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Abstract: Accurate prediction of heart failure can help prevent life-threatening situations. Several
factors contribute to the risk of heart failure, including underlying heart diseases such as coronary
artery disease or heart attack, diabetes, hypertension, obesity, certain medications, and lifestyle
habits such as smoking and excessive alcohol intake. Machine learning approaches to predict
and detect heart disease hold significant potential for clinical utility but face several challenges in
their development and implementation. This research proposes a machine learning metamodel
for predicting a patient’s heart failure based on clinical test data. The proposed metamodel was
developed based on Random Forest Classifier, Gaussian Naive Bayes, Decision Tree models, and
k-Nearest Neighbor as the final estimator. The metamodel is trained and tested utilizing a combined
dataset comprising five well-known heart datasets (Statlog Heart, Cleveland, Hungarian, Switzerland,
and Long Beach), all sharing 11 standard features. The study shows that the proposed metamodel can
predict heart failure more accurately than other machine learning models, with an accuracy of 87%.

Keywords: cardiac failure; metamodel; forecasting; random forest classifier; decision tree; Gaussian
Naive Bayes; machine learning; k-Nearest Neighbour

1. Introduction

Heart failure is a complex and potentially life-threatening condition that significantly
burdens healthcare systems worldwide. It is a pathophysiologic condition in which the
heart’s inability to pump blood at a rate sufficient to meet the needs of the body’s metabo-
lizing tissues results from faulty cardiac function [1,2]. It includes a number of heart-related
illnesses, such as coronary artery disease, heart attacks, heart failure, arrhythmias, and sev-
eral other cardiovascular ailments. Heart disease is a leading cause of death globally [3],
accounting for many premature deaths and posing a significant burden on healthcare
systems. Heart disease is a common and significant health issue in many parts of the
world [4]. The American Heart Association says that heart failure is projected to increase
dramatically [5]. Accurate prediction of heart failure can play a vital role in early detection
and prevention of adverse outcomes, ultimately leading to improved patient outcomes and
reduced healthcare costs.

Timely and accurate detection of heart failure is crucial for effective management
and treatment [6]. Detecting heart failure early allows for prompt intervention and the
implementation of appropriate medical strategies, which can help slow the progression of
the disease, alleviate symptoms, and improve the patient’s quality of life. Early detection
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can also reduce the risk of complications and hospitalizations associated with advanced
stages of heart failure. From 1989 [7] to now, there have been many approaches to finding
the best methods for cardiac failure prediction. In 2017, Simge et al. [8] used Matlab
and WEKA to find the best way to detect heart failure disease and obtained a good
accuracy of 67.7% for the ensemble subspace discriminant algorithm and the decision tree
algorithm. Then, in 2018, Ali et al. [9] utilized the Claveland dataset [10] for their studies
and obtained 84% accuracy for the Naive Bayes algorithm. Further, in 2019, Saba et al. [11]
performed prediction for heart diseases and obtained 84.85% accuracy for the logistic
regression (SVM) technique. However, most of them used the same dataset from the UCI
repository [12], which contains 300 records. This is a rather limited amount of data for
machine learning training.

Machine learning techniques have drawn a lot of attention in the medical field lately
because of their potential to help with the detection and prediction of cardiac disease [13].
Large volumes of clinical data may be analysed by machine learning algorithms to find
links and patterns that are not immediately obvious to human practitioners [14]. These
algorithms can harness the power of computer models to make accurate predictions and
provide valuable insights into disease risk assessment. However, the development and
implementation of machine learning models for heart failure prediction face several chal-
lenges [15]. The complexity of the cardiovascular system and the multifactorial nature
of heart failure necessitate integrating diverse data sources, including clinical test data,
medical imaging, and patient demographics. Data quality, feature selection, and model
performance issues must be addressed to ensure reliable and clinically relevant predictions.

This research addresses these challenges by proposing a machine learning metamodel
for predicting heart failure based on clinical test data. The metamodel incorporates several
established machine learning algorithms, namely the Gaussian Naive Bayes (GNB), Ran-
dom Forest Classifier (RFC), Decision Tree models (DT), and k-Nearest Neighbor (KNN),
to leverage their individual strengths in classification tasks. Combining these models into a
metamodel aims to enhance predictive accuracy and robustness while reducing potential
biases associated with individual algorithms. To evaluate the performance of the proposed
metamodel, a combined dataset comprising five well-known heart datasets, including
the Statlog Heart, Cleveland, Hungarian, Switzerland, and Long Beach datasets, is uti-
lized. These datasets share 11 standard features such as age, chest pain type, sex, resting
BP, fasting BS, cholesterol, resting ECG, exercise angina, maxHR, oldpeak, and ST-slope,
widely used in previous heart disease prediction studies. By leveraging a diverse set of
data sources, the metamodel aims to represent the underlying factors contributing to heart
failure comprehensively. The overall contribution of this paper includes the following:

* Integrate common machine learning algorithms such as Random Forest Classifier,
Gaussian Naive Bayes, decision tree models, and k-Nearest Neighbor into a meta-
model framework, leveraging their strengths to improve predictive accuracy and
model robustness.

