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Abstract: The era of artificial intelligence (AI) has revolutionized our daily lives and AI has become
a powerful force that is gradually transforming the field of medicine. Ophthalmology sits at the
forefront of this transformation thanks to the effortless acquisition of an abundance of imaging
modalities. There has been tremendous work in the field of AI for retinal diseases, with age-related
macular degeneration being at the top of the most studied conditions. The purpose of the current
systematic review was to identify and evaluate, in terms of strengths and limitations, the articles that
apply AI to optical coherence tomography (OCT) images in order to predict the future evolution of
age-related macular degeneration (AMD) during its natural history and after treatment in terms of
OCT morphological structure and visual function. After a thorough search through seven databases
up to 1 January 2022 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines, 1800 records were identified. After screening, 48 articles were selected for full-
text retrieval and 19 articles were finally included. From these 19 articles, 4 articles concentrated on
predicting the anti-VEGF requirement in neovascular AMD (nAMD), 4 articles focused on predicting
anti-VEGF efficacy in nAMD patients, 3 articles predicted the conversion from early or intermediate
AMD (iAMD) to nAMD, 1 article predicted the conversion from iAMD to geographic atrophy (GA),
1 article predicted the conversion from iAMD to both nAMD and GA, 3 articles predicted the future
growth of GA and 3 articles predicted the future outcome for visual acuity (VA) after anti-VEGF
treatment in nAMD patients. Since using AI methods to predict future changes in AMD is only in its
initial phase, a systematic review provides the opportunity of setting the context of previous work in
this area and can present a starting point for future research.

Keywords: machine learning; deep learning; prediction; age-related macular degeneration; progression

1. Introduction

Age-related macular degeneration (AMD) is the leading cause of irreversible vision
loss and legal blindness in individuals over the age of 50. It is currently estimated that,
in 2040, approximately 288 million people will be affected by AMD [1]. As a result, eye
examinations will increase in frequency, with practices becoming busier and ophthalmol-
ogists having less time to analyze their patients’ data. At the same time, the amount of
data from one single patient will expand as multimodal imaging continues to evolve and
new biomarkers arise. Therefore, it is of great importance for computer-aided algorithms
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to automate the collection and processing of information. Once processed, these algorithms
could help in figuring out the relevant data, leaving doctors more time for human-to-patient
interaction.

Individuals in the early and intermediate AMD (iAMD) stages are asymptomatic and
the progression to the advanced stage varies between different patients with a varying
speed of advancement. Therefore, accurately predicting the patients who will progress is
undoubtedly of great importance because the loss of vision starts only in the advanced stage.

The advanced stage of AMD can be further divided into two categories: neovascular
AMD (nAMD; also called “exudative” or “wet”) and geographic atrophy (GA; also called
“atrophic” or “dry”). Unfortunately, even though data from clinical trials using new
emerging therapies seem to indicate that they are favorable in reducing lesion growth, there
are no approved therapeutics commercially available for GA [2]. On the other hand, patients
suffering from nAMD can benefit from treatment with intravitreal agents against vascular
endothelial growth factor (anti-VEGF) and, recently, angiopoietin-2 (anti-Ang-2) [3].

Patients suffering from nAMD in one eye are at increased risk of conversion (progress-
ing from early or intermediate to the late stages of AMD) in their fellow eye, with the risk
reaching up to 20% in 2 years [4]. In order to prevent vision loss, the monitoring of the
healthy fellow eye should be as important as that of the treated eye.

Optical coherence tomography (OCT) is an easy-to-perform, fast and non-invasive
technique that, by means of interferometry, allows visualization of the retinal layers through
high-resolution cross-sectional images. Due to its ease of use, OCT is one of the most
prevalent ophthalmic imaging modalities, with 30 million scans performed every year [5].

Artificial intelligence (AI) in medicine is currently used either as a support for the
clinical decisions or in the imaging analysis. Ophthalmology, as an image-based specialty,
is considered to have the widest scope for the application of computer algorithms. The
most promising area is the field of retinal diseases, such as AMD, diabetic retinopathy or
retinopathy of prematurity, where researchers have developed models for segmentation,
classification and, more recently, future prediction [6].

The classical machine learning (ML) models rely on features that are measured directly
from the collected data. The model is trained on one part of the dataset, called the training
set, and learns to associate certain features with known labels (e.g., classes for classification
tasks) or a numerical value (e.g., the predicted value for the regression task). To assess its
performance, the model is then evaluated on a different part of the dataset that has not been
seen before called the test set. The effectiveness of ML models depends on finding powerful
and appropriate prediction models for the given task and feeding them meaningful features
for each label.

Deep learning (DL) evolved as a more powerful subset of machine learning [7] and
relies on a large variety of architectures for artificial neural networks. Within a deep neural
network (DNN), the signal undergoes various transformations during computation as it
passes from the first layer, called the input, to the last layer, called the output. As such, these
DNNs autonomously learn features from data in a multistep process of pattern recognition
without the need for the developers to explicitly identify them beforehand, acting both as a
feature extractor and as classifier.

As the field of ophthalmology is image-rich, with fundus photography and OCT
commonly integrated in the clinical practice, vast amounts of imaging data are available for
AI research. This is why, for the first time, the US Food and Drug Administration (FDA) has
approved an autonomous AI-based diagnostic system in ophthalmology that can detect
diabetic retinopathy in primary care [8].

In ophthalmology, future prediction tasks powered by AI are mainly focused towards
predicting the progression in terms of retinal structure and function after treatment or
during the natural evolution of the disease.

In the management of nAMD patients, greater visual acuity (VA) at the initiation of
the anti-VEGF therapy is associated with a higher probability of a better visual outcome in
the following 2 years under treatment [9,10]. Thus, being able to predict the moment of
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conversion from early or iAMD to nAMD would be of utmost importance. At the same time,
foreseeing the patients who are more at risk would help physicians better schedule their
monitoring intervals, catching the conversion sooner and improving treatment outcomes.
Predicting the moment of conversion to GA also carries significant value since recent
clinical trials show favorable responses in slowing its progression [2].

Predicting the evolution of both nAMD and GA would also be of high value for new
developing drugs targeting these types of disease. This would help in proper patient
selection for different types of treatment, as well as in evaluating treatment efficacy and
establishing valuable trial endpoints. Since anti-VEGF treatment has established itself as
the cornerstone in modern nAMD management, predicting the treatment efficiency and
its requirements could substantially improve clinical practice, benefiting both patients
and ophthalmologists.

An individual’s autonomy and quality of life are greatly dependent on their VA.
Among nAMD patients, there is high inter-individual variability in patient responses to
anti-VEGF medication in terms of visual function. Therefore, we can see the importance of
AI models that could predict future VA. Having the capacity to predict a future increase
could help in motivating patients to be compliant and adhere to their demanding follow-up
visits, and a future decrease could help them in managing their expectations. The prediction
could also help their physicians in considering whether to keep or change their treatment
or recommend clinical trials testing upcoming treatments.

2. Materials and Methods
2.1. Methodology of the Literature Search

In our research, we went through the following steps. First, we defined the research
problem based on the following research question: what is the value of machine learning
and deep learning OCT analysis for the prediction of the evolution of AMD during its
natural history and after treatment in terms of structure and visual function? Second, we
found pertinent articles that met the pre-set inclusion criteria. Third, we extracted the
relevant data from the selected articles. Fourth, we assessed the quality of the extracted
data. The current systematic review was carried out through meticulous and exhaustive
research of the following seven databases (all the links provided below were accessed on
22 September 2022).

ArXiv 18 articles (https://arxiv.org/)
Cochrane Library 18 articles (https://www.cochranelibrary.com/)
Embase 258 articles (https://www.embase.com)
IEEE Xplore 29 articles (https://ieeexplore.ieee.org)
Pubmed 113 articles (https://pubmed.ncbi.nlm.nih.gov/)
Science Direct 362 articles (https://www.sciencedirect.com)
Scopus 1002 articles (https://www.scopus.com/)

The systematic review was carried out following the 2020 Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) guidelines [11]. Due to the unsatisfactory
reporting in systematic reviews [12], the PRISMA statement was intended to serve as a
reporting guideline, ensuring that reviewers conduct their work in a transparent manner
permitting their readers to fully understand their reasonings, means and findings. We
searched seven databases for all articles published before 1 January 2022 and this resulted
in a total of 1800 records being retrieved and uploaded in the reference manager software
Mendeley. After removing 396 duplicate records using the Mendeley software, 1404 records
remained for screening. The 1404 records were split in half and two authors (G.A.M. and
S.A.R) independently screened the titles and abstracts of the records for each half. This
process led to the exclusion of 1356 records. Following exclusion, 48 full-text articles were
retrieved and assessed for eligibility independently by the same two authors (G.A.M. and
S.A.R). In cases of disagreement, consensus regarding inclusion/exclusion was reached
through discussions and, if necessary, a third author (A.M.) was consulted. In this review,
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we included all journal papers and conference papers found in the previously mentioned
databases using the following keywords for searching: “machine learning” or “deep
learning” and “age-related macular degeneration” and “OCT”. The PRISMA flow chart is
displayed in Figure 1.

Figure 1. PRISMA flow chart.

2.2. Inclusion Criteria

The goal of our research was to find, chart and analyze the articles exploring the
predictive value of ML and DL OCT analysis for studying AMD’s natural history and
therapeutic response. We therefore included those studies that analyzed OCT images with
ML and DL algorithms to predict AMD’s evolution in terms of structure and visual function
during the disease’s natural history or in response to treatment.

We included articles that analyzed:

• The progression of AMD from early and iAMD stages to nAMD and GA;
• The progression of nAMD under anti-VEGF therapy;
• The progression of GA in its natural history and under new trial treatments;
• The efficacy of anti-VEGF treatment of nAMD;
• The requirements of anti-VEGF treatment of nAMD;
• The VA outcomes after anti-VEGF treatment of nAMD.

We included all articles found suitable that were published up to 1 January 2022.

2.3. Exclusion Criteria

We excluded the following type of articles:

• Articles that used ML and DL algorithms but based their prediction on color fun-
dus photographs and other types of imaging (e.g., confocal scanning laser ophthal-
moscopy) and did not include OCT analysis;

• Articles that analyzed OCT images with ML and DL algorithms but focused on
learning tasks, such as classification or segmentation of AMD;

• Articles that analyzed OCT images with ML and DL models but used statistical
analysis for their prediction models.
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2.4. Selection of Papers

We selected those articles that met our inclusion criteria. Following this triage, we
ended up with 19 articles from which we built up our review. We saved each article as a
pdf document and used the title to name it.

3. Results

We finally arrived at the 19 articles displayed in Table 1 that satisfied our inclusion
criteria. The datasets utilized by the articles are presented as number issued per year in
Figure 2 and as number issued per country of origin in Figure 3. Among these 19 studies:

• Four articles predicted the need for anti-VEGF treatment among nAMD patients; three
used ML models and one used a DL model;

• Four articles predicted anti-VEGF treatment efficacy for nAMD patients; all four used
DL models and, among them, two used generative adversarial networks (GANs);

• Four articles predicted the conversion from early or iAMD to nAMD; one used a ML
model and three used DL models;

• Two articles predicted the conversion from iAMD to GA; one used a ML model and
one used a DL model;

• Three articles predicted the growth of GA; one used a ML model and two used
DL models;

• Three articles predicted the VA outcome after anti-VEGF treatment in nAMD patients;
two used ML models and one used a DL model.

Since Schmidt-Erfurth et al. [13] developed a ML model for predicting the conversion
to both nAMD and GA, the findings for both types of predictions will be described in
Section 3.4.

Table 1. The 19 articles included in the review arranged by prediction category and colored according
to the type of model used (green = ML; blue = DL).

Prediction 2016 2017 2018 2019 2020 2021

Treatment requirements Bogunovic et al. [14] Romo-Bucheli et al. [15] Pfau et al. [16]
Gallardo et al. [17]

Treatment efficacy Feng et al. [18]; Lee et al. [19];
Liu et al. [20] Zhao et al. [21]

Conversion to nAMD Schmidt-Erfurth et al. [13] Russakoff et al. [22] Yim et al. [23];
Banerjee et al. [24]

Conversion to GA Schmidt-Erfurth et al. [13] Rivail et al. [25]

GA growth Niu et al. [26] Zhang et al. [27];
Gigon et al. [28]

VA outcome Schmidt-Erfurth et al. [29] Kawczynski et al. [30]Rohm et al. [31]

3.1. Prediction of Treatment Requirements—Classic Machine Learning

Bogunovic et al. [14] used a random forest classifier to predict low and high anti-
VEGF treatment requirements for 317 eyes from 317 patients undergoing a 2 year pro
re nata (PRN) schedule in the phase-three HARBOR clinical trial during their initiation
phase (baseline, month one and month two). The HARBOR clinical trial included patients
with treatment-naive subfoveal choroidal neovascularization (CNV) secondary to nAMD.
During the trial, one eye per patient was randomized in a 1:1:1:1 fashion to Ranibizumab
with the following scenarios: (1) 0.5 mg monthly, (2) 0.5 mg PRN, (3) 2.0 mg monthly
and (4) 2.0 mg PRN. In the PRN schedule, patients had a course of three Ranibizumab
injections in the first 3 months and were then followed-up monthly with Cirrus HD-OCT III
imaging and VA measurements for retreatment criteria (a five-letter drop in best-corrected
visual acuity (BCVA) compared to the previous visit or any evidence in follow-up OCT
images of disease activity). Patients receiving ≤5 anti-VEGF injections were marked as
low-treatment, those receiving ≥16 as high-treatment and anything between as medium-
treatment. From the baseline, month one and two visits, the model used eight OCT features
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for each of the 13 regions (nine Early Treatment Diabetic Retinopathy Study (ETDRS)
regions + three additional ones): four retinal-layer 2D map thicknesses derived from
graph theory automatic segmentation and volume and en face area maps for intraretinal
fluid (IRF) and subretinal fluid (SRF) obtained from convolutional neural network (CNN)
segmentation. Temporal differences between features, BCVA, demographic characteristics
and supplementary clinical and imaging data were included such that the final model had
530 features: ((8 feature maps × 13 regions + 1 BCVA) × 5 temporal elements) + sex, age,
race, smoking status and fluorescein angiography (FA) pattern type. The values for the
area under the receiver operating characteristic curve (AUC) were 0.7 and 0.77 for the low
versus others and high versus others treatment requirements. The top three most important
features were: (1) SRF volume in the central 3 mm circle at month two; (2) inner retina
thickness at the fovea at month one; (3) inner retina thickness in the central 3 mm circle at
month two. Interestingly, the authors observed that temporally differential features seemed
to have a similar role as features observed in a cross-sectional analysis in the model’s
prediction. The least important features were sex, FA pattern type, smoking status and race.

