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Abstract: In the past few years, deep learning has gained increasingly widespread attention and
has been applied to diagnosing benign and malignant thyroid nodules. It is difficult to acquire
sufficient medical images, resulting in insufficient data, which hinders the development of an efficient
deep-learning model. In this paper, we developed a deep-learning-based characterization framework
to differentiate malignant and benign nodules from the thyroid ultrasound images. This approach
improves the recognition accuracy of the inception network by combining squeeze and excitation
networks with the inception modules. We have also integrated the concept of multi-level transfer
learning using breast ultrasound images as a bridge dataset. This transfer learning approach addresses
the issues regarding domain differences between natural images and ultrasound images during
transfer learning. This paper aimed to investigate how the entire framework could help radiologists
improve diagnostic performance and avoid unnecessary fine-needle aspiration. The proposed
approach based on multi-level transfer learning and improved inception blocks achieved higher
precision (0.9057 for the benign class and 0.9667 for the malignant class), recall (0.9796 for the benign
class and 0.8529 for malignant), and F1-score (0.9412 for benign class and 0.9062 for malignant class).
It also obtained an AUC value of 0.9537, which is higher than that of the single-level transfer learning
method. The experimental results show that this model can achieve satisfactory classification accuracy
comparable to experienced radiologists. Using this model, we can save time and effort as well as
deliver potential clinical application value.

Keywords: inception; squeeze-excitation network; multi-level transfer learning; thyroid nodules;
ultrasound images

1. Introduction

Nowadays, thyroid cancer is becoming more common worldwide, and the incidence
rate is increasing rapidly compared with other malignant tumors. According to the Amer-
ican Cancer Society and cancer statistics, it is the most prevalent endocrine tumor, with
500,000 new cases identified each year (567,233 in 2018) [1]. In clinical practice, ultra-
sonography is the most commonly utilized test for the screening and diagnosis of thyroid
gland disorders due to its non-invasive, non-radioactive nature, affordability, and real-time
capabilities. However, its drawbacks include a low signal-to-noise ratio and the presence
of visual image artifacts visible in the ultrasound image. In addition, diagnostic accuracy
and reproducibility of ultrasound images are limited and it necessitate a high level of
expertise and training [2]. In light of these challenges, many researchers have reported the
importance of computer-aided diagnosing systems to characterize thyroid nodules.

Recently, there has been increased interest in the computer-aided diagnosis of thyroid
nodules, and significant research progress has been made in this area. In the traditional ma-
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chine learning framework, quantitative features are extracted from the ultrasound images,
which are used to classify benign and malignant thyroid nodules [3]. This type of CAD
system always attempts to extract morphological or texture features (such as Local Binary
Patterns (LBP), Gray Level Co-occurrence Matrix) from ultrasound images [4]. However,
conventional machine learning algorithms designed specifically for retrieving this type of
features often require hand-crafted optimal combinations and complex processes of image
preprocessing, feature extraction, identification of the best feature set and classification [4].
Another serious challenge faced by the traditional computer-aided diagnosis system is the
irregular and complex appearance of the nodules in the thyroid ultrasound image, which
makes feature identification and extraction difficult [4]. Moreover, the performance of any
such system is greatly affected by various factors such as type of image modality, quality
of the obtained image, similarity in the morphology of lesions, types of cancer, etc. [4]. A
simple feature extraction method will not yield effective results and will fail to address
these issues [5]. This suggests the need to use more complex convolutional neural network
models to characterize thyroid nodules from ultrasound images [4].

Recently, convolutional neural networks have proven particularly effective in the
analysis of radiological, pathological, and other medical image classification tasks [5].
Compared to its predecessors, the main advantage of CNN is that it automatically detects
the essential features without any human supervision [5]. For example, we have many
pictures of cats and dogs, and the CNN model learns the distinctive features of each class by
itself. The convolutional neural network can address the above-mentioned issues associated
with traditional feature extraction approaches effectively [6]. This type of approach can
automatically learn deeper and more abstract features and avoid complex manual feature
extraction.

Convolutional neural networks have been widely accepted as a more effective ap-
proach for identifying and evaluating the malignant nature of thyroid nodules than tradi-
tional methods. Although CNN applications work very well on large datasets, they fail
to achieve significant performance on small datasets. Moreover, substantial variability
in the size, shape, and appearance of the nodules in the ultrasound images hinders the
development of an effective characterization model for thyroid nodule. The area occupied
by the nodule and the shape of the nodule in the ultrasound image is different in each
image. Consequently, a simple convolutional neural network cannot capture the essential
features of the nodules in the ultrasound image. Thus, an efficient convolutional neural
network architecture is necessary for the proper characterization of thyroid nodules in
ultrasound images. C.Szegedy et al. proposed a deep convolutional neural network archi-
tecture (called inception) which helps to expand the width of the network and incorporate
multi-scale feature information [7]. This helps to achieve efficient use of computational
resources, and more significant features are extracted under the same computational re-
quirement. Likewise, when doctors diagnose a thyroid ultrasound image, they tend to
pay more attention to the places that are decisive for the diagnosis. We cannot implement
this through simple CNN architecture. By incorporating the idea of attention networks for
recognizing important regions by itself, it will help to improve the diagnosing capability
of CAD systems. In 2018, Hu et al. proposed the concept of a squeeze and excitation
network which is both efficient and more precise in recognizing complex patterns in im-
ages [8]. To achieve high efficiency, the module uses a global average pooling layer (GAP)
that comparatively decreases the number of model parameters and enables the model to
converge faster than existing models [9]. The squeeze and excitation network enhances the
propagation of significant features and improves the prediction accuracy of the model. This
paper hypothesizes that better diagnostic performance can be achieved by combining the
inception architecture and the squeeze and excitation network. Also, the complex micro-
and macro-structures of thyroid nodules can be extracted with the help of this approach.