¢  We have used a combined dataset from five different and well-known cardiac datasets,
including Statlog Heart, Cleveland, Hungary, Switzerland, and Long Beach, to ensure
a comprehensive representation of patient characteristics, clinical features, and risk
factors and improve the metamodel’s generalizability and applicability.

¢  The performance and evaluation metrics of the proposed metamodel have been com-
pared with other state-of-the-art machine learning models.

The structure of the paper is as follows: In Section 2, a summary of the related works is
provided. Section 3 outlines the methodology used. The results are presented in Section 4.
Section 5 focuses on the discussion. Finally, Section 6 serves as the conclusion of the paper.

2. Related Works

Heart failure forecasting has garnered significant attention recently due to its potential
to enhance patient care and improve healthcare resource allocation. Numerous studies have
explored the application of machine learning and deep learning techniques in predicting
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the onset and progression of heart failure. These methods leverage the abundance of
clinical and physiological data available, aiming to provide early and accurate prognostic
insights for clinicians and patients. In this section, we review the literature on heart
failure forecasting, focusing on the various machine learning and deep learning approaches
employed, the datasets utilized, and the reported performance metrics.

Liang et al. [16] proposed a novel deep learning model called tBNA-PR to accu-
rately predict heart failure and identify sub-phenotypes using temporal electronic health
records (tEHRs) data. The model effectively captures the complexity and heterogeneity
of the data to obtain informative patient representations. The study demonstrates the
effectiveness of tBNA-PR on a real-world dataset, achieving prediction accuracy of 0.78,
F1-Score of 0.7671, and AUC of 0.7198, outperforming existing benchmarks. The analysis
identifies three distinct sub-phenotypes of heart failure patients based on clustering and
subgroup analysis, revealing specific characteristics and significant features associated with
each sub-phenotype. The findings have practical implications for clinical decision support,
but the study acknowledges limitations related to data completeness, disease specificity,
generalizability, interpretability, and the need for further research.

In a study by Robert et al. [7], a novel algorithm was proposed for diagnosing coro-
nary artery disease, employing a probability-based approach. This algorithm’s reliability
and clinical utility were tested across three patient test groups. 303 consecutive patients
who were sent for coronary angiography at the Cleveland Clinic between May 1981 and
September 1984 served as the reference group for the model’s development. The study’s
findings showed that when applied to individuals with chest pain syndromes and interme-
diate disease prevalence, discriminant functions used to determine coronary disease proba-
bilities produced accurate and clinically helpful results. In another study by Simge et al. [8],
a comparison was made between two prominent machine learning platforms using the
same dataset. The researchers conducted experiments to classify heart disease using six
distinct algorithms: Quadratic SVM, Linear SVM, Cubic SVM, Decision Tree, Medium
Gaussian SVM, and Ensemble Subspace Discriminant. These experiments were carried out
in both the Matlab environment and WEKA. The dataset utilized in this study was acquired
from the machine learning repository of UCI [12]. The highest accuracy achieved was 67.7%
using the Ensemble Subspace Discriminant algorithm in Matlab, while the Decision Tree
algorithm in the WEKA platform also yielded an accuracy of 67.7%.

Li et al. [17] introduce a deep learning-based automatic system for diagnosing heart
failure by tackling the issue of imbalanced data in chest X-ray (CXR) images. The approach
combines under-sampling and instance selection techniques to maintain the integrity of data
distribution and presents a comprehensive multi-level classification method to diagnose
specific heart failure causes. Experimental results demonstrate that the proposed approach
outperforms traditional under-sampling methods, achieving an accuracy of 84.44% in
multi-class classification tasks. Rao et al. [18] presented a deep-learning framework for
predicting heart failure incidence using electronic health records. The authors developed
a novel Transformer-based risk model incorporating patient diagnoses, medications, age,
and calendar year. The model achieved high predictive performance, outperforming exist-
ing deep learning models. Ablation analysis revealed the importance of medications and
calendar year in predicting HF risk. Contribution analyses identified both established risk
factors and new associations, providing insights for data-driven risk factor identification.
The study highlights the potential of the deep learning model to inform preventive care
and identify new hypotheses for further research and drug repurposing studies in HF
prediction and other complex conditions.