Figure 2. The number of datasets per year from the 19 articles included in the current systematic review.

Pfau et al. [16] evaluated the ability of a probabilistic natural gradient boosting
(NGBoost) forecasting model to predict future anti-VEGF treatment requirements using
biomarkers extracted from volumetric spectral domain OCTs (SD-OCTs). In contrast to
Bogunovic et al. [14], who provided the prediction point for each patient but without
a full probability distribution over the entire outcome space, the model developed by
Pfau et al. [16] provided a measure of predictive uncertainty for each individual predic-
tion. The dataset included real-world data (RWD) from 40 visits for 40 eyes belonging to
37 patients with nAMD in at least one eye visiting the Department of Ophthalmology and
Visual Sciences, University of Illinois, Chicago, IL, USA, together with data from 108 visits
for 59 eyes belonging to 59 patients visiting the University Eye Hospital Bonn, University
of Bonn, Germany. Patients were treated with different anti-VEGF inhibitors (Bevacizumab,
Ranibizumab or Aflibercept) with either a PRN or treat and extend (T&E) protocol. Both
treatment-naive and pre-treated patients at the time of the SD-OCT scan were included.
The imaging protocol consisted of 20° × 15° SD-OCT imaging (19 B-scans, ART 8) using
a Spectralis HRA+OCT device (Heidelberg Engineering, Heidelberg, Germany). The SD-
OCT B-scans were segmented using a previously trained and validated CNN (Deeplabv3
model with a ResNet-50 backbone). Retinal thickness (mean and standard deviation (SD))
and layer reflectivity values (minimum-, mean- and maximum-intensity projections) were
extracted for the central and the four inner ETDRS subfields for the following segmented
layers: inner retina, outer nuclear layer (ONL), inner segment (IS), outer segment (OS),
retinal pigment epithelium-drusen complex (RPEDC) and choroid. The total number of
features equaled 270 (27 maps × 2 measures (mean/SD) × 5 (ETDRS subfields)). Three
conventional machine learning algorithms applicable in the setting of correlated predictors
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were probed in this study in order to predict the anti-VEGF treatment frequency within
the following 12 months: 1. lasso regression, 2. principal component regression and 3.
random forest regression. For probabilistic forecasting, the authors implemented a natural
gradient boost (NGBoost) with a negative binomial distribution outputting a full prob-
ability distribution. The primary outcome measure in the present study was the mean
absolute error (MAE) for the predicted versus the actual anti-VEGF treatment frequency.
Only one visit and one eye per patient were included in the model fitting. The predictions
of the anti-VEGF treatment frequency, with accuracy in terms of the MAE and 95% CI, were
2.76 injections/year (2.39–3.14) (R2 = 0.038) using lasso regression and 2.74 injections/year
(2.38–3.11) (R2 = 0.173) using principal component regression. For the random forest re-
gression, the provided prediction accuracy was 2.60 injections/y (2.25–2.96) (R2 = 0.390).
The probabilistic prediction with NGBoost was similarly accurate: 2.66 injections/year
(2.31–3.01) (R2 = 0.094). The AUCs for the low treatment requirement (defined as ≤4 in-
jections/year) and high treatment requirement (defined as ≥10 injections/year or more)
were as follows: lasso regression—0.61 and 0.63, principal component regression—0.63
and 0.7, random forest regression—0.68 and 0.7 and NGBoost—0.68 and 0.69. The models’
performances are displayed in Table 2. The SD for RPEDC thickness in the central ETDRS
subfield was found to be an important predictor across models, meaning that higher values
for the SD for the central RPEDC thickness were associated with a greater need for injec-
tions. In terms of estimations, all models predicted more injections than necessary for low
treatment requirements and fewer than necessary for high treatment requirements. The
present study was limited by the sample size, as well as by the different disease phenotypes
not included in the training data.

Table 2. Pfau et al. [16]: conventional machine learning models vs. NGBoost for predicting anti-VEGF
treatment requirements during the following 12 months (AUC = area under the curve; inj. = injections;
Tx = treatment).

Lasso Regression Principal Component
Regression

Random Forest
Regression NGBoost

MAE for no. of inj. for
12 months (95% CI)

2.76 (2.39–3.14)
(R2 = 0.038)

2.74 (2.38–3.11)
(R2 = 0.173)

2.60 (2.25–2.96)
(R2 = 0.390)

2.66 (2.31–3.01)
(R2 = 0.094)

AUC for low Tx
requirement (≤4 inj.) 0.61 0.63 0.68 0.68

AUC for high Tx
requirement (≥10 inj.) 0.63 0.7 0.7 0.69

Figure 3. The number of datasets per country from the 19 articles included in the current systematic
review (United States—5, China—4, Germany—2, Switzerland—2, United Kingdom—2, South
Korea—1; map is scaled).
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Gallardo et al. [17] studied ML models’ capacities to classify treatment needs with
710 eyes from 625 patients from the University Hospital of Bern who underwent anti-VEGF
therapy in a T&E fashion. Among the 710 eyes included, 377 eyes had nAMD (340 patients),
155 eyes had macular edema-related retinal vein occlusion (RVO) (150 patients) and 178 eyes
had diabetic macular edema (DME) (135 patients). The patients included in the study
underwent at least 365 days of T&E with either Ranibizumab or Aflibercept between 1
January 2014 and 31 December 2018. The macular 6 × 6 mm OCT volumes were acquired
using the Heidelberg Spectralis SD-OCT imaging system. The treatment demand was
established for the first year of treatment as low, moderate or high. The cutoff value
for treatment intervals for the low-treatment group was ≥10 weeks or more, and for the
high-treatment group, it was ≤5 weeks, while everything in between was attributed to the
moderate-treatment group. Two binary random forest classifiers were built with 1000 trees
with a maximum tree depth of 100 to differentiate between the low-demand group versus
others (LvO) and the high-demand group versus others (HvO). The models used both
morphological features extracted from the OCTs as well as the patient’s sex and age at
each visit. The models used 131 segmentation-based morphological features ((4 groups
of layers × 1 mean thickness × 13 ETDRS regions) + (3 fluids × 2 en face area map and
volume features × 13 ETDRS regions) + 1 patient-independent retinal thickness). These
were coupled with biomarker-based morphological features detected with a CNN classifier
for each individual B-scan (10 total features: SRF, IRF, hyperreflective foci (HRF), drusen,
reticular pseudodrusen, epiretinal membrane, GA, outer retinal atrophy and fibrovascular
pigment epithelial detachment (PED)). Two types of features were built for each of the
10 biomarkers: (1) the number of B-scans, where the probability for their presence was
≥0.75, and (2) the maximum probability for their presence across all B-scans. The models
also used differential features, where they measured the differences in morphological
features over time from visit one to baseline and visit two to visit one. After combining
the features ((131 (segmentation-based) + 20 (detection-based)) × 3 (baseline, V1 and V2)
+ 604 (differential features) + 1 (sex) + 3 (age at each visit)), the result equaled a total of
1061 features. The authors performed 10-fold cross-validation, with 90% of the data in the
train set and 10% in the test set, evaluated by the mean AUC for all 10 folds, which was
0.79 for both the LvO and HvO nAMD classifiers for the 1-year treatment demand, taking
into consideration the baseline + first two consecutive visits. They computed the feature
importance both in terms of statistical significance and relevance for the model’s prediction.
The authors concluded that, in order to classify the low-demand group, features extracted
from the first visit were enough, as opposed to the high-demand group, for which features
from the second and third visits were necessary.

3.2. Prediction of Treatment Requirements—Deep Learning

Romo-Bucheli et al. [15] developed an end-to-end DL model that aimed at predicting
low and high treatment requirements for AMD patients from longitudinal retinal OCT
images. The model’s architecture is built on three components. First, a DenseNet network is
used to extract the features from the OCT images. Second, a recurrent neural network (RNN)
integrates the information obtained from the OCT images from multiple time points within
the initiation phase. Last, a fully connected layer integrates spatiotemporal information
from the RNN and outputs the probability for a patient to be a part of each treatment
requirement group (low, intermediate and high). The categories were defined as follows:
low—≤5 injections, high—≥16 injections and intermediate—everything in between. From
the total number of 350 patients, the authors used 70% of the data (247 patients) for
training, 10% (34 patients) for validation and 20% (69 patients) for testing. For the three-
class classification task (low, intermediate and high), the model yielded the following
accuracy, sensitivity and specificity: (0.72, 0.82, 0.69) for the low-treatment group, (0.65,
0.61, 0.71) for the intermediate-treatment group and (0.9, 0.5, 1.0) for the high-treatment
group. The model was also tested on two additional tasks: (1) two binary classifications
(high-treatment group vs. all the rest and low-treatment group vs. all the rest), where the
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model was compared to a baseline ML model similar to the model used by Bogunovic et
al. in [14]; and (2) a regression task to predict a treatment requirement score (the number
of received injections divided by the total number of visits, without taking into account
the initiation phase). The high-treatment group vs. others classification yielded an AUC of
0.81 while the low-treatment group vs. others classification yielded an AUC of 0.85. The
regression model obtained a Pearson correlation coefficient R = 0.59 and a coefficient of
determination R2= 0.22. They finally evaluated the model’s decision using an adapted
occlusion sensitivity method. Even though they evaluated the patient-specific heatmaps,
the authors generated a representative attribution heatmap for each treatment requirement
category displaying regions that were more important for the model’s decision. For the
high and intermediate groups, the heatmap was scattered along the image, while for the
low group, it was concentrated in a small zone below Bruch’s membrane. When comparing
the low- and high-treatment groups, the heatmaps seemed to be complementary, with
regions more important in the low category having less importance in the high category
and vice versa.

3.3. Prediction of nAMD Anti-VEGF Treatment Efficacy—Deep Learning

Feng et al. [18] trained a CNN-based predictive model to assess the efficacy of in-
travitreal anti-VEGF injections in patients with two types of macular lesions: CNV and
cystoid macular oedema (CME). CNV is mainly secondary to nAMD and CME is secondary
to diabetic retinopathy, but both can also appear as part of other retinal diseases. The
data consisted of 228 OCT images from 228 patients diagnosed with CNV, CME or both
lesions simultaneously who were treated at the Second Affiliated Hospital of Xi’an Jiaotong
University between 2017 and 2019. An OCT was recorded prior to the anti-VEGF injection
and the evaluation of the treatment’s efficacy was determined after 21 days (for 171 patients
(75%), the response was effective, while for the 57 remaining patients (25%), there was no
sign of effectiveness). The criteria for appreciating effectiveness were not described in the
paper. Before training the CNN, the OCT images underwent preprocessing and the dataset
was split randomly into training (80%) and testing (20%) for each class. This was followed
by data augmentation through various techniques, resulting in a total number of 912 OCT
images. The chosen model for the prediction was a modified ResNet-50 pre-trained on
ImageNet, which was compared to other known architectures, like AlexNet, VGG-16 and
GoogLeNet. The ResNet-50 model was trained with four datasets: (1) a set containing
the full OCT image with data augmentation (full w DA), (2) a set containing the full OCT
image without data augmentation (full w/o DA), (3) a set containing only the lesion from
the region of interest with data augmentation (lesion w DA) and (4) a set containing only
the lesion from the region of interest without data augmentation (lesion w/o DA). The
resulting AUC, accuracy, sensitivity and specificity are described in Table 3. When the
performance of the four CNN architectures mentioned before was compared on the full
w DA dataset, ResNet-50 achieved the highest AUC (0.81), followed by GoogLeNet and
VGG16 (0.75) and AlexNet (0.72).

Table 3. The performance of the modified ResNet-50 developed by Feng et al. [18] in predicting anti-
VEGF efficiency with four different datasets (Full w DA = full OCT image with data augmentation;
Full w/o DA = full OCT image without data augmentation; Lesion w DA = only the region of interest
with data augmentation; Lesion w/o DA = only the region of interest without data augmentation)
(AUC = area under the curve; DA = data augmentation; w = with; w/o = without).

AUC Accuracy Sensitivity Specificity

Full w DA 0.81 0.72 0.78 0.71
Full w/o DA 0.84 0.77 0.98 0.18
Lesion w DA 0.83 0.75 0.82 0.63

Lesion w/o DA 0.73 0.74 0.96 0.13
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Liu et al. [20] harnessed the power of GANs and used them to predict the short-
term response following intravitreal anti-VEGF treatment of nAMD. The dataset consisted
of patients treated at Peking Union Medical College Hospital from November 2018 to
June 2019. The GAN model was made up of two components: one that generated the
images (generative model) and another one that improved them (discriminative model).
Based on learning the corresponding 476 pre-therapeutic and post-therapeutic OCT images,
the GAN could synthesize a post-treatment OCT image for the 50 pre-therapeutic test
images showing the therapeutic effect. An advantage of this approach is that it eliminates
the need for labels, segmentation or clinical information, using solely the images as input
and generating other images as output. However, this is also a double-edged sword, as
their absence pushes us further away from explainability. In their experiments, the retina
specialists had a hard time distinguishing the real images from the synthetic ones, meaning
that they resembled each other in quality. The main aim of the study was to assess the
capacity of the post-therapeutic synthetic images to describe the macular status as either
dry or wet and the conversion from wet to dry. The authors defined a dry macula as
the absence of SRF and IRF on the OCT image, while the presence of either one defined
a wet macula. The prediction accuracy for macular status as either wet or dry was 0.85
(95% CI: 0.74 to 0.95; 84% for wet and 86% for dry status), with 0.84 (95% CI: 0.63 to 0.95)
sensitivity, 0.86 (95% CI: 0.63 to 0.96) specificity, 0.88 positive predictive value (PPV) and
0.82 negative predictive value (NPV). The prediction accuracy for wet-to-dry conversion
was 0.81 (95% CI: 0.69 to 0.93), with 0.83 (95% CI: 0.58 to 0.96) sensitivity, 0.79 (95% CI: 0.57
to 0.92) specificity, 0.75 PPV and 0.86 NPV.

