limitations of Study

	Conclusions
	References