In a related study conducted by Ali et al. [9], the Cleveland dataset was employed for
analysis, and a feature selection process was carried out to train three distinct classifiers,
namely Support Vector Machine (SVM), Naive Bayes, and K-Nearest Neighbors, utilizing a
10-fold cross-validation technique. Their findings revealed that the Naive Bayes classifier
exhibited superior performance on this dataset and the selected features, surpassing or
equaling the performance of SVM and KNN across all four evaluation parameters. Notably,
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it achieved an accuracy rate of 84%. Saba et al. conducted a study [11] that explores the
prediction of heart disease using data science methodologies. Their research focuses on
employing feature selection techniques and algorithms to improve the accuracy of heart
disease prediction. Multiple heart disease datasets were utilized for experimentation and
analysis purposes. The authors employed various feature selection techniques, including
Logistic Regression, Decision Tree, Random Forest, Nave Bayes, and Logistic Regression
SVM, using Rapid Miner as the tool. Notably, the highest achieved accuracy of 84.85%
was obtained using the UCI dataset [12] in combination with the Logistic Regression
(SVM) technique.

Earlier research on predicting heart failure has mostly relied on two widely recognized
datasets, namely the UCI repository and the Cleveland dataset, as indicated in Table 1.
However, these datasets suffer from limitations in terms of the number of records avail-
able for machine learning training purposes. Additionally, prior investigations primarily
employed basic machine learning models for detection or forecasting tasks. To address
these limitations, we conducted our research using a comprehensive dataset comprising
918 records and introduced a novel metamodel for predicting cardiac failure in patients.
Our metamodel represents a fusion of four distinct machine-learning models, allowing for
enhanced accuracy and robustness in forecasting outcomes.

Table 1. A Comparative Overview of Heart Disease Prediction Methods: Various methods and their
performance on different datasets, including limitations.

Ref Method

Records

Count Limitations

Dataset Outcome

SVM, NN, Fuzzy

[19] Genetic,

and Random Forest

Small sample size pre-
vented the proposed
model from generalizing

CART was most effective

Custom dataset 136 in determining the type

and degree of heart fail- well. In determining
ure. severity, accuracy is
fairly poor.

MOdlﬁ.ed . Used only ECG data and
Adaptive Bayesian Used the pulse sensor of a blood pressure data for
[20] algorithm [S[@l1 303 smart watch to obtain data anal sils) and used fewer
(MSABA) and and find the disease. 4 .
IoT records for training.
Five active learn- Accuracy in the gener-
ing multi-label alisation of the learning Fewer data were utilized
[21] selection methods: UCI 303 model  beyond  the for prediction and fine-
random,  MMC, available data for the tuning because the system
adaptive, AUDI, optimised label ranking is sophisticated.
and Quire model.
The performance of the
proposed model was sub- The features used in the
sequently validated by system were decreased
comparing it to conven- from 14to6 to reduce
[22] S}l:fr)l };og\x\e;[c)tor Ma- Er(fcli gralis(igve_ 573 tional models in 2022 us- the computational load,

ing a number of perfor-
mance criteria, and the
componential load was
cut in half.

but sometimes the reduced
features are also important
for disease analysis.
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Table 1. Cont.

Ref Method Dataset gif:::i ®  Outcome Limitations
In comparison to WKNN 5, HERECEL
and K-NN, CA_WKNN gem upon
. . ber of transactions con-
. . obtains maximum accu- s
Sine Cosine o o, ducted within the sys-
. racy of 4.59% and 15.61%, o .
Weighted K- resmectively. Blockchain. €Y making it expensive.
[23]  Nearest Neighbour UCI 303 P Y . As the data expands, it be-
powered  decentralised o
(SCA_WKNN) comes necessary to limit
: storage exceeds peer-to- , .
algorithm . the system’s learning ca-
peer storage in terms of . .
. pacity to a restricted data
maximum throughput by L1 .
95,03 percent source to avoid incurring
2P ' additional costs.
Korea National Out of the three models ﬁssirfors:;l:rif/?cc?lﬁigrsl
LR, ANN, Health and Nu- applied, the SVM gives all t%e necessar feature,
[24] SVM(support trition Examina- 6170 the highest accuracy of y
data are not available for

vector machine) tion Survey by

smartwatches

83.04% for six types of
heart disease prediction.

proper heart disease pre-
diction.

3. Methodology and Materials

The methodology employed in this study aims to develop and evaluate a machine
learning metamodel for predicting heart failure based on clinical test data. The flow of the
proposed framework is depicted in Figure 1. The first step involves data collection to create
the dataset. Next, significant variables are extracted, and the data are prepared accordingly.
Subsequently, the dataset is divided into training and testing sets. The training data are
then utilized to train the proposed metamodel. Finally, the metamodel is generated and
tested to obtain the output results.