Lee et al. [19] trained a conditional GAN (cGAN) to generate 1-month-post-loading
phase OCT B-scans in order to predict the presence of abnormal elements, such as IRF,
SRF, PED and subretinal hyperreflective material (SHRM). The cGAN was trained on
927 B-scans from 309 eyes of 298 nAMD patients treated with at least three anti-VEGF
injections (Ranibizumab and Aflibercept) at Konkuk University Medical Center between
2010 and 2019. Besides the OCT images obtained at baseline and 30 days (1 month) after
the loading phase, the dataset contained 732 images of both FA and indocyanine green
angiography (ICGA) acquired at 5 min post-dye injection. The model was evaluated
by comparing the lesions (IRF, SRF, PED and SHRM) present on the predicted cGAN
OCT images versus those present on the actual OCT images. Two clinicians and two
graders evaluated the presence of the aforementioned lesions on both the real and post-
therapeutic OCT images. An interesting finding was that the accuracy, specificity and
negative predictive value of the aforementioned elements improved when FA and ICGA
images were added to the input. The accuracy of predicting the evolution of lesions based
on OCT only as compared to using OCT + FA + ICG was as follows: IRF (89.6% and 92.6%),
SRF (77.0% and 80.7%), PED (77.0% and 80.7%) and SHRM (91.9% and 96.3%).

Zhao et al. [21] developed a DL model to predict the response in terms of BCVA
evolution after nAMD treatment with anti-VEGF therapy. The dataset used contained
4944 OCT images acquired with the Deep Range Imaging (DRI) OCT Triton device with the
follow-up mode from 206 eyes of 181 nAMD patients who were treated at Peking Union
Medical College Hospital between November 2018 and July 2020. For each OCT image,
BCVA in the Snellen format was recorded. Patients underwent the initiation phase with
three monthly anti-VEGF injections (Ranibizumab or Aflibercept) followed by the PRN
regimen. Based on BCVA evolution after anti-VEGF injections, patients were grouped as
responders (improvement of one Snellen line or more) and non-responders (reduction or
stabilization). The training set was built with 71 volume pairs from responders and 89 from
non-responders, the validation set with 10 from responders and 10 from non-responders
and the test set with 13 from responders and 13 from non-responders. Pre-processing steps
included cropping the region of interest (ROI), image alignment and data augmentation.
The framework consisted of two parts—training and inference. For the training phase, the
classifier together with the sensitive structure locator made a U-net architecture, where they
acted as an encoder and decoder. In this phase, the sensitive structure-guided network (SSG-
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Net) model used for prediction improved the capacity to classify patients as responders or
non-responders by paying attention to the structural differences between pre-injection and
post-injection images. The Squeeze-and-Excitation ResNet (SE-ResNet) blocks acted as the
encoder, connected by global average pooling and fully connected layers to output the result.
A sensitive structure locator acted as a decoder with a top-down architecture with lateral
connections and captured the variation tendencies between pre- and post-injection OCT
images. In the inference phase, the classifier used only the pre-treatment image for its final
prediction, classifying patients as responders and non-responders. The SSG-Net model’s
prediction was evaluated in contrast to other models in a machine–machine comparison and
to humans in a human–machine comparison. The machine–machine comparison evaluated
the performance of SSG-Net with SE-ResNet-50 in two scenarios: (1) SE-ResNet-50 with
only the pre-injection OCT image and (2) SE-ResNet-50 with the pre-injection OCT image
plus the post-injection synthesized OCT image. SSG-Net achieved 0.83 AUC vs. 0.74 for
SE-ResNet-50 in scenario two and 0.66 for SE-ResNet-50 in scenario one, 84.6% accuracy
vs. 73.1% and 65.4%, 0.692 sensitivity vs. 0.692 and 0.461 and specificity of 1 vs. 0.846
and 0.846, respectively. The four physicians’ performance evaluated by confusion matrices
yielded the following results: accuracy of 76.9%, 53.8%, 69.2% and 53.8%; sensitivity of
0.923, 0.538, 0.538 and 0.692; and specificity of 0.615, 0.538, 0.846 and 0.385.

3.4. Prediction of Conversion to nAMD and GA—Classic Machine Learning

Schmidt-Erfurth et al. [13] developed a complex ML model involving OCT biomarkers
alongside demographic and genetic features to predict the conversion from iAMD to
nAMD and GA in the following 2 years in fellow eyes of patients treated for nAMD. The
dataset contained imaging and clinical information from the 495 fellow untreated eyes of
495 patients enrolled in the HARBOR clinical trial. The moment of conversion to either
nAMD or GA appearing on longitudinal OCT images was manually decided by two graders.
In the automated image analysis step, 2D en face thickness maps were generated from
three retinal layers (ONL, retinal pigment epithelium (RPE) + IS/OS and space occupied by
drusen between the RPE and Bruch’s membrane), drusen + pseudodrusen and HRF. From
these 2D thickness maps, the authors automatically extracted the following biomarkers:
8 measurements derived from drusen, 2 from pseudodrusen, 15 from the three retinal layers
and 9 from the HRF. The mean values of the imaging biomarkers measured at baseline
and their changes during the four next follow-up visits, together with demographic (age,
sex), smoking and genetic (34 single-nucleotide polymorphisms (SNPs) associated with
AMD) status, served as input for a sparse Cox proportional hazards (CPH) model. Fed
with these features, the model output a hazard ratio (HR) that was used as the risk for
eye conversion. The model was evaluated in a 10-fold cross-validation. The 2 year AUC
for nAMD conversion prediction was 0.68 (with 0.46 specificity for 0.80 sensitivity) and
the AUC for GA conversion prediction was 0.80 (0.69 specificity for 0.80 sensitivity). The
revelation was that the model spotted different patterns for eyes converting to nAMD
versus those developing GA, thus reinforcing the idea that they have distinct pathways
of evolution. The most important features for nAMD conversion were drusen-centric
and included thickening of the RPE–drusen complex, increases in the drusen area, drusen-
centric HRF and thickening of the ONL in regions of HRF concentration. For GA conversion,
the most important features were retina-wide and were related to outer retinal thinning:
higher variability in the RPE + IS/OS thicknesses, decreases in the RPE + IS/OS minimal
thickness, decreases in the ONL thickness and increased HRF in the ONL layer. It is worth
mentioning that, for the non-imaging features, the genetic profiles did not show prognostic
value in predicting GA and nAMD conversion, and only age appeared to influence the
prognosis for GA development.

3.5. Prediction of Conversion to nAMD—Deep Learning

Russakoff et al. [22] compared the performance of two deep-learning CNNs, one called
AMDnet, which was trained from scratch, and the other being an already popular CNN
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image recognition model, VGG16 [32], which was fine tuned with transfer learning. The
dataset included 2-year longitudinal OCT images from 71 fellow eyes with early or iAMD
from 71 patients with nAMD in the contralateral eye treated with anti-VEGF at Moorfields
Eye Hospital. Each patient had three OCT images acquired at baseline and at the end of
each of the following 2 years. Both CNN models were compared with and without image
preprocessing in the task of correctly classifying the progressors from early and iAMD
to advanced AMD using only OCT imaging. For both models, the preprocessing step
significantly improved their performance, with AMDnet reaching an AUC of 0.89 on OCT
B-scans and 0.91 on OCT volumes (represented as the mean from all B-scans in the volume),
while VGG16 achieved 0.82 and 0.87, respectively. The authors concluded that accounting
for different axial resolutions resulting from different OCT devices’ spectrometers does
not improve the model’s performance. Also, small differences in follow-up lengths did
not seem to introduce significant bias in the results. Important information was revealed
from feature analysis, which showed certain OCT structures most likely to influence the
classifier’s prognosis. After performing an occlusion sensitivity analysis at the B-scan level,
pixels around the RPE seemed to have the greatest influence on the final score for those
who were not progressing. Meanwhile, for those progressing, pixels under the RPE or
involving the choroid seemed to be more important. The authors tried to compare the
model’s prediction with three retinal specialists, but they refused the task, even in the
setting of a research study, because of the lack of biomarkers to rely upon. The authors
thought that, behind its prediction, the model looked at these important OCT regions and
found specific patterns that pointed out pathological changes. As the observed regions did
not yet contain visible pathological elements, more subtle features were presumably being
identified, such as changes in textures.

Banerjee et al. [24] developed a hybrid sequential prediction model named “Deep
Sequence” using two-layer one-directional stacked stateful long short-term memory (LSTM)
units. This model uses quantitative spatiotemporal features automatically extracted from
longitudinal OCT images, demographic information (age, gender, race and smoking status)
and BCVA, which are fed to an RNN model. The features comprise 21 imaging features,
which describe the presence of drusen and their number, extent, density and relative
reflectivity. The RNN model then predicts the onset of an exudative event (nAMD) in eyes
with early or iAMD in different time spans, from 3 up to 21 months, using the previous
visit history. The training was carried out through 10-fold cross-validation, using 671 early
or iAMD fellow eyes from 671 nAMD patients undergoing anti-VEGF treatment within the
HARBOR clinical trial. This resulted in excellent prediction for 3 months, with an AUC of
0.96 ± 0.02, and good prediction for 6 months, with an AUC of 0.83 ± 0.04. The model’s
performance dropped for 12 months (0.77 ± 0.06) but recovered for 18 months (0.9 ± 0.06)
and 21 months (0.97 ± 0.02). The model’s generalizability was validated with an external
RWD dataset using 719 early or iAMD eyes from 507 patients visiting Bascom Palmer
Eye Institute between 2004 to 2015. It achieved high performance with an AUC = 0.82
for the 3-month short-term prediction but weaker prediction with increasing time frames:
6 months—0.77, 12 months—0.69, 18 months—0.65, 21 months—0.68. The performance
drop might have been due to the following reasons. There was a wide distributional shift
between the two datasets: at 21 months, the number of progressors in the HARBOR dataset
was higher at 41% than in the MIAMI dataset. This was linked to the fact that the patients
in the HARBOR trial already had a contralateral eye with nAMD, thus making them more
prone to nAMD in the fellow tested eye. Another aspect was the fact that smoking status
and ethnicity were not available in the MIAMI dataset and were thus considered missing
data. The model was also tested with different visit numbers and the authors observed that
the Deep Sequence model improved when the number of historic visits was increased.

Yim et al. [23] developed a deep learning prediction model built with two components
to predict the moment of conversion to nAMD within a 6-month window frame using
a single OCT scan. The study investigated patients with nAMD in one eye, and the
fellow eye was the one analyzed for the conversion. The first component was made up
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of a two-stage architecture that first applies retinal segmentation with the help of a 3D
U-Net; afterwards, with this information, a classification network predicts the risk of
conversion. The second component makes the same prediction using the raw OCT image
alone. The final prediction model is an ensemble of the two mentioned components. The
models were trained and tested on 2261 non-AMD fellow eyes of 2795 nAMD patients
who visited seven different sites of Moorfields Eye Hospital between 2012 and 2018, with
patient level split into a training and validation set (80% of the data) and a test set (20%).
The extracted features comprised tissue maps and volumes for 13 tissue classes (vitreous
and subhyaloid, posterior hyaloid, epiretinal membrane, neurosensory retina, IRF, SRF,
SRHM, HRF, RPE, drusenoid, serous and fibrovascular PED, choroid and outer layers)
and three artifacts (mirror, clipping and blink arterfacts). As the patients belonged to a
retrospective cohort, the authors used two different time points for conversion: (1) the
OCT imaging once patients started intravitreal anti-VEGF injections (“injection scan”) and
(2) the exact moment of conversion as detected by expert review of the consecutive OCT
images (“conversion scan”). The final model reached an AUC of 0.745 on the test set for the
OCT volume conversion scan and an AUC of 0.884 for the OCT volume injection scan. The
authors proposed two operating points for the model, one called conservative, where the
specificity was 90% and sensitivity 34%, and the other liberal, where sensitivity was 80%
and specificity 55%. With the conservative operating point, the false positives appeared
in only 9.6% of OCT scans versus 43.4% with the liberal operating point. The model was
compared to six human experts (three retina specialists and three optometrists). When
using a single OCT scan for predicting conversion, the system outperformed five experts
and matched one optometrist. When the human experts had additional OCT historic data,
fundus images and demographic and BCVA data, the model still had a higher performance
than five experts and matched one retinal specialist, even though it was still using only the
single OCT scan. The authors also looked at feature importance and the model’s sensitivity
substantially improved when the following extracted features were present: HRF, high
drusen volumes, PED.

3.6. Prediction of Conversion to GA—Deep Learning

Rivail et al. [25] trained a deep Siamese network in a self-supervised manner with
auxiliary tasks, such as predicting the intervals between successive OCTs. This proposed
task of estimating time intervals between pairs of images from the same patient was used
as a pretext, and the network was focused on learning temporally specific patterns that
could be later on used for disease prediction with the help of transfer learning. As this
model was trained in a self-supervised manner, it did not rely on annotations or regular
sampling intervals and, as such, it can be used with large sets of unlabeled longitudinal
data, removing the need for time-consuming manual tasks. The training dataset consisted
of 3308 OCT scans from 221 patients of 420 eyes with iAMD. The dataset was divided into
six fixed folds for cross-validation. As a preprocessing step, OCT images were aligned
using Bruch’s membrane, cropped and resampled. Using only the central OCT B-scan
from the oldest acquisition time point before conversion (only one visit), the deep Siamese
network reached AUCs of 0.753 ± 0.061, 0.784 ± 0.067 and 0.773 ± 0.074 in predicting the
conversion from iAMD to GA within 6, 12 and 18 months.