Furthermore, to address issues regarding small datasets, we utilized a multi-level
transfer learning mechanism using a bridge dataset from the same image modality to
efficiently characterize thyroid nodules [10,11]. Here, we used a breast ultrasound image



Diagnostics 2023, 13, 2463 3 of 28

dataset of significant images as a bridge dataset. Several studies have demonstrated
possible associations between breast and thyroid cancer, including shared hormonal risk
factors, similarity in the appearance of nodules, and genetic susceptibility [4]. Furthermore,
thyroid and breast cancers exhibit similar characteristics under high-frequency ultrasound,
such as malignant nodules having a taller-than-wide shape, hypoechogenicity, and an
ill-defined margin. This is why we selected the breast ultrasound image dataset as a bridge
dataset for multi-level transfer learning for the classification of thyroid nodules [4].

Inspired by the above-discussed issues, this paper proposes an architecture that
combines the inception architecture with the squeeze and excitation module based on
the multi-level transfer learning technique for developing an efficient characterization
framework for thyroid nodule diagnosis. The contributions of this paper are as follows:

• We utilize the concept of attention mechanism with each inception block and propose
a network architecture for thyroid nodule diagnosis.

• We propose a multi-level transfer learning model for thyroid nodule diagnosis which
uses breast ultrasound images as a bridge dataset. We utilize a new concept of multi-
level transfer learning to the thyroid ultrasound images, whereas most of the previous
studies are similar to ours but have remained within the traditional transfer learning
technique. We test the feasibility of the model and prove its potential for thyroid
nodule diagnosis.

• We check the effectiveness of breast ultrasound images for use as a bridge dataset in
the development of a multi-level transfer learning model for thyroid nodule diagnosis.
They are able to show the potential and usefulness in the development of a thyroid
nodule classification model.

The remainder of this paper is organized as follows. Section 2 includes the related
works. Section 3 discusses the proposed approach for the thyroid nodule characterization.
Section 4 discusses the experimental framework. Section 5 discusses the obtained results.
Lastly, Section 6 contains our concluding remarks.

2. Background

Thyroid nodule diagnosis using machine learning techniques has long been an im-
portant research topic that provides aid to clinical diagnosis. This section reviews the
state-of-the-art approaches in the development of a computer-aided diagnosing system for
thyroid nodules. In the traditional machine learning framework, several works have been
proposed for the computer-aided diagnosis of thyroid nodules. In 2008, Keramidas et al. ex-
tracted fuzzy local binary patterns as noise-resistant textural features and adopted support
vector machine as the classifier [12]. In 2009, Tsantis et al. proposed a model for thyroid
nodule classification in which a set of morphological features (such as mean radius, radius
entropy, and radius standard deviation) were extracted from the segmented nodule to
describe the shape and boundary regularity of each nodule [13]. In 2012, Singh and Jindal
utilized gray level co-occurrence matrix features to construct a k-nearest neighbor model
for thyroid nodule classification [14]. Acharya et al. utilized Gabor transform to extract
the features of thyroid ultrasound images to differentiate benign and malignant nodules.
They compared the classification performance of SVM, MLP, KNN, and C4.5 classifiers. In
2014, Acharya et al. extracted grayscale features based on stationary wavelet transform
and compared the performance of several common classifiers [15].

As thyroid nodules vary in shape, size, and internal characteristics, the low-level
handcrafted features used in this traditional CAD method can only provide limited differ-
entiating capacity due to their inherent simplicity and locality [16]. On the other hand, the
performance of deep learning models, especially convolutional neural networks, has been
superior to conventional learning methods in various visual recognition tasks. By learning
hierarchical visual representations in a task-oriented manner, CNNs can capture the seman-
tic characteristics of input images [16]. Due to this critical advantage, numerous CNN-based
CAD methods have been proposed for thyroid nodule diagnosis in recent years.
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In 2017, Ma et al. trained two complementary patch-based CNNs of different depths to
extract both low-level and high-level features and fused their feature maps for the classifica-
tion of thyroid nodules [17]. In 2017, Chi et al. utilized a pre-trained GoogleNet architecture
to extract high-level semantic features for the classification of thyroid nodules [18]. Gao et al.
proposed a CAD system based on multi-scale CNN model that achieved better sensitivity [19].
In 2018, Song et al. proposed a cascaded network for thyroid nodule detection and recognition
based on multi-scale SSD network and spatial pyramid architecture [20]. Recently, Li et al.
structured a model for the diagnosis of thyroid cancer based on ResNet50 and Darknet19 [21].
This model, despite its simplicity in structure, exhibited excellent diagnostic abilities in identi-
fying thyroid cancer. It demonstrated the highest value for AUC, sensitivity, and accuracy
compared with the other state-of-the-art deep learning models. Wang et