G

ather

data Extract

. g Data
about Significant Preparation
heart Variables P

disease

e R . )
Normal Training Testing
Meta-
(0) Model Data
~ g ~— Data
y J— splittin
[ Herat ) Lo . P 8
. Predictive Training
Disease
model Data
(1))

Figure 1. The flow diagram of the proposed system.
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3.1. Dataset and Attributes

The creation of this dataset involved the integration of multiple existing datasets that
had not been previously combined. Currently, this dataset stands as the most extensive
resource available for heart disease research, as it merges five distinct heart datasets (Statlog
(Heart) Data Set: 270 records, Cleveland: 303 records, Hungarian: 294 records, Long Beach,
VA: 200 records, Switzerland: 123 records) and shares 11 common features. The dataset is
accessed from Kaggle named ‘Heart Failure Prediction Dataset’ [25]. The dataset contains
920 patient records, including 725 males and 195 females of different ages. Where 267 males
are normal, and 458 males have heart disease, 145 females are normal, and 50 females have
heart disease. The comprehensive depiction of every attribute, along with the correspond-
ing count of values for each attribute, can be observed in the provided Figure 2.

ST_Slope
The slope of the peak exercise ST segment [Up: upsloping, Flat: flat, Down: downsloping]

ExerciseAngina
Angina induced by exercise Y = Yes, N =
No

Oldpeak
oldpeak = ST [Numeric value measured
in depression]

Patient's age in years

patient's gender [M: Male, F: Female]

ChestPainType Heart
Types of chest pain include "Typical Chest Dlsease MaxHR
Angina (TA)," "Atypical Angina (ATA)" Pain [Numeric value between 60 and 202]

RestingBP Re;tmg Results of a resting ECG [Normal: Normal, ST:

blood pressure at rest [mm Hg]

"Non-Anginal Pain (NAP)," and Type highest heart rate attained
"Asymptomatic (ASY)."
RestingeCG

having an irregular ST-T wave, LVH: indicating
possible or certain left ventricular hypertrophy
by Estes’ criteria]

Fasting

FastingBS
if fasting blood sugar is greater than
120 mg/dl, itis 1; else, itis O

Cholesterol BS

Bload cholesterol level (mm/dl)

Figure 2. The details of the features used in this system model are illustrated in the diagram.

3.2. Data Preprocessing

Data preprocessing plays a crucial role in machine learning [26], and its importance
cannot be overstated. To enable the machine to learn from the data and generate the suitable
model, it is crucial to convert the categorical feature values into numerical representations
through a process known as an encoding [27] method, which is utilised here [28]. The data
collected in this stage is injected into the Google Colab platform in Python programming to
acquire the desired output [29]. The dataset demonstrates that the independent variables
have a significant impact on analyzing the relationship between them and the output
variable. In this case, the output variable consists of only two options. Figure 3 displays
the pairplot of the numerical features in relation to HeartDisease. Figure 3 highlights the
pairs of variables that exhibit the strongest correlation in the dataset. From the plot, it
becomes evident that predicting the final classification based on the two-parameter set
is challenging.

3.3. Baseline Architectures

This section introduces the fundamental architectures employed in the metamodel,
namely Random Forest, Naive Bayes, and Decision Tree.

3.3.1. Random Forest

Random Forest is a technique for ensemble learning that combines multiple decision
trees to make predictions collectively [30]. In Random Forest, each decision tree makes
individual predictions, and the final prediction is obtained by aggregating the predictions
of all the trees. Let us denote the Random Forest model as RF, the input features as X,
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and the target variable as Y. Assuming we have N decision trees in the forest, the prediction
of RF can be represented as follows:

RF(X) = mode(Tree1 (X), Treep(X), ..., Treen (X)) (1)

where Tree;(X) represents the prediction of the i-th decision tree. In a classification task,
mode() returns the most frequent class label among the predictions of all trees. In a
regression task, mode() can be replaced by averaging the predictions. Every decision tree is
created using a bootstrapped subset of the training data, and each node’s predictions are
based on a random selection of characteristics. The aggregation of predictions allows the
Random Forest model to reduce overfitting and improve generalization performance.
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Figure 3. Pairplot between different features with respect to the heart disease data. The plot displays
the pairs of variables in the dataset that exhibit the highest correlation. It indicates that accurately
predicting the final classification using a two-parameter set is particularly challenging. In this
context, the value of 0 represents a normal patient, while the value of 1 corresponds to a patient with
heart disease.