3.7. Prediction of GA Growth—Classic Machine Learning

Paving the way, Niu et al. [26] built an ML model that could forecast the future growth
of GA, indicating the direction and speed of the lesion’s spread. The study was based
on 38 GA eyes from 29 patients who visited Byers Eye Institute at Stanford University
and the features used were extracted automatically from 118 SD OCT scans acquired with
Cirrus OCT. The GA lesions from the longitudinal follow-up OCT series were aligned
using registration based on blood vessel projection images. The framework consisted of
automatic segmentation of the GA lesions from the OCT scans, followed by automatic
extraction of 19 quantitative features from each axial scan location. Among the 19 features,
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6 described the size and shape of the GA lesions, 3 defined drusen locations and height
and reticular pseudodrusen thickness obtained from segmentation and quantification,
1 described the increased minimum retinal intensity, 1 indicated the photoreceptor loss
map, 5 accounted for the axial thickness of different layers and the last 3 outlined the
mean axial reflectivity between retinal boundaries. These features were fed to a random
forest classifier using 100 decision trees to predict if a pixel in a topographic image would
develop GA or not at a given time. The model was evaluated in three different scenarios:
(1) predicting the GA growth at each patient’s first follow-up visit (using features from the
baseline GA and growth at the first follow-up visits for all other patients); (2) predicting
the time course for GA growth across all consecutive visits for each patient (using the
same features as in scenario one); and (3) predicting the time course for GA growth at each
patient’s second follow-up and subsequent visits (using features from the baseline GA and
growth at the first follow-up scan, but this time only from the same patient). The most
important features in predicting the location of GA growth turned out to be the regions
with photoreceptor loss, lower reflectivity in the ellipsoid zone and decreased thickness in
reticular pseudodrusen. The authors calculated the mean Dice index (DI) +/− SD for all
scenarios between the predicted and observed GA regions (shown in Table 4) for overall
GA lesions and for GA growth only: (1) scenario one—0.81 +/− 0.12 for overall GA lesions
and 0.72 +/− 0.18 for GA growth only; (2) scenario two—0.84 +/− 0.10 and 0.74 +/− 0.17;
(3) scenario three—0.87 +/− 0.06 and 0.72 +/− 0.22.

Table 4. The three different scenarios tested by Niu et al. [26] and performances predicting total and
growth-only GA regions. (DI = Dice index; SD = standard deviation).

GA Area Scenario One Scenario Two Scenario Three

Mean DI +/− SD

Total GA 0.81 +/− 0.12 0.84 +/− 0.10 0.87 +/− 0.06
Growth-only GA 0.72 +/− 0.18 0.74 +/− 0.17 0.72 +/− 0.22

3.8. Prediction of GA Growth—Deep Learning

Zhang et al. [27] approached the task of predicting the growth of GA differently by
using a bi-directional long short-term memory (BiLSTM) network with a 3D-UNet CNN
refinement. When compared with the previous paper by Niu et al. [26], the novelty came
from using two sequential follow-up visits instead of only one to predict the next visit and
from converting the different time intervals into time factors and integrating them in the
BiLSTM, which then permitted predicting the GA growth at a given time. The dataset
contained 22 GA eyes from 22 patients visiting Byers Eye Institute of Stanford University
and 3 GA eyes from 3 patients visiting Jiangsu Provincial People’s Hospital in China. As
a pre-processing step, layer segmentation, image registration and GA segmentation were
applied. The prediction results provided by the BiLSTM model for the three visits (baseline,
visit one—known visits—and visit two—speculated visits) and the simulated GA growth
maps during these three visits were fed to the 3D-UNet to output the final location of GA
growth. The paper described 10 different scenarios, which were compared to highlight
important aspects of the learning process. The first six scenarios, detailed in Table 5, looked
into whether the law of GA growth was common among the independent patients and
evaluated the impact of prior information volume on prediction accuracy. The DI was
higher for the patient-dependent scenarios, meaning that even though there was a common
pattern in the growth between different patients, the inherent patient specificity limited
the patient-independent test’s accuracy. This led to the conclusion that, in predicting
GA’s growth, it is more helpful to have similar prior information. When the follow-up
series was longer, the prediction accuracy improved, which showed that the network had
more powerful learning given more similar follow-ups. The seventh scenario tested the
importance of time factors. Leaving them out resulted in a decrease by 10% in the model’s
DI. The authors came to the conclusion that, using the time factors, the network learned
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the unitized growth rate and this helped in its optimization. In the eighth scenario, they
compared a CNN-based refinement strategy and a simple voting decision strategy. As
expected, the former outperformed in all cases except one where there was not enough
data for training. In the ninth scenario, they tested whether two sequential follow-up
visits outweighed one single follow-up visit. In line with our expectations, the former’s
prediction accuracy was higher. In the last scenario, they tried to estimate the model’s
generalization across different geographic regions (USA and China). They found that
their model’s limitation could have been due to two main reasons: first, the possibility of
imprecise pre-processing by the automated retinal layer and GA segmentation and the
automated image registration between follow-up visits; and, second, the limited amount of
data, even though augmentation steps were in place.

Table 5. The six different scenarios for GA growth prediction tested by Zhang et al. [27] and their
performances (DI = Dice index; CC = correlation coefficient).

Scenario Predicted GA Growth Training Data DI CC

1 All consecutive follow-up visits for each patient First two follow-up visits from all other
patients 0.86 0.83

2 All consecutive follow-up visits for each patient All consecutive follow-up visits from all other
patients 0.89 0.84

3 Third and subsequent follow-up visits for each
patient First two follow-up visits from the same patient 0.89 0.86

4 Last follow-up visit for each patient All prior, consecutive follow-up visits from the
same patient 0.92 0.88

5 Third and subsequent follow-up visits for all
patient First two follow-up visits from all patients 0.88 0.85

6 Last follow-up visit for all patients All prior, consecutive follow-up visits from all
patients 0.90 0.86

Gigon et al. [28] trained a DL model to predict future RPE and outer retina atrophy
(RORA) progression in GA patients using only OCT volumes in a time-continuous manner.
The model could provide an eye-specific risk map, which could reveal the regions more
susceptible to developing RORA. The data were collected from 129 eyes belonging to
119 patients with GA who visited the Jules Gonin Eye Hospital in Lausanne, Switzerland.
The longitudinal OCT images were acquired with the Heidelberg Spectralis device using
a 6 × 6 mm macular cube (49 or more B-scans) with follow-up mode. The dataset was
split into a training set with 109 eyes (99 patients) and a test set with 20 eyes (20 patients).
The latest definition of RORA was used for the assessment [33]. For ground-truth (GT)
training, the RORA regions were automatically segmented from each B-scan in the training
set using a DL model. The model used the 0.5 projected presence probability threshold to
create a binary en face RORA segmentation. Additionally, the retinal layers and drusen
were automatically segmented from all OCTs in the train and test set and transformed to en
face thickness maps, which were used as input for the atrophy progression algorithm. The
CNN algorithm relied on an encoder–decoder architecture built upon an EfficientNet-b3
model pre-trained on Imagenet. The model receives a 13-channel input (13 en face maps:
6 layer thickness maps with their 6 corresponding reflectance maps + 1 drusen height map)
and outputs a K of 5 channels, which can then be used as parameters in a time-based Taylor
series for each en face pixel. The time-based series then allows the progression prediction
of RORA segmentation at any given time point, visualized as an atrophy progression risk
map, which shows the time for RORA conversion for each pixel. From baseline OCT up
to 5 years, the time to conversion was noted as the earliest time point where the RORA
probability for an en face pixel exceeded 0.5. Two scenarios were considered: A—the
baseline visit was used as input for the model with RORA predictions for baseline and
future visits; B—the preceding visit was used as input for the model with RORA predictions
for the next available visit. By calculating for each pixel the earliest time point where the
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RORA probability prediction surpassed 0.5, an atrophy time-to-conversion en face risk
map was built with a color-coded time scale. The correlation coefficient (CC) for the RORA
progression rate between the manual annotations and the model’s prediction was 0.52. The
performance of the algorithm was compared to both manual- and automatic-segmentation
GT for each scenario. For both, the DIs were calculated considering total RORA and growth-
only RORA areas (highlighted in Table 6). The performance was also evaluated using the
square root of the RORA area error calculated for the en face view. When considering
manually segmented GT, for scenario A, the average for the total RORA DI ranged from 0.73
to 0.80, while for RORA growth area, it ranged from 0.46 to 0.72. The square root area error
had mean values ranging from 0.13 mm to 0.33 mm. For scenario B, the DI for total RORA
area had values ranging between 0.83 to 0.88, and for RORA growth area, they ranged from
0.44 to 0.64, with the mean square root area error between 0.16 mm and 0.21 mm. When
considering automatically segmented GT, for scenario A, the DI for the total RORA area
ranged between 0.74 and 0.85, the growth-only RORA area between 0.39 and 0.71 and the
mean square root area error between 0.20 mm and 0.35 mm. For scenario B, the DI for the
total RORA area ranged between 0.84 and 0.89, and for the growth-only RORA area, it was
between 0.35 and 0.62, while the mean square root area error was between 0.17 mm and
0.20 mm.

Table 6. The two different scenarios for RORA growth prediction tested by Gigon et al. [28] and their
performances as compared to manually and automatically segmented GT (RORA = retinal pigment
epithelium and outer retina atrophy; DI = Dice index; GT = ground truth).

RORA Area Manually Segmented GT Automatically Segmented GT

Mean DI Mean DI

Scenario A Scenario B Scenario A Scenario B

Total RORA 0.73 to 0.80 0.83 to 0.88 0.74 to 0.81 0.84 to 0.89

Growth-only
RORA 0.46 to 0.72 0.44 to 0.64 0.39 to 0.71 0.35 to 0.62

3.9. Prediction of VA Outcome—Classic Machine Learning

Schmidt-Erfurth et al. [29] developed the first model able to predict the VA outcome
at 12 months. The model was applied to 614 nAMD eyes from 614 patients participating
in the HARBOR trial after they had 12 months of treatment with the anti-VEGF agent
Ranibizumab in different doses and regimens. First, SD-OCT volumes underwent motion
artifact removal and then were analyzed in a fully automated manner with algorithms
based on graph theory combined with CNNs that segmented the retinal layers and the
OCT lesions associated with CNV, such as IRF, SRF and PED. The segmentation of the total
retinal thickness together with the aforementioned lesions resulted in four morphologic
maps that were further spatially localized in nine zones with the ETDRS macular grid. After
segmentation, these extracted retinal biomarkers and the BCVA from baseline and months
one, two and three, as well as the anti-VEGF dose and treatment regimen, were used to
predict the BCVA at 12 months using random forest regression. The model improved as the
number of visits used for prediction increased, with the highest prediction accuracy being
at 3 months (from baseline to the third month) with an R2 = 0.70 and root mean square
error (RMSE) of 8.6 letters. The authors also measured the structure–function correlation at
baseline and observed that, among the morphological features, IRF horizontal extension in
the 1 mm and 3 mm foveal area + volume in the central 1 mm played the most important
roles in BCVA, followed by total retinal thickness. When using the baseline visit to predict
BCVA at 12 months, the most important feature was BCVA at baseline, followed by IRF
area and volume. Interestingly the importance of the BCVA as a feature increased as the
number of visits increased, with BCVA at the third month leading the way, while quite
the opposite was shown by the morphological features, with their importance starting to
decline. The authors pointed out that further studies taking into account the ellipsoid zone
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and the external limiting membrane using automatic segmentation strategies are needed
because of their strong connections with BCVA.

Rohm et al. [31] developed a similar model for predicting BCVA at 3 and 12 months
after the initiation phase with three anti-VEGF injections. The prediction relied on five
different ML algorithms (AdaBoost.R2, gradient boosting, random forests, extremely ran-
domized trees and Lasso) using 41 features extracted from electronic medical data contained
in a data warehouse and 124 spatially resolved measurements obtained from the OCT de-
vice’s segmentation software (in the extensive markup language (XML) file associated with
the OCT). Besides this, features from different time frames (3 or 12 months) were aggre-
gated along with the measurements, such as mean, variance, minimum and maximum, that
were available. The dataset included nAMD patients treated with anti-VEGF at Ludwig
Maximilian University, Munich, Germany. The paper included 738 eyes from 653 patients
for the 3-month forecast and only 508 eyes from 456 patients for the 12-month forecast
because of insufficient long-term data. All of the five models mentioned earlier were evalu-
ated in a 10-fold cross-validation. The models’ performances with this retrospective RWD
dataset yielded the following errors between the predicted VA and the ground truth for
the 3-month forecast (VA expressed as the logarithm of the minimum angle of resolution
(logMAR), with the equivalent in ETDRS letters in parentheses): 0.11 to 0.18 logMAR (5.5
to 9 letters) MAE and 0.14 to 0.20 logMAR (7 to 10 letters) RMSE. For the 12-month forecast,
they obtained the following: 0.16 to 0.22 logMAR (8 to 11 letters) MAE and 0.20 to 0.26
logMAR (10 to 13 letters) RMSE. The model’s RMSE increased when adding information
from multiple visits, with the lowest RMSE of 0.20 logMAR (10 letters) being obtained
when the baseline + visits one, two and three were used, while the MAE did not improve
with additional visits. In terms of feature importance, previous BCVA was shown to have
a great influence on the models’ predictions. Interestingly, among the five different ML
algorithms, the authors obtained the best results using the Lasso protocol.

3.10. Prediction of VA Outcome—Deep Learning

Kawczynski et al. [30] developed DL models to predict the BCVA of nAMD patients
using data from the phase-three HARBOR clinical trial totaling 1097 patients with treatment-
naive subfoveal CNV secondary to nAMD. In the trial, one eye per patient was randomized
in a 1:1:1:1 fashion to Ranibizumab with the following scenarios: (1) 0.5 mg monthly, (2)
0.5 mg PRN, (3) 2.0 mg monthly and (4) 2.0 mg PRN. Patients in the PRN groups were
given three monthly injections and afterwards treated only if there was a sign of disease
activity on the OCT images or if the BCVA dropped ≥ five letters from the previous visit.
The BCVA results were measured with ETDRS charts and OCT images were captured
with Cirrus HD-OCT (Carl Zeiss Meditec, Dublin, CA, USA) monthly for 2 years. The
final dataset containing 1071 patients was split at the patient level into a training set with
924 patients, further divided in five groups for cross-validation, and an evaluation set
with 147 randomly selected patients. The models were evaluated based on a ResNet-50 v2
CNN architecture in four scenarios: predicting the exact BCVA in ETDRS letters from OCT
images (1) at the current visit and (2) at 12 months from the baseline OCT and predicting
the BCVA under a certain threshold (<69 letters (Snellen equivalent, 20/40), <59 letters
(Snellen equivalent, 20/60) or ≤38 letters (Snellen equivalent, 20/200)) from OCT images
obtained (3) at the current visit and (4) at 12 months from the baseline OCT. A detailed
description of the results is shown in Table 7. The prediction of BCVA at the current visit
had R2 = 0.67 (RMSE = 8.60 letters) for study eyes and R2 = 0.84 (RMSE = 9.01 letters) for
fellow eyes, with the best model achieving AUCs of 0.92 and 0.98 for study eyes and fellow
eyes, respectively. Using the baseline OCT, the model’s BCVA predictions at 12 months
had R2 = 0.33 (RMSE = 14.16 letters) for study eyes and R2 = 0.75 (RMSE = 11.27 letters)
for fellow eyes. For the classification of BCVA under certain thresholds, the best model
achieved AUCs of 0.84 and 0.96 for study eyes and fellow eyes, respectively. The authors
concluded that the BCVA prediction task for the study eyes was more difficult since the
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inclusion criteria range for the BCVA at inclusion was restricted compared to the higher
variability in fellow eyes.

Table 7. The performance of the ResNet-50 v2 CNN developed by Kawczynski et al. [30] in predicting
BCVA both at the CCV visit and at 12 months and under a certain threshold at the CCV and at
12 months (BCVA = best corrected visual acuity; CCV = concurrent visit; R2 = R squared; RMSE = root
mean squared error; AUC = area under the curve).

Predicted <69 Letters <59 Letters <38 Letters

BCVA at CCV
Study eyes R2 = 0.67 (RMSE = 8.60) AUC = 0.89 AUC = 0.92 AUC = 0.92
Fellow eyes R2 = 0.84 (RMSE = 9.01) AUC = 0.93 AUC = 0.97 AUC = 0.98

BCVA at 12 m
Study eyes R2 = 0.33 (RMSE = 14.16) AUC = 0.80 AUC = 0.84 AUC = 0.77
Fellow eyes R2 = 0.75 (RMSE = 11.27) AUC = 0.92 AUC = 0.93 AUC = 0.96

4. Discussion

We are living in extraordinary times, with medicine, technology and artificial intelli-
gence evolving at an accelerated pace. The use of artificial intelligence has spread in all
areas of our life with an emphasis on personalizing our experiences. We can, therefore,
expect to see this shift towards personalizing experiences in an essential domain such
as healthcare, where physicians strive to tailor the management of their patients to fit
their individual needs. As such, we can see the relevance of conducting a thorough and
exhaustive systematic review of this topic at this moment in time with the emergence of
cutting-edge research in personalized AI AMD management. When compared to other
systematic reviews on similar topics (Table 8), the numbers of records identified and studies
finally included in the current review further strengthen its relevance.

Table 8. The number of records identified and studies included in the current systematic review and
similar reviews (* = records identified after duplicate removal; ** = records identified after duplicate
removal, records marked as ineligible by automation tools and records removed for other reasons).

Article Records Identified Studies Included

The current systematic review 1404 * 19

Artificial intelligence for the detection of age-related
macular degeneration in color fundus photographs: A

systematic review and meta-analysis [34]
632 * 19

Diagnostic accuracy of current machine learning classifiers
for age-related macular degeneration: A systematic review

and meta-analysis [35]
423 * 14

Deep learning for detection of age-related macular
degeneration: A systematic review and meta-analysis of

diagnostic test accuracy studies [36]
359 ** 18

4.1. Prediction of Treatment Requirement

Dataset and prediction task: Treatment requirement models were trained on datasets
extracted either from clinical trials or from clinical practice. Table 9 includes details about
the number of considered patients and their provenance. Except for Pfau [16], all the
other datasets had cohorts in the order of hundreds of patients. The prediction task for
the treatment requirement was framed as a regression for the number of injections or as a
classification in low/medium/high classes for treatment demand or for the average interval
in weeks between treatments. The prediction used data available at the beginning of the
treatment, generally the first three visits. The condition for high-demand treatment during
one year was ≥16 injections for Bogunovic [14] and Romo Bucheli [15], ≥10 injections
for Pfau [16] and a ≤5-week interval between injections for Gallardo [17]. Low-demand
treatment meant ≤5 injections per year for Bogunovic [14], Romo Bucheli [15] and Pfau [16]
and a ≥10-week interval for Gallardo [17].



Diagnostics 2023, 13, 2464 19 of 35

Table 9. Machine learning and deep learning models for treatment requirements and their datasets.

Authors Date Model Dataset

Machine Learning

Bogunovic et al. [14] June 2017 Random forest classifier
317 eyes from 317 nAMD patients undergoing
PRN treatment within the HARBOR clinical

trial

Pfau et al. [16] June 2021 NGBoost

40 eyes from 37 nAMD patients visiting the
Department of Ophthalmology and Visual

Sciences, University of Illinois, Chicago, and
59 nAMD eyes from 59 patients visiting the
University Eye Hospital Bonn, University of

Bonn, Germany

Gallardo et al. [17] July 2021 Random forest classifier
377 eyes from 340 nAMD patients undergoing
T&E treatment at the University Hospital of

Bern

Deep Learning

Romo Bucheli et al. [15] June 2020 DenseNet + RNN trained
end to end

350 nAMD patients undergoing PRN
treatment

Features and algorithms: Automatically extracted biomarkers across the nine ETDRS
regions were present in all the four studies, being the main features for the first three and an
alternative approach for the last one. The techniques used to extract them varied from graph
theory segmentation to CNN-based semantic segmentation. Classical machine learning
algorithms were applied to the extracted features in the first three studies, while an end-to-
end deep learning approach was introduced by Romo Bucheli et al. [15], which worked
at the level of OCT volumes reduced to 2D representations after several preprocessing
steps. The performance of the prediction was greatly improved in the end-to-end approach,
since the learning algorithm had access to the images and not only the extracted features.
Integrating images in an end-to-end process means that the model is “free” to use any
kind of biomarker, known or unknown, as long as the neural networks are able to capture
them. The disadvantages are the black box aspect and the increasing data requirement with
the increase in the complexity of the neural network (NN) architecture. The first can be
mitigated with the occlusion of sensitivity heatmaps and the second through the reduction
of the 3D volumes to 2D representations.

Evolution aspect: Even though RNNs were used only by Romo Bucheli et al. [15],
the differential features between subsequent visits were also present in the work by Gal-
lardo [17] and Bogunovic [14].

Quality of treatment decision: Predictive models for the treatment requirements depend
on the quality of the decisions taken by the clinicians based on the followed protocol.
Furthermore, the treatment process might also be affected by patient-dependent factors
in the case of RWD patients. Out of the studied articles, only the study by Romo Bucheli
et al. [15] used a curated dataset. A deep learning-based automated quantification fluid
algorithm with an AUC of 0.93 was used to detect questionable non-injection events, and
patients who showed more than three disagreements between the clinical decision and the
decision based on the automatically detected fluid in the entire 2-year treatment period
were excluded.

Qualitative evaluation/performance: The most common performance metrics used for
evaluation of the treatment requirement prediction were the AUC, accuracy and MAE (see
Table 10). The values for the AUC ranged from 0.7 to 0.85, meaning that the task was not
trivial. The high-demand class tended to be better predicted. In some cases, the decrease
in prediction quality when using only the first visit compared to using the baseline + two
visits was not significant.
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Table 10. Machine learning and deep learning models for treatment requirements with their predic-
tion tasks, scenarios and results (Acc. = accuracy; inj. = injections; RCT = randomized clinical trial;
RWD = real-world data; PRN = pro re nata; T&E = treat and extend; Tx = treatment; BL = baseline;
V = visits; N/A = not available).

Author and Prediction Task Time Frame Anti-VEGF Protocol Model and Scenario Number of
Visits AUC Acc.

Machine Learning

Bogunovic et al. [14]—low and high
anti-VEGF inj. requirements in RCT
(no. of inj.)

2 years PRN Low-Tx (≤5 inj.) group vs. others BL + 2 V 0.7 N/A

High-Tx group (≥16 inj.) vs. others BL + 2 V 0.77 N/A
Pfau et al. [16]—low and high
anti-VEGF inj. requirements in RWD
(no. of inj.)

1 year PRN and
T&E

Low-Tx group (≤4 inj.) BL 0.68 N/A

High-Tx group (≥10 inj.) BL 0.69 N/A
Gallardo et al. [17]—low and high
anti-VEGF inj. requirements in RWD
(interval between inj.)

1 year T&E Low-Tx group (≥10 weeks) vs. others BL + 2 V 0.79 N/A
High-Tx group (≤5) vs. others BL + 2 V 0.79 N/A

Deep Learning

Romo Bucheli et al. [15]—Low,
medium and high anti-VEGF inj.
requirements (no. of inj.)

2 year PRN

Low-Tx group (≤5) BL + 2 V N/A 0.72
Intermediate-Tx group (>5 and <16) BL + 2 V N/A 0.65

High-Tx group (≥16) BL + 2 V N/A 0.9
Low-Tx group (≤5) vs. others BL + 2 V 0.85 N/A

High-Tx group (≥16) vs. others BL + 2 V 0.81 N/A

Challenging factors came from the unknown aspects of the disease, differences in
treatment protocols that could result in imperfect training data, imbalanced datasets (the
number of patients with moderate demand was significantly higher than the number with
low/high demand) and errors in extracting the used features (Table 11 highlights the
potential biases for studies predicting the treatment requirements).

Table 11. Potential biases for studies predicting treatment requirements (green = lower risk for bias,
red = higher risk for bias, yellow = unknown/unclear risk for bias; a sample under 100 patients
was considered small; * = dataset was curated for disagreements regarding treatment decision;
RWD = real-world data; RCT = randomized clinical trial; RCLP = real-life clinical practice).

Authors Small Sample Size Data Source External Validation Automatically Extracted
Features

Quality of Treatment Decision

Bogunovic et al. [14] No RCT No Yes RCT protocol
Pfau et al. [16] Yes RWD No Yes RCLP protocol

Gallardo et al. [17] No RWD No Yes RCLP protocol
Romo Bucheli et al. [15] No Unknown No Yes RCLP protocol *

Most important features: Features extracted from the central area were consistently very
important for all the models. The common conclusion in the four studied papers was that
SRF, IRF and retinal thickness individual measurements, together with their dynamics,
played a very important role in the identification of treatment requirements. There was
no consensus regarding the most important visit: in the work by Bogunovic [14], the
baseline features were less important, while in the work by Gallardo [17], for the low-
and moderate-demand classes, the most important features were the ones extracted at the
baseline visit. We need to underline that the tools for the extraction of the features strongly
evolved between the publication times for Bogunovic [14] vs. Gallardo [17].

The fact that the low-demand class was better identified than the high-demand class
only in the end-to-end approach was related, from the authors’ perspective, to the fact that
traditional biomarkers related to retinal fluid might be complemented by automatically
derived features for patients with low-demand treatment.

4.2. Prediction of Treatment Efficacy

Dataset and prediction task: Treatment efficacy models mainly used RWD datasets, with
three datasets belonging to hospitals from China and only one dataset belonging to a
hospital from South Korea. Table 12 contains details regarding the number of patients
included and their provenance. The size of the datasets ranged from 206 to 526 patients. The
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prediction task for Feng et al. [18] and Zhao et al. [21] was framed as a classification task,
while for Liu et al. [20] and Lee et al. [19], it was framed as a generative task evaluated with
a classification task. Feng’s model [18] was asked to classify the pre-therapeutic images
based on the clinicians’ judgment of efficacy. Liu et al. [20] tested the GAN-generated
post-therapeutic image’s capacity for the classification of the macular appearance (wet/dry
or if it had transformed from wet to dry). Lee et al. [19] also used a post-therapeutic
GAN-generated image and assessed its capacity to predict the presence of macular lesions
(IRF, SRF, SHRM and PED). Zhao et al. [21] tested the model’s ability to use pre-therapeutic
images in order to classify patients as responders and non-responders based on the change
in BCVA. All models used OCT scans and all of them used the pre- and post-therapeutic
images, except for Feng et al. [18], who used only the pre-therapeutic images. The input
and prediction tasks are displayed in Table 13.

Table 12. Deep learning models for predicting nAMD anti-VEGF treatment efficacy and their datasets
(CNV = choroidal neovascularization; CME = cystoid macular edema).

Authors Date Model Dataset

Feng et al. [18] August 2020 ResNet-50
228 patients with CNV, CME or both treated with anti-VEGF at

Second Affiliated Hospital of Xi’an Jiaotong University
between 2017 and 2019

Liu et al. [20] March 2020 pix2pixHD
GAN

526 OCT images from nAMD patients treated with anti-VEGF
at Peking Union Medical College Hospital between 2018 and

2019

Lee et al. [19] March 2021 cGAN 309 eyes of 298 nAMD patients treated with anti-VEGF at
Konkuk University Medical Center between 2010 and 2019

Zhao et al. [21] June 2021 SSG-Net 206 eyes of 181 nAMD patients treated with anti-VEGF at
Peking Union Medical College Hospital between 2018 and 2020

Table 13. The inputs and learning tasks for the considered ML and DL models.

Study Input Learning Task

Machine learning—Prediction of treatment requirements

Bogunovic et al. [14]
Quantitative spatiotemporal features extracted from OCT
images (at baseline and months one and two) + BCVA +
demographic features + FA pattern type + smoking status

Low and high anti-VEGF injection requirements during
2-year PRN schedule in RCT

Gallardo et al. [17]
Quantitative spatiotemporal features extracted from OCT

(at baseline and months one and two) + demographic
features

Low and high anti-VEGF injection requirements during
1-year T&E schedule in RWCP

Pfau et al. [16] Quantitative spatiotemporal features extracted from OCT
at baseline

Treatment frequency during 1 year and low and high
anti-VEGF injection requirements during 1-year PRN and

T&E schedule in RWCP

Deep learning—Prediction of treatment requirements

Romo Bucheli et al. [15] OCT volumes (at baseline and months one and two) Low, medium and high anti-VEGF injection requirements
during 2-year PRN schedule

Deep learning—Prediction of treatment efficacy

Feng et al. [18] Two-dimensional (2D) pre-therapeutic OCT image (full
OCT image/lesion region)

Efficacy of anti-VEGF injection for CNV, CME or both at
21 days (3 weeks)

Liu et al. [20] Two-dimensional (2D) pre- and post-therapeutic OCT
image

Post-therapeutic generated image’s capacity to predict
the macular status as either wet or dry and macular

wet-to-dry conversion after anti-VEGF

Lee et al. [19] Two-dimensional (2D) pre- and post-therapeutic OCT
image and FA and ICGA image

Post-therapeutic generated image’s capacity to predict
presence of IRF, SRF, PED and SHRM 30 days after

anti-VEGF loading phase

Zhao et al. [21] Two-dimensional (2D) pre- and post-therapeutic OCT
image

Efficacy of anti-VEGF injection for post-treatment BCVA
at approx. 4 weeks
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Table 13. Cont.