3.3.2. Naive Bayes Classifiers

Naive Bayes is a probabilistic classifier that operates under the assumption of feature
independence given the class label [31]. Let us denote the Naive Bayes classifier as NB,
the input features as X, and the class label as Y. The classification task aims to predict the
probability of a class given the input features. Using Bayes’ theorem, this probability can
be calculated as follows:

P(Y|X) = P(X|Y) % P(Y)/P(X) @)
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In Gaussian Naive Bayes, the assumption is that the continuous featuresX follow a
Gaussian distribution. The probability P(X|Y) is estimated by fitting a Gaussian distribu-
tion for each class Y, with mean yy and standard deviation oy. The prior probability P(Y)
is estimated based on the frequency of each class in the training data. The probability P(X)
is a normalization constant that can be ignored in the classification decision. To predict the
class label for a new instance X, the classifier selects the class Y with the highest posterior
probability P(Y|X) using the maximum a posteriori (MAP) estimation:

NB(X) = argmaxP(Y|X) = argmaxP(X|Y) * P(Y) (©)]

where argmax() returns the class label that maximizes the expression. Equation (4) displays
the probability determined by GNB.

_ 1 _(xi_l/‘y)z
= ) P )

Here, P(x;|y) = Probability of x; occurring given

P(xily)

(4)

evidence y has already occurred
o = Standard Deviation

# = Mean

3.3.3. Decision Tree

A decision tree is a hierarchical structure that uses a series of feature tests to make
predictions [32]. Let us denote the decision tree as DT, the input features as X, and the
target variable as Y. The decision tree recursively splits the dataset based on feature tests,
aiming to maximize the separation of classes or minimize impurity. The prediction of the
decision tree can be represented as follows:

L
DT(X) =) yi- (X € R;) ®)
i=1

Here, L represents the number of leaf nodes in the decision tree, y; represents the class
label assigned to the i-th leaf node, and R; represents the region or subset of instances
assigned to the i-th leaf node based on the feature tests. I(X € R;) is an indicator function
that returns 1 if the input instance X belongs to the region R; and 0 otherwise. The decision
tree traverses from the root to a leaf node based on the feature tests and assigns the
corresponding class label y; for the leaf node in which the instance falls.

3.4. Proposed Metamodel Architecture

The main dataset consists of 920 data points, equating to 920 rows and 12 columns
representing various variables such as Age, ChestPainType, Sex, RestingBP, FastingBS,
RestingECG, Cholesterol, MaxHR, ST-Slope, Oldpeak, ExerciseAngina, and HeartDisease.
In the case of the metamodel, the primary dataset is divided into two parts: one for training
and the other for testing. The training portion comprises 736 rows, while the testing portion
consists of 184 rows. Hence, the training data have a structure of (736, 12), and the testing
data have a structure of (184, 12).

To prevent overfitting in the stacking method, K-Fold Cross-validation was em-
ployed [33]. In this case, the value of K was set to 4, resulting in subsets of 184 rows
each. During each iteration of the cross-validation process, four subsets were utilized
for training and one subset for testing, with a unique test set assigned for each iteration.
Following the K-Fold Cross-validation, three new outcomes were obtained, namely the
predicted data from the Random Forest Classifier, Gaussian Naive Bayes, and Decision
Tree models. Subsequently, the ‘HeartDisease’ column from the primary training dataset
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was included to make predictions for the metamodel, which in this case is KNN. The KNN
algorithm can be expressed as follows:

mw=ﬂimwm

Here, n = no of dimensions (n=6) 6)
x = data point from dataset

y = new data point (to be predicted)

The Random Forest Classifier, Gaussian Naive Bayes, and Decision Tree models are
employed as estimators, while K-Nearest Neighbors serve as the final estimator. The result-
ing data structure becomes (736, 4), with four columns representing the predicted results
from the Random Forest Classifier model, Gaussian Naive Bayes model, Decision Tree
model, and the "HeartDisease’ column of the primary training dataset. These four columns
are then used to prepare the metamodel. To obtain the base models, the primary training
dataset needs to be trained using the three fundamental models: RFC, GNB and DT. This
process allows us to derive the model for predicting heart failure. Finally, the primary test
data are passed through the final model to validate and assess the data. The overall model
structure is depicted in Figure 4.