Study Input Learning Task

Machine learning—Prediction of conversion to late exudative AMD

Schmidt-Erfurth et al. [13]

Quantitative spatiotemporal features extracted from OCT
(at baseline and months one, two, three and four) +
demographic features + smoking status + genetic

features (SNPs)

Risk for conversion from iAMD to nAMD and GA in the
following 2 years

Deep learning—Prediction of conversion to late exudative AMD

Russakoff et al. [22] OCT B-scans Risk for conversion from early or iAMD to nAMD in the
following 2 years

Banerjee et al. [24] Quantitative spatiotemporal features extracted from OCT
+ age + gender + race + smoking status + VA

Risk for conversion from early or iAMD to nAMD in the
following 3, 6, 9, 12, 15, 18 and 21 months

Quantitative spatiotemporal features extracted from OCT
+ age + gender + VA

Risk for conversion from early or iAMD to nAMD in the
following 3, 6, 9, 12, 15, 18 and 21 months

Yim et al. [23] Three-dimensional (3D) raw OCT image + 3D
one-hot-encoded OCT segmentation map

Risk for conversion from non-nAMD to nAMD in the
following 6 months

Machine learning—Prediction of conversion to GA

Schmidt-Erfurth et al. [13]
Quantitative spatiotemporal features extracted from OCT

(at baseline and months one, two, three and four) +
demographic features + smoking status + genetic (SNPs)

Risk for conversion from iAMD to nAMD and GA in the
following 2 years

Deep learning—Prediction of conversion to GA

Rivail et al. [25] OCT B-scans Risk for conversion from iAMD to GA in the following 6,
12 and 18 months

Machine learning—Prediction of GA growth

Niu et al. [26]
Quantitative spatiotemporal features extracted from OCT

at baseline and first follow-up visit in three different
scenarios

Future GA growth regions in three different scenarios
(see text for details)

Deep learning—Prediction of GA growth

Zhang et al. [27] OCT volumes + time factors at baseline and first two
sequential follow-up visits Future GA growth regions in six different scenarios

Gigon et al. [28]

Thirteen en-face maps: six layer-thickness maps with
their six corresponding reflectance maps + one drusen
height map (scenario A: from baseline OCT; scenario B:

from preceding OCT)

Future RORA growth regions (scenario A: from baseline
to future visits; scenario B: from preceding to next visit)

Machine learning—Prediction of VA outcome

Schmidt-Erfurth et al. [29]
Quantitative spatiotemporal features extracted from OCT
(at baseline and months one, two and three) + BCVA +

anti-VEGF dose and regimen
BCVA at 12 months

Rohm et al. [31]
Quantitative spatiotemporal features extracted from OCT
XML file (at baseline and months one, two and three) +

BCVA + 40 clinical features from EMR
BCVA at 3 and 12 months

Deep learning—Prediction of VA outcome

Kawczynski et al. [30] SD-OCT volumes
BCVA at current visit and at 12 months; BCVA <
threshold (69, 59, 38 letters) at current visit and at

12 months

Features and algorithms: Since all models employed DL methods, they received 2D
OCT scans as input from only one visit. Feng et al. [18] used ResNet-50, Liu et al. [20]
used a pix2pixHD GAN, Lee et al. [19] used a cGAN and Zhao et al. [21] used SSG-Net.
Feng’s ResNet-50 [18] was tested using either the full OCT image or only the cropped
lesion region, and a higher performance was observed when the entire image was used,
therefore suggesting the necessity to extend the research for biomarkers beyond the already
well-known features. The data augmentation did not necessarily improve the overall
performance of the model but created a more balanced dataset, as seen in the increased
balance between sensitivity and specificity outlined in Table 14. Relying only on OCT scans
for prediction is beneficial when large amounts of data without annotations are available,
with experts in the field using the power of unsupervised and self-supervised OCT learning
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as a method for biomarker discovery [37,38]. However, this approach pushes us away
from explainability. Among the four articles included, only Zhao et al.’s [21] used class
activation mapping as a method to visualize the regions with more impact on the SSG-Net’s
prediction. For differentiating between responders and non-responders, the color-coded
heatmap for SSG-Net showed that it took into greater consideration regions associated
with visual changes, such as IRF, SRF, PED and even epiretinal membrane, compared to
ResNet-50 (in the machine–machine comparison employed by Zhao et al. [21]), which
focused its attention more on the macular area and ignored the SRF.

Table 14. Deep learning models’ prediction tasks, scenarios and performances for nAMD anti-VEGF
treatment efficacy (AUC = area under the curve; Acc. = accuracy; Se. = sensitivity; Sp. = specificity;
PPV = positive predictive value; NPV = negative predictive value; CNV = choroidal neovasculariza-
tion; CME = cystoid macular edema; Full w DA = full OCT image with data augmentation; Full w/o
DA = full OCT image without data augmentation; Lesion w DA = only the region of interest with
data augmentation; Lesion w/o DA = only the region of interest without data augmentation; IRF = in-
traretinal fluid; SRF = subretinal fluid; PED = pigment epithelium detachment; SHRM = sub-retinal
hyperreflective material).

Authors and Prediction Task Scenarios AUC Acc. Se. Sp. PPV NPV

Feng et al. [18]—efficacy of anti-VEGF
injection for CNV, CME or both at 21 days
(3 weeks)

Full w DA 0.81 0.72 0.78 0.71 N/A N/A
Full w/o DA 0.84 0.77 0.98 0.18 N/A N/A
Lesion w DA 0.83 0.75 0.82 0.63 N/A N/A

Lesion w/o DA 0.73 0.74 0.96 0.13 N/A N/A

Liu et al. [20]—post-therapeutically
generated image’s capacity to predict the
macular status as either wet or dry and
macular wet-to-dry conversion after
anti-VEGF

Macular status
(wet/dry)

N/A 0.85 0.84 0.86 0.88 0.82

Wet-to-dry
conversion

N/A 0.81 0.83 0.79 0.75 0.86

Lee et al. [19]—post-therapeutically
generated image’s capacity to predict the
presence of IRF, SRF, PED and SHRM 30 days
after anti-VEGF loading phase

IRF (OCT only) N/A 89.6 33.3 95.1 40.0 93.6
IRF (OCT + FA +

ICGA)
N/A 92.6 33.3 98.4 66.7 93.8

SRF (OCT only) N/A 77.0 21.2 95.1 58.3 78.9
SRF (OCT + FA +

ICGA)
N/A 80.7 24.2 99.0 88.9 80.2

PED (OCT only) N/A 77.0 70.4 94.6 97.2 54.7
PED (OCT + FA +

ICGA)
N/A 80.7 74.5 97.3 98.7 59.0

SHRM (OCT only) N/A 91.9 76.5 94.1 65.0 96.5
SHRM (OCT + FA +

ICGA)
N/A 96.3 88.2 97.5 83.3 98.3

Zhao et al. [21]—efficacy of anti-VEGF
injection on post treatment BCVA at approx.
28 days by classyifing responders and
non-responders

Responders/non-
responders

0.83 84.6 0.692 1 N/A N/A

Various interpretations for treatment efficacy: The performance of these models in pre-
dicting treatment efficacy was closely connected to the quality of the decisions taken by
clinicians in considering the anti-VEGF treatment as effective or the post-therapeutic gener-
ated image as appropriate. Even though the efficacy was evaluated in different ways, all
authors except Feng et al. [18] provided explanations regarding their decisions (Table 15
presents the potential biases for studies predicting the treatment efficacy). The pix2pixHD
GAN used the generated post-anti-VEGF therapeutic image to predict the macular status
as being either wet or dry and if the conversion from wet-to-dry had occurred. The authors
appreciated the prediction of the macular status as being dry (without IRF or SRF) or
wet (with IRF or SRF). The cGAN used the generated post-anti-VEGF therapeutic image
to predict the presence of IRF, SRF, PED and SHRM 30 days after patients finished their
anti-VEGF loading phase. The presence of the lesions in both real and generated post-
therapeutic images was graded by two clinicians and two graders. SSG-Net predicted the
effectiveness of the anti-VEGF treatment based on the patient’s post-therapeutic BCVA
and classified patients as responders (≥1 Snellen line improvement) and non-responders
(stabilization or decrease).
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Qualitative evaluation/performance: As this was considered a classification task, models
were evaluated using the AUC, accuracy, sensitivity, specificity, positive predictive value
(PPV) and negative predictive value (NPV). It is a complicated task to compare the models’
performances since their prediction tasks and efficiency decisions varied; however, based on
accuracy, it seems that, overall, the GAN had higher performances. Since all articles except
Lee et al.’s [19] used only OCT images, the addition of FA and ICGA showed improvements
in the cGAN’s ability to learn the differences between pre- and post-therapeutic images
(higher accuracy for all lesions). Finally, the ResNet-50, pix2pixHD GAN and cGAN models
learned the OCT structural outcome after anti-VEGF treatment, while SSG-Net learned the
OCT structure–function correlation.

Table 15. Potential biases for studies predicting treatment efficacy (green = lower risk for bias,
red = higher risk for bias, yellow = unknown/unclear risk for bias; a sample under 100 patients
was considered small; RWD = real-world data; RCT = randomized clinical trial; RCLP = real-life
clinical practice).

Authors Small Sample Size Data Source External Validation Automatically Extracted
Features

Quality of Efficacy
Interpretation

Feng et al. [18] No RWD No N/A Unknown
Liu et al. [20]. No RWD No N/A RLCP OCT biomarkers
Lee et al. [19] No RWD No N/A RLCP OCT biomarkers

Zhao et al. [21] No RWD No N/A RLCP BCVA

4.3. Prediction of Conversion to nAMD

Dataset and prediction task: In predicting conversion from non-nAMD and early or iAMD
to nAMD, both ML and DL models were employed. These models were trained on datasets
extracted either from a clinical trial, such as HARBOR (Schmidt-Erfurth et al. [13] and
Banerjee et al. [24]), or from a clinical practice: Moorfields Eye Hospital (Russakoff et al. [22],
Yim et al. [23]) or Bascom Palmer Eye Institute (Banerjee et al. [24]). Datasets consisted
of non-nAMD or early or iAMD fellow eyes of nAMD patients: 71 (Russakoff et al. [22]),
495 (Schmidt-Erfurth et al. [13], 671 (Banerjee et al. [24]) and 2261 eyes (Yim et al. [23]). A
comparative view of the different datasets can be seen in Table 16. The task was to predict the
risk of conversion from early or iAMD to nAMD (at 24 months (Russakoff et al. [22]) or (at 3,
6, 9, 12, 15, 18 and 21 months (Banerjee et al. [24])), the risk of conversion from iAMD to
nAMD (at 24 months (Schmidt-Erfurth et al. [13] or the risk of conversion from non-nAMD
to nAMD (at 6 months (Yim et al. [23])).

Table 16. Machine learning and deep learning models for predicting conversion to nAMD and the
datasets used for prediction.

Authors Date Model Dataset

Machine Learning

Schmidt-Erfurth
et al. [13]

July 2018 Cox proportional hazard
495 iAMD fellow eyes of 495 nAMD patients
undergoing anti-VEGF treatment within the

HARBOR clinical trial

Deep Learning

Russakoff et al. [22] February 2019 AMDnet and VGG16
71 early or iAMD fellow eyes of 71 nAMD

patients undergoing anti-VEGF treatment at
Moorfields Eye Hospital

Banerjee et al. [24] September 2020

Deep Sequence LSTM
671 early or iAMD fellow eyes from

671 nAMD patients undergoing anti-VEGF
treatment with the HARBOR clinical trial

Deep Sequence LSTM
719 early or iAMD eyes from 507 patients

visiting Bascom Palmer Eye Institute
(MIAMI) between 2004 to 2015

Yim et al. [23] May 2020 Ensemble DL model

2261 non-nAMD fellow eyes from
2795 nAMD patients visiting seven sites of

Moorfields Eye Hospital between 2012
and 2017
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Features and algorithms: Both ML and DL models were used in predicting the conversion
from non-AMD or early or iAMD to nAMD. Schmidt-Erfurth [13] used a sparse CPH model,
while the others used DL models: AMDnet and VGG16 were tested by Russakoff [22],
Deep Sequence LSTM by Banerjee [24] and an ensemble DL model by Yim [23]. The
models were fed with either extracted OCT features or OCT scans, with a few variations in
terms of supplementary features and the number of visits (detailed in Table 13). Schmidt-
Erfurth et al. [13] added, alongside quantitative spatiotemporal features extracted from OCT
images, demographic features, smoking status and genetic data (SNPs). Russakoff et al.
[22] used only OCT B-scans. Banerjee et al. [24] used quantitative spatiotemporal features
extracted from OCT images, age, gender, race, smoking status and BCVA. Yim’s model [23]
was fed with 3D raw OCT images + 3D one-hot-encoded OCT segmentation maps. The
numbers of follow-up visits used by the models were different: baseline + four visits for the
sparse CPH model; baseline for AMDnet and VGG16; total visits available for 3, 6, 9, 12, 15,
18 and 21 months and baseline + four visits for 18 months for the Deep Sequence model; and
one visit for the Ensemble DL model. The one visit used by Yim et al. [23] for the 6-month
prediction employed either the conversion scan or the injection scan. A comparative view
of the number of visits and the prediction time frame can be seen in Table 17.

Table 17. Machine learning and deep learning models for predicting conversion to nAMD with
the prediction tasks, scenarios, numbers of visits, prediction time frame and results (BL = baseline;
C = conservative operating point; CPH = Cox proportional hazard; L = liberal operating point;
m = months; Se. = sensitivity; Sp. = specificity; TA = total available; V = visits).