[ Primary Dataset (920 Records, 12 Columns) ]

Training Data - v R Testing Data
(736 records) | "| (184 records)

v ¢ l
184 184 | 184 184 | 184 | 184 | 184 184 | 184 | 184 | 184
184 | 184 | 184 4 184 | 184 | 184 4 184 | 184 | 184 4
184 | 184 | 184 | 184 184 | 184 | 184 | 184 184 | 184 | 184 | 184
184 | 184 | 184 | 184 184 | 184 | 184 | 184 184 | 184 | 184 | 184
Random Forest GNB Decision Tree
Predicted values Predicted values Predicted values
(736 records) (736 records) (736 records)
e ™
‘Herat Desis’ from
e data frame —>» KNN Classifier
(736 records)
A j
Y
—>( Random Forest
| GNB Meta-model

—b[ Decision Tree

[ Predictive Model }:

[ Binary Output (1/0) ]

Figure 4. The meta-general model’s mechanism is shown in the figure. Distinctly colored boxes
symbolize the specific operations.

4. Experimental Results

In this section, we will discuss the experimental setup, evaluation metrics, statistical
data analysis, the performance of the proposed metamodel, and a comparison of the
metamodel with other state-of-the-art approaches.
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4.1. Experimental Setup

Python was chosen as the programming language for implementing the metamodel,
and the implementation process involved utilizing the sci-kit learn library. The metamodel
was trained in the Google Colab environment.

4.2. Evaluation Metrics

To determine the best-performing algorithm, a number of detection algorithms were
performed to the dataset and their results were compared for accuracy and other statistical
factors. The algorithms used were a decision tree, bagging classifier, LGBM, Ridge clas-
sifier, SVR, SGDC, KNN, GPC, and a blended metamodel. Based on the metrics used to
evaluate their performance, these algorithms were compared. This subsection gives a brief
description of various performance matrices.

4.2.1. Accuracy

The percentage of accurate predictions to all predictions is used to produce the
classification accuracy rating, often known as the accuracy score. Equation (7) defines
accuracy (A).

_ True Positive + True Negative
~ Total Number of Predictions

@)

4.2.2. Precision
The proportion of true positive results divided by the total quantity of positive

outcomes, including misdiagnosed ones, is used to calculate precision (P). Calculating
P involves using Equation (8):

- True Positive
"~ True Positive 4+ False Positive

®)

4.2.3. Recall
The recall is calculated as the ratio of real positive samples that should have been

identified to genuine positive findings. Equation (9) is used to calculate the recall:

R— True Positive
~ True Positive + False Negative

©)

4.2.4. F1-Score

The F1 score determines the accuracy of the model in each class. When the dataset is
unbalanced, the F1-score metric is often applied. Here, it illustrates the effectiveness of the
suggested strategy using the F1 score as an assessment indicator [34]. Equation (10) is used
to obatin the Fl-score.

precision X recall
X

F1=2 —
precision + recall

(10)

4.3. Statistical Data Analysis

Figure 5 illustrates the relationship of heart disease with all other features used in the
dataset. Here, it is clear that people aged 50-70 are more affected by heart disease than
others. The data highlights that men are more likely to be affected by the disease than
women. More people had symptoms of chest pain that were type “ASY’. The cholesterol
data for heart disease patients was approximately between 180-300. For the majority of
individuals with heart disease, the slope was flat, with a maximum heart rate of 100-130.
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Figure 5. Relationship between different features with respect to heart disease results.

Figure 6 shows the pairwise correlation between the used features of the dataset. Here,

each cell in the matrix represents the correlation coefficient, which indicates the strength
and direction of the linear relationship between two features. From the figure, it is evident
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that age, oldpeak, resting BP, and fasting BP are all positively correlated with heart disease,
while cholesterol and maxHR are negatively correlated.
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Figure 6. Heatmap represents the correlation matrix between different features.

The relationship between heart disease by gender and other features is shown in
Figure 7. The resting blood pressure is almost the same for the male patient with heart
disease and the normal patient, whereas the female patient with heart disease has a resting
blood pressure between 130-160 and the normal female patient has a resting blood pressure
between 120-140. Male patients with heart disease have elevated cholesterol levels, which
are considered normal in the range of 190-260. The maximum heart rate is normally
decreased in the case of an abnormal heart condition in both genders.
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Figure 7. Relationship between heart disease by gender and other features.

4.4. Performance of the Metamodel

The metamodel we have suggested achieves an accuracy, recall, precision, and F1-
score of 87% when applied to our processed dataset. We evaluated our proposed model
against various machine learning models including DT, Bagging classifier, LGBM, Ridge
classifier, SVR, SGDC, KNN, and GPC. The results, showcasing the accuracy, precision,
and recall metrics, can be found in Table 2. Table 2 clearly demonstrates that the proposed
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metamodel outperforms all other base models in terms of accuracy, precision, recall, and

F1-score.

Table 2. Comparison of Model Performances with Reporting Features.