Author and Prediction Task Model and Scenario Number of Visits Prediction Time Frame AUC Se. Sp.

Schmidt-Erfurth et al. [13]—risk for
conversion from iAMD to nAMD

CPH BL + 4 V 24 m 0.68 0.80 0.46

Russakoff et al. [22]—risk
for conversion from early
or iAMD to nAMD

AMDNet—OCT B-scan BL 24 m 0.89 N/A N/A
AMDnet—OCT volume BL 24 m 0.91 N/A N/A

VGG16—OCT B-scan BL 24 m 0.82 N/A N/A
VGG16—OCT volume BL 24 m 0.87 N/A N/A

Banerjee et al. [24]—risk
for conversion from early
or iAMD to nAMD

Deep Sequence
LSTM (Harbor)

TA 3 m 0.96 N/A N/A
TA 6 m 0.83 N/A N/A
TA 9 m 0.78 N/A N/A
TA 12 m 0.77 N/A N/A
TA 15 m 0.84 N/A N/A
TA 18 m 0.90 N/A N/A
TA 21 m 0.97 N/A N/A

BL + 4 V 18 m N/A 0.88 0.87

Deep Sequence
LSTM (Miami)

TA 3 m 0.82 N/A N/A
TA 6 m 0.77 N/A N/A
TA 9 m 0.71 N/A N/A
TA 12 m 0.69 N/A N/A
TA 15 m 0.68 N/A N/A
TA 18 m 0.65 N/A N/A
TA 21 m 0.68 N/A N/A

BL + 4 V 18 m N/A 0.68 0.71

Yim et al. [23] —risk for
conversion from
non-nAMD to nAMD

Ensemble DL
model—OCT volume

(conversion scan)

One 6 m 0.745 0.80 (L);
0.34 (C)

0.55 (L);
0.90 (C)

Ensemble DL
model—OCT volume

(injection scan)

One 6 m 0.884 0.80 (L);
0.34 (C)

0.55 (L);
0.90 (C)

Quality of nAMD conversion decision: The moment of conversion to nAMD was deter-
mined manually by two graders in Schmidt-Erfurth’s study [13] and it was based on the
presence of either IRF or SRF with associated suspicious PED or SHRM. In Russakoff’s
study [22], conversion was determined as new-onset macular fluid in OCT scans, confirmed
by FA, that showed the presence of CNV. Yim et al. [23] used two criteria—(1) the moment
the patient started anti-VEGF treatment, named the injection scan; and (2) the moment of
conversion, as decided by expert review of OCT images—defining nAMD conversion as
the presence of IRF or SRF associated with a suspicious PED, hemorrhage or SHRM. In
Banerjee’s study [24], the nAMD conversion in the dataset from the HARBOR trial was
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confirmed by the Digital Angiography Reading Center using multimodal imaging, and
the same approach was used by a clinical reading center for the MIAMI dataset (Table 18
displays the potential biases for studies predicting conversion to nAMD).

Table 18. Potential biases for studies predicting the conversion to nAMD (green = lower risk for bias,
red = higher risk for bias; a sample under 100 patients was considered small; RWD = real-world data;
RCT = randomized clinical trial; RCLP = real-life clinical practice; FA = fluorescein angiography).

Authors Small Sample Size Data Source External Validation Automatically
Extracted Features

Quality of Conversion
Interpretation

Schmidt-Erfurth et al. [13] No RCT No Yes RCT OCT monitoring
Russakoff et al. [22] Yes RWD No N/A RLCP OCT and FA monitoring
Banerjee et al. [24] No RCT Yes Yes RCT OCT monitoring

Yim et al. [23] No RWD No Yes RLCP OCT monitoring and
injection start

Qualitative evaluation/performance: When evaluating the risk of conversion from non-
nAMD or early or iAMD to nAMD, all the models used the AUC as the performance metric.
AUC values were somewhat similar, with greater values for Russakoff’s model [22] (0.91
for 24-month prediction) and Banerjee’s model [24] (0.96 for 3 months, 0.97 for 21 months),
but only 0.68 for 24 months with Schmidt-Erfurth et al.’s model [13]. Model performance
significantly improved if pre-processing steps were involved. For Banerjee’s Deep Sequence
model [24], a drop in performance was noticed for 12 months (0.77 ± 0.06), but performance
increased for 18 months (0.9 ± 0.06) and 21 months (0.97 ± 0.02), presumably pinned to
the fewer sequential follow-up visits available for training for these time frames and the
more similar characteristics of converting and non-converting classes. The Deep Sequence
model generalized well when tested on the external Bascom Palmer Eye Institute dataset
for shorter time intervals, with 0.82 for 3 months, but wide distributional shifts between the
two datasets did not favor the prediction for longer time intervals, with 0.77 for 6 months,
0.69 for 12 months and 0.68 for 21 months. Yim et al.’s model [23] reached an AUC of 0.75
on the test set for the volumetric OCT conversion scan and 0.745 on the test for volumetric
OCT injection scan.

Most important features: For Schmidt-Erfurth’s model [13], the increase in drusen area,
drusen-centric HRF and thickening of the ONL in regions of HRF concentration were the
most important features. Russakoff’s model [22] highlighted that pixels under the RPE or
involving the choroid seemed to be important as opposed to the pixels around the RPE for
those who were not progressing. Banerjee’s model [24] analyzed the 21 imaging features
related to the presence of drusen and their number, extent, density and relative reflectivity.
Yim et al.’s model [23] sensitivity improved when the extracted features related to HRF,
high drusen volumes and PED were present.

4.4. Prediction of Conversion to GA

Dataset and prediction task: The conversion to GA models used both RWD (Rivail et al. [25]
and data from clinical trials (HARBOR clinical trial—Schmidt-Erfurth et al. [13]). Even though
the number of patients was different between the two studies, the number of eyes with iAMD
included was similar (420 vs. 495), as shown in Table 19. Patients in the HARBOR clinical
trial had monthly OCT follow-ups (HD-OCT device—Cirrus; Carl Zeiss Meditec, Inc., Dublin,
CA, USA) for up to 2 years, while the patients from Rivail’s dataset [25] had OCT follow-ups
(Spectralis OCT device—Heidelberg Engineering, Heidelberg, Germany) every 3 or 6 months
for up to 7 years. Schmidt-Erfurth et al. [13] followed the conversion to both nAMD and
GA in 495 eyes: 114 converted to nAMD, 45 eyes converted to GA and 336 iAMD eyes
remained stable during the 2 year study. In Rivail’s study [25], from 420 iAMD eyes, 48 eyes
converted to GA; therefore, it was similar to Schmidt-Erfurth’s study [13]. Schmidt-Erfurth
predicted the conversion to GA in a 24-month time frame using the baseline visit + the first
four additional follow-up visits, while Rivail [25] predicted for three different time intervals, 6,
12 and 18 months, using only one visit, as seen in Table 20.
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Table 19. Machine learning and deep learning models for predicting conversion to GA with
their datasets.

Authors Date Dataset Model

Machine Learning

Schmidt-Erfurth et al. [13] July 2018 495 iAMD fellow eyes of 495 nAMD patients undergoing
anti-VEGF treatment within the HARBOR clinical trial Cox proportional hazard

Deep Learning

Rivail et al. [25] October 2019 420 iAMD eyes from 221 patients Deep Siamese network

Table 20. Machine learning and deep learning models for predicting conversion to GA (AUC = area
under the curve; BL = baseline; CPH = Cox proportional hazard; m = months; N/A = not available;
P = precision; Se = sensitivity; Sp = specificity; V = visits.

Author and Prediction Model No. of Visits Time Frame AUC Se Sp P

Machine Learning

Schmidt-Erfurth et al. [13]—risk for
conversion from iAMD to GA

CPH BL + 4 V 24 m 0.80 0.80 0.69 N/A

Deep Learning

Rivail et al. [25]—risk for conversion
from iAMD to GA Deep Siamese network

One 6 m 0.753 N/A N/A 0.367
One 12 m 0.784 N/A N/A 0.394
One 18 m 0.773 N/A N/A 0.463

Features and algorithms: Both ML and DL models were used, with Schmidt-Erfurth
using a sparse CPH model [13] and Rivail a deep Siamese network [25]. The sparse CPH
model received quantitative spatiotemporal features extracted from the OCT (at baseline
and over the following 4 months) with additional demographic features, smoking status
and AMD genetic information (SNPs), while the deep Siamese network received only OCT
B-scans (shown in Table 13). The deep Siamese network was first pre-trained on a pretext
task to estimate the time interval between pairs of images from the same patient, essentially
creating an aging model. Compared to others, this type of learning thrives with large,
unlabeled longitudinal datasets where the intervals between visits are not regular, the
registration is not ideal or there is not sufficient time or manpower for annotating the data.
Learning this pretext task improved the model’s performance in predicting the conversion
to GA. On the other hand, the Cox proportional hazard model was trained on the HARBOR
clinical trial dataset and thus benefited from regular sampling intervals and quantitative
features automatically extracted from the OCT.

Quality of GA conversion decision: In Schmidt-Erfurth’s study [13], using OCT imaging,
two graders manually determined the time to conversion to both nAMD and GA, while
in Rivail’s study [25], the method for identifying patients who converted to GA was not
specified (Table 21 shows the potential biases for studies predicting the conversion to GA).
Considering that patients within the HARBOR clinical trial had monthly OCT follow-ups,
this could provide a more accurate representation of the actual moment of conversion
versus the 3- or 6-month OCT follow-ups in Rivail’s study [25], which could have missed
the moment of conversion by a few months. However, Rivail [25] followed patients for a
longer period of time, up to 7 years, thus having a higher chance to detect those patients
who had later conversion.

Table 21. Potential biases for studies predicting the conversion to GA (green = lower risk for bias,
red = higher risk for bias, yellow = unknown/unclear risk for bias; a sample under 100 patients was
considered small; RCT = randomized clinical trial; N/A = not applicable).

Authors Small Sample Size Data Source External Validation Automatically
Extracted Features

Quality of Conversion
Interpretation

Schmidt-Erfurth et al. [13] No RCT No Yes RCT OCT monitoring
Rivail et al. [25] No Unknown No N/A Unknown
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Qualitative evaluation/performance: The prediction task for correctly identifying the eyes
that would convert to GA in a given time-frame can be framed as a classification task that
sorts iAMD patients into converters and non-converters; therefore, it was evaluated in
terms of AUC, sensitivity, specificity and precision. While there were great differences
in the two approaches, with different models, inputs and numbers of visits, the results
measured as the AUC were quite similar for the longer time intervals, with a slightly higher
performance for the CPH (AUC: 0.80 (for 24 months) vs. 0.773 (for 18 months)) with the
deep Siamese network (displayed in Table 20). The sparse CPH prioritized sensitivity over
specificity, and this seems reasonable since it is important to identify as many converting
eyes as possible, even though there is a chance of mislabeling a few non-converters as
converters. Sensitivity and specificity were not discussed in Rivail’s study [25]; however,
the precision metric was available and the highest performance was for the 18-month
interval with a precision 0.463, meaning that, among converters, there were many falsely
labeled as such. Additional research involving DL models with more follow-up visits
used for learning and monthly visits during the follow-up scan could allow a more clear
comparison versus classical ML models.

Most important features: Schmidt-Erfurth’s study [13] demonstrated that iAMD eyes
that convert to nAMD or GA follow distinct pathways in terms of feature evolution. For
GA conversion, the following features ranked among the most important: atrophy at
the level of the RPE + IS/OS segment with irregularity, reduced thickness and volume,
increased HRF in the ONL layer, thinning of the ONL and age. Additional research
regarding the importance of features in DL models predicting conversion to GA through
different explainability methods is necessary in order to obtain a better understanding
of the decision-making process of more complex models and to identify whether OCT
imaging data other than the commonly extracted quantitative features also play a role in
predicting iAMD patients at risk for GA.

4.5. Prediction of GA Growth

Dataset and prediction task: All GA growth models used RWD datasets collected from
Switzerland, the United States and China. The number of patients included ranged from
25 to 119, with different numbers of visits and visit intervals (presented in Table 22);
numbers were smaller compared to the datasets used for the other types of predictions. All
models sought to predict the growth of GA lesions at future time points (Gigon et al. [28]
described GA using the most recent definition of RORA [33]). The prediction task should
be seen as a pixel classification task, where future GA maps are generated and used to
discern the regions that will develop GA. All models were tested in various scenarios with
different numbers of training visits and different time points for prediction (differences
are highlighted in Table 23). Gigon et al. [28] used the baseline visit in one scenario and
the preceding visit in a different scenario, Niu et al. [26] used the baseline + first follow-up
visit and Zhang et al. [27] used the baseline + first two sequential follow-up visits.

Table 22. Machine learning and deep learning models and the datasets used for predicting GA growth.

Authors Date Model Dataset

Machine Learning

Niu et al. [26] June 2016 Random forest classifier 38 GA eyes from 29 patients visiting
Byers Eye Institute of Stanford University

Deep Learning

Zhang et al. [27] February 2021 BiLSTM + 3D-UNet

22 GA eyes from 22 patients visiting Byers
Eye Institute of Stanford University and

3 GA eyes from 3 patients visiting Jiangsu
Provincial People’s Hospital in China

Gigon et al. [28] November 2021 Encoder–decoder CNN +
time-based Taylor series

129 GA eyes from 119 patients who
visited the Jules Gonin Eye Hospital in

Lausanne, Switzerland



Diagnostics 2023, 13, 2464 29 of 35

Table 23. Machine learning and deep learning prediction scenarios for GA growth. The DI was
calculated for overall future GA lesions (* mean DI for overall GA lesions) (BiLSTM = bi-directional
long short-term memory; DI = Dice index; GT = ground truth).