Model Reporting (I’Pr)e ciston (I;{e)call F1-Score
Features %) %) (F) (%)
LGBM accuracy - - 83
macro avg 83 83 83
weighted avg 83 83 83
Ridge accuracy - - 86
macro avg 86 86 86
weighted avg 86 86 86
SVR accuracy - - 70
macro avg 70 70 70
weighted avg 70 70 70
SGDC accuracy - - 76
macro avg 76 76 75
weighted avg 77 76 75
KNN accuracy - - 68
macro avg 68 68 68
weighted avg 68 68 68
GPC accuracy - - 61
macro avg 61 61 61
weighted avg 61 61 61
Tree accuracy - - 79
macro avg 79 79 79
weighted avg 79 79 79
Bagging accuracy - - 86
macro avg 87 86 86
weighted avg 87 86 86
Proposed
model accuracy - - 87
macro avg 87 87 87
weighted avg 87 87 87

In Figure 8, the learning curve provides information about the performance and be-
havior of a model as the amount of training data increases. It illustrates the relationship
between the training set size, the number of training iterations, and the model’s perfor-
mance metrics, such as accuracy, error, or loss. In the plot, the y axis represents training
and cross-validation scores, and the x axis represents the training examples for different
machine learning models. The learning curve for GPC model in Figure 8 shows that it has
the lower test variability and a low score up to 200 instances and the final F1 score is 0.61.
The learning curves of Bagging, Ridge, and LGBM show high test variability and resulted
in F1 scores of 0.86, 0.86, and 0.83, respectively. The proposed metamodel learning curve
shows the highest test variability and a low score up to around 200 instances; however,
after this level, the model converges on an F1 score of around 0.87.
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Figure 8. Learning plots for different machine learning models and proposed metamodel.

Table 3 summarizes the parameters, parameter counts, dataset records, and model
comparison for different studies in the field. The table includes multiple studies, each with
its dataset and algorithm used. The parameters used in each study are listed, along with
the corresponding count of parameters. The number of records or data points in the dataset
is also mentioned. The algorithms employed in each study are indicated, along with their
corresponding accuracy percentages. The table showcases a comparison of the proposed
system with other studies. The proposed system utilizes the “fedesoriano” dataset [25] and
employs a metamodel. It utilizes 11 parameters and consists of 918 records. The accuracy
of the proposed system is reported as 87%, which is higher than the accuracy percent-
ages achieved by other models in the table. This comparison demonstrates the superior
performance of the proposed system when compared to earlier research and models.
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Table 3. The table illustrates the parameters and the number of parameters used in the datasets.

Additionally, it shows the total data count for the entire dataset and presents the comparison of model

results for different studies.

Parameters

Algorithm

0,
Study Dataset Parameters Count Records Used Accuracy (%)
Age, Sex, DT 60.9
CP, trstbps, .
Simge Thal, Linear SVM 65.3
etal. [8] UCI [12] Chol, FBS, CA, 13 300 QuadriticSVM 65
RestECG, .
thalach, Cubic SVM 61.9
Exang, Medium 67
OldPeak, Slope Gaussian SVM
Ensamble
Subpace 67.7
Discriminant
Age, Sex, DT 82.22
Saba CP, trstbps, Linear . 82,56
tal. [11] Thal, Regression
etak UCI[12] Chol, FBS,CA, 13 300 Random Forest ~ 84.17
RestECG, Naive b 84.24
thalach, aive bayes .
Logistic
Exang, .
Regression 84.85
OldPeak, Slope (SVM)
Age, CP, Sex,
Trstbps, FBS,
CA, Chol, Linear
Robert etal. [7] UCI [12] Thalach, 13 300 Re eression 77
RestECG, &
Exang, Slope,
Old Peak, Thal
Age, Sex, CD,
. OldPeak, Naive bayes 84
Ali
etal. [9] thalach,
’ Chol, FBS, CA,
UCI [12] RestECG, 13 300 KNN 80
trstbps, Thal, SVM 83
Exang, Slope
Age, chest pain
type, sex,
resting BP,
fasting BS,
. cholesterol,
Proposed System fedesor-iano [25] resting ECG, 11 918 metamodel 87
maxHR,
oldpeak,
exercise angina,
and ST-slope

5. Discussion

Developing a machine learning metamodel for cardiac failure forecasting based on
clinical data represents a significant advancement in cardiovascular medicine. This dis-
cussion section will dive into the key findings of this research, discuss the implications
for clinical practice, highlight the strengths and limitations of the metamodel, and suggest
avenues for future research.
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The evaluation of the proposed metamodel revealed its superior performance com-
pared to other state-of-the-art machine learning models. With an accuracy of 87%, the meta-
model showcased its potential for accurately predicting heart failure based on clinical test
data. This high level of accuracy is promising, as it has the potential to aid healthcare
professionals in identifying patients at risk of heart failure and implementing preventive
measures in a timely manner. Early detection of heart failure is crucial for initiating ap-
propriate interventions and personalized treatment plans, ultimately leading to improved
patient outcomes.

One of the strengths of the metamodel lies in its incorporation of multiple machine
learning algorithms, namely Random Forest Classifier, Gaussian Naive Bayes, decision
tree models, and k-Nearest Neighbor. By blending these algorithms, the metamodel
leverages their individual strengths, such as the ability of decision trees to capture complex
interactions and the robustness of Random Forest Classifier in handling noisy data. This
integration enhances the metamodel’s predictive accuracy and model robustness, making
it a valuable tool for forecasting cardiac failure.

Utilizing a combined dataset from five well-known cardiac datasets, including Statlog
Heart, Cleveland, Hungarian, Switzerland, and Long Beach, ensures a comprehensive
representation of patient characteristics, clinical features, and risk factors. This approach
enhances the generalizability and applicability of the metamodel, as it captures a diverse
range of patient profiles and healthcare settings. Including 11 standard features from these
datasets provides a solid foundation for predicting heart failure, but future studies can
explore the integration of additional clinical variables to refine the metamodel’s predictive
capabilities further.

Selecting an appropriate dataset is paramount to ensure our metamodel’s generalizabil-
ity and relevance. In this study, we utilized five well-known heart datasets. These datasets
have been extensively used in previous research, contributing valuable clinical information
about heart disease and heart failure. Before combining these datasets, we thoroughly
investigated their characteristics, ensuring compatibility in terms of the target variable
(heart failure) and the set of standard features they shared. Combining disparate datasets
introduces potential limitations and biases stemming from variations in data collection
protocols, demographics, and healthcare practices across different geographical regions
and time periods. We acknowledge that these inherent differences might influence the
model’s generalization ability. To mitigate potential biases, we employed various strategies
during the dataset integration process explained in the Data-Preprocessing section.

In addition to ensuring easy integration with medical environments, even those with
limited resources, we employ machine learning baselines to maintain a lightweight model.
However, deep learning demands more computational power, making it unsuitable for
achieving a lightweight design.

Developing an accurate machine learning metamodel for heart failure prediction
presents numerous challenges. The diverse range of risk factors, including underlying
heart diseases, comorbidities, and lifestyle habits, necessitates the integration of heteroge-
neous data types and interactions. Feature selection becomes critical to extract relevant
information while handling high-dimensional data and potential multicollinearity. Ad-
dressing data imbalance is crucial to avoid biased predictions, and generalization to unseen
data requires external validation. Balancing predictive performance with interpretability
is essential for clinical adoption, considering the model’s potential as a “black box”. Data
quality and completeness are pivotal in ensuring reliable predictions, emphasizing the
need for careful data preprocessing. Overcoming these challenges is vital to advance heart
failure prediction and for fostering the model’s clinical utility in cardiology.

While the results of this research are promising, several limitations should be acknowl-
edged. Future work for this paper includes conducting external validation of the developed
metamodel using larger and more diverse datasets, evaluating its performance using ad-
ditional metrics such as sensitivity, specificity, and AUC-ROC, exploring different feature
selection techniques to enhance accuracy, developing interpretability techniques without
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compromising predictive accuracy, incorporating longitudinal data analysis to capture
temporal patterns, integrating clinical notes, assessing the metamodel’s practical imple-
mentation in clinical settings, integrating external data sources for a comprehensive patient
profile, and exploring the impact of the metamodel on patient care, outcomes, and health-
care systems. These avenues will further advance cardiac failure forecasting, improve
patient care, and refine the metamodel’s performance and applicability in clinical practice.

6. Conclusions

This research presents a machine learning metamodel for cardiac failure forecasting
based on clinical data. The metamodel demonstrates improved predictive accuracy and
model robustness by integrating machine learning algorithms. Using a combined dataset
from five well-known cardiac datasets enhances its generalizability and applicability. Eval-
uation results reveal that the metamodel outperforms other state-of-the-art models, with an
accuracy of 87%. This development holds excellent potential for accurately identifying
patients at risk of heart failure, enabling timely interventions and personalized treatment
plans. Integrating machine learning techniques in clinical practice can significantly en-
hance patient care, improve outcomes, and reduce healthcare costs. Further studies can
explore the integration of additional clinical variables and validate the metamodel us-
ing more extensive and diverse datasets to strengthen its reliability and generalizability.
Overall, this machine learning metamodel significantly advances cardiac failure forecast-
ing, potentially improving patient outcomes and saving lives through early detection and
proactive management.
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