Scenario Predicted GA Growth Training Data DI

Niu et al. [26]—Random Forest Classifier

1 First follow-up visit for each patient BL + first follow-up from all other patients 0.81 *

2 All consecutive follow-up visits for each
patient BL + first follow-up from all other patients 0.84 *

3 Second and subsequent follow-up visits for
each patient

BL + first follow-up scan from the same
patient 0.87 *

Zhang et al. [27]—BiLSTM + 3D-UNet

1 All consecutive follow-up visits for each
patient

BL + first two follow-up visits from all
other patients 0.86 *

2 All consecutive follow-up visits for each
patient

All consecutive follow-up visits from all
other patients 0.89 *

3 Third and subsequent follow-up visits for
each patient

BL + first two follow-up visits from the
same patient 0.89 *

4 Last follow-up visit for each patient All prior consecutive follow-up visits from
the same patient 0.92 *

5 Third and subsequent follow-up visits for
all patients

BL + first two follow-up visits from all
patients 0.88 *

6 Last follow-up visit for all patients All prior consecutive follow-up visits from
all patients 0.90 *

Gigon et al. [28]—Encoder–Decoder CNN + Time-based Taylor Series

A BL and subsequent follow-up visits BL visit—manually segmented GT 0.73 to 0.80 *

A BL and subsequent follow-up visits BL visit—automatically segmented GT 0.74 to 0.81 *

B Next follow-up visit Preceding visit—manually segmented GT 0.83 to 0.88 *

B Next follow-up visit Preceding visit—automatically segmented
GT 0.84 to 0.89 *

Features and algorithms: In predicting GA growth, both ML and DL models were em-
ployed. Niu et al. [26] used a random forest classifier, Zhang et al. [27] used BiLSTM with
a 3D-UNet CNN refinement and Gigon et al. [28] used an encoder–decoder CNN with
EfficientNet-b3 as the backbone + time-based Taylor series. The random forest classifier
predicted at a given time whether a pixel in the topographic image would develop GA
or not, the BiLSTM with a 3D-UNET CNN had as output a GA projection color-coded
map for future GA growth regions and the encoder–decoder CNN had as output en face
time-to-RORA-conversion risk maps. The random forest classifier received 19 quantitative
spatiotemporal features extracted from the OCT images at baseline and the first visit, the
BiLSTM + 3D-UNet was fed OCT volumes + time factors from the baseline and first two
sequential follow-up visits and the encoder–decoder CNN used 13 en face segmentation
maps from baseline after automatically segmenting retinal layers and drusen. The advan-
tage of Gigon’s approach [28] is that it allows for the prediction of RORA progression at
flexible time intervals, providing the ability to track future changes in a time-continuous
manner. The features used by the random forest classifier described the GA lesion, drusen,
pseudodrusen, retinal intensity, photoreceptor loss, axial thickness and reflectivity between
retinal boundaries. Six-layer thickness + reflectance maps (retinal nerve fiber layer, ganglion
cell layer + internal plexiform layer, ONL, photoreceptors + RPE, choriocapillaris + Sattler’s
layer) and drusen height were used by the encoder–decoder CNN. We can see that both
the random forest model and the encoder–decoder CNN took into account drusen, retinal
layer thicknesses and reflectivity measurements.

Quality of ground truth/performance: The performance of the GA growth models de-
pended on the precision of the GT used for comparison. Niu [26] and Zhang [27] used
automatic segmentation for the GT and visually reviewed it, while Gigon [28] used both
manual and automatic segmentation techniques. Gigon et al. [28] tested their model on
both manually and automatically segmented GT and concluded that the average DI and
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area errors were very similar between the two; therefore, automatically segmented GT
came close to the expert’s segmentation (Table 24 highlights the potential biases associated
with studies predicting GA growth).

Table 24. Potential biases for studies predicting GA growth (green = lower risk for bias, red = higher
risk for bias; a sample under 100 patients was considered low; RWD = real-world Data; GT = ground
truth; N/A = not applicable).

Authors Small Sample Size Data Source External Validation
Automatically

Extracted
Features

Quality of GA Growth GT

Niu et al. [26] Yes RWD No Yes Automatic segmentation with visual review
Zhang et al. [27] Yes RWD No N/A Automatic segmentation with visual review
Gigon et al. [28] No RWD No Yes Automatic and manual segmentation

Qualitative evaluation/performance: The common metric used for performance evalu-
ation was the DI and the results are displayed in Table 23. By comparing the different
scenarios, one can see that models were more powerful when given more follow-up visits
and integrating time factors, while more follow-up visits from the same patient increased
their performance even further. The highest AUC of 0.92 was obtained when the BiLSTM +
3D-UNet used all prior consecutive follow-ups to predict the last follow-up visit for each
patient. This highlights that similar patient-specific prior information is more helpful in
predicting GA growth in spite of the many similarities in GA growth between patients.

Most important features: Since the random forest classifier relied on extracted OCT
features, feature order of importance was calculated and the top candidates in predicting
the location of GA growth were the regions with photoreceptor loss, lower reflectivity for
the ellipsoid zone and decreased thickness for reticular pseudodrusen.

4.6. Prediction of VA Outcome

Datasets and prediction task: The datasets used to predict the VA outcome contained
between 614 and 1246 nAMD eyes, as displayed in Table 25. The prediction tasks targeted
two time horizons: either 3 months or 12 months.

Features and algorithms: Classical ML was based on ensemble methods (e.g., random
forest regression, gradient boosting, AdaBoost, extremely randomized trees) or regression
analysis (i.e., lasso). Deep learning was based on the ResNet-50 v2 architecture. While
classical ML relied on four visits (baseline plus three more visits) to predict VA outcome for
both 3 and 12 months, deep learning was more ambitious, aiming to predict VA outcome at
12 months using only the first visit (differences highlighted in Table 26).

VA measurement quality: The performance of the VA outcome models was highly de-
pendent on the quality of the VA measurements. Both Schmidt-Erfurth [29] and Kawczyn-
ski [30] used the HARBOR dataset for their models, where BCVA was measured in clinical
trial settings using standard ETDRS charts, therefore offering more reliability in terms
of measurement accuracy. Rohm et al. [31] used RWD BCVA measurements uploaded
to the data warehouse from patients visiting Ludwig Maximilian University of Munich,
which can be more prone to error than standardized clinical trial VA measurement settings
(Table 27 presents the potential biases associated with studies predicting the VA outcome).
Even though RCT-derived BCVA offers more credibility, errors might still appear, as shown
by the variability in the intersession measurements in AMD patients [39].
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Table 25. Machine learning and deep learning models for predicting VA outcome and the datasets
used for prediction.

Authors Date Model Dataset

Machine Learning

Schmidt-Erfurth
et al. [29]

January 2018 Random forest
regression

614 nAMD eyes of 614 patients undergoing
anti-VEGF treatment within the HARBOR

clinical trial

Rohm et al. [31] July 2018

AdaBoost.R2,
gradient boosting,

random forests,
extremely

randomized trees,
lasso

738 nAMD eyes from 653 patients (for 3-month
forecast) and 508 nAMD eyes from 456 patients

(for 12-month forecast) visiting Ludwig
Maximilian University of Munich, Germany

Deep Learning

Kawczynski et al. [30] September 2020 ResNet-50 v2
1071 nAMD eyes of 1071 patients undergoing

anti-VEGF treatment within the HARBOR
clinical trial

Table 26. Machine learning and deep learning models for predicting VA outcome (RMSE = root mean
squared error; BL = baseline; V = visits; BCVA = best-corrected visual acuity; m = months).

Author and Prediction Model and Scenario No. of Visits Prediction Time R2 RMSE

Machine Learning

Schmidt-Erfurth et al. [29]—BCVA at 12 months Random forest regression BL + 3 V 12 m 0.70 8.6 letters

Rohm et al. [31]—BCVA at 3 and 12 months

AdaBoost.R2 BL + 3 V 12 m N/A 0.2 logMAR
AdaBoost.R2 BL + 3 V 3 m N/A 0.25 logMAR

Gradient boosting BL + 3 V 12 m N/A 0.19 logMAR
Gradient boosting BL + 3 V 3 m N/A 0.2 logMAR

Random forests BL + 3 V 12 m N/A 0.18 logMAR
Random forests BL + 3 V 3 m N/A 0.23 logMAR

Extremely randomized trees BL + 3 V 12 m N/A 0.18 logMAR
Extremely randomized trees BL + 3 V 3 m N/A 0.23 logMAR

Lasso BL + 3 V 12 m N/A 0.2 logMAR
Lasso BL + 3 V 3 m N/A 0.18 logMAR

Deep Learning

Kawczynski et al. [30].—BCVA at current visit and 12 months ResNet-50 v2—study eyes BL 12 m 0.33 14.16 letters
ResNet-50 v2—fellow eyes BL 12 m 0.75 11.27 letters

Table 27. Potential biases for studies predicting the VA outcome (green = lower risk for bias,
red = higher risk for bias; a sample under 100 patients was considered small; RWD = real-world data;
RCT = randomized clinical trial; RCLP = real-life clinical practice; N/A = not applicable).

Authors Small Sample Size Data Source External Validation Automatically
Extracted Features

Quality of VA
Measurement

Schmidt-Erfurth et al. [29] No RCT No Yes RCT measurement
Rohm et al. [31] No RWD No Yes RCLP measurement

Kawczynski et al. [30] No RCT No N/A RCT measurement

Qualitative evaluation/performance: For the task of predicting BCVA at 12 months only
from baseline OCT and BCVA, the model developed by Schmidt-Erfurth [29], which used
handcrafted OCT features with a subset of 614 patients from the HARBOR dataset, reported
R2 = 0.34. For the same task, Kawczynski’s model [30] achieved R2 = 0.45 with the 924-
patient training set and R2 = 0.40 for the 126-patient test set. We can therefore presume that
the greater variability explained by the DL models might have come from considering the
whole image and taking into account features still unknown among handcrafted feature
engineers. Both studies had higher results when both the OCT and the BCVA were used in
their predictions. Besides the R2 value, the root mean squared error (RMSE) was also used,
with the best obtained value being 8.5 letters or 0.18 on the logarithm of the minimum angle
of resolution (logMAR) chart. These best results were obtained with extremely randomized
trees and lasso for a 12-month prediction.
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4.7. Quality Assurance for AI Models

Efforts have been made in order to assess the risk of bias in AI models. The Inter-
national Telecommunication Union (ITU) partnered with the World Health Organization
(WHO) to create a Focus Group on Artificial Intelligence for Health (FG-AI4H) [40] in order
to develop a standardized assessment framework for health-based AI models. As such, the
proposed AI audit, carried out at different stages of a model’s deployment, represents a
detailed standardized report that can reveal a model’s strengths and limitations [41]. A
detailed audit report for diabetic retinopathy screening using the robust FG-AI4H template
was presented by Oala et al. [42]. These type of interventions involving auditing and
quality control set the path towards efficient and safe implementation of AI models in
real-world clinical settings.

4.8. Challenges for AI in Real-World Clinical Settings

Data shortages. For upcoming DL models to thrive, we are still in need of larger,
more diverse, publicly accessible OCT datasets for AMD patients with multiple follow-up
visits. In overcoming this shortage by making use of smaller datasets, various techniques
can be implemented, such as using OCT neighboring B-scans, transfer learning and data
augmentation [43]. Khan et al. addressed this limitation by reviewing publicly available
datasets for ophthalmology imaging [44]. Along the same lines, researchers interested in
finding OCT datasets might have an eye on the ongoing Common European Data Spaces,
one of which is dedicated to health. Meanwhile, the datasearch service from Google has
become a valuable tool for quick identification of public datasets.

OCT devices and acquisition protocol. The acquisition protocol varies between different
OCT devices but also within the same device, and this represents a challenge for AI-assisted
volumetric analysis of OCT images, which would be favored by a standardized approach.
In this context, methodologies like “data FAIRification” are valuable tools to assess the
quality of a dataset.

Data reliability. Data reliability has yet another dimension. The performance metrics
were reported under the assumption that the ground truth used for training was 100%
accurate. The extent to which this assumption is wrong was signaled by Cabitza et al. [45].
For instance, in diagnostics, the average accuracy of medical experts ranges from 80%
to 90%, while the average error rate among radiologists is around 30%. Cabitza et al.
computed the number of annotators required to achieve a 95% accurate ground truth. For
an error rate of 20%, one needs 10 raters, while for an error rate of 30%, the number of raters
should be no less than 25. It is simply not feasible to have this number of raters for the
same image. Cabitza et al. name this problem “the elephant in the machine”. To handle it,
better metrics are needed to evaluate performance by also considering the interagreement
score or the confidence and expertise of the annotator.

Real-world validation. Banerjee et al. [24] put in perspective the implementation of
prediction algorithms in clinical practice. There are still a lot of unanswered questions
regarding whether they can help initiate earlier treatments for exudative events or unburden
practices by selecting the patients at higher risk who need monitoring. Another issue, as
shown by the current review, is that the majority of studies lack external validation. In
order to be able to answer these questions, draw meaningful conclusions and introduce AI
prediction algorithms in real-world settings, we are in need of clinical trials to test these
outcomes.

Black-box phenomenon. The topic of the black-box phenomenon, also taken into account
by Schmidt-Erfurth et al. [6], is of utmost importance. While artificial neural networks
have impressive results, even outperforming their human pairs, developers and physicians
have a hard time understanding the rationale behind these decisions. Interestingly, minor
changes [46,47] not visible to the human eye can profoundly alter the classification task
performed by a deep neural network and, reversely, images with no meaning for humans
can be correctly classified, as shown by Nguyen et al. [48]. The lack of understanding could
be problematic in a setting where neural networks could provoke harm through erroneous
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outputs, leaving the end users blindfolded without the ability to prevent upcoming errors.
There seems to be a conflict between performance and explainability, with the model with
higher accuracy (e.g., DL) having the least explainable actions and the one with lower
accuracy having the opposite [49]. Thus, we can see the value brought by explainable AI
(xAI), which has been assigned the mission of providing explanations of a model’s actions
to make it more comprehensible to human users, thus widening the clinical acceptance
and adoption of AI systems. In order to “break” the black box, there are a number of
visualization techniques that can be used.

5. Conclusions

A great amount of recent research supports the effectiveness of AI in predicting the
progression of AMD during the natural evolution of the disease or after treatment. AI
models could substantially improve clinical practice in term of patient selection, treatment
selection, developing drugs and establishing valuable trial endpoints. Implementation
of prediction algorithms in clinical practice would be of great value for both patients
and ophthalmologists. However, this can be perceived as an ambitious task due to the
limitations of the analyzed studies and the challenges faced by AI algorithms in real-world
clinical settings. As such, there are still a lot of unanswered questions regarding the
predictive value of AI models for the future progression of AMD, opening up new avenues
for future research.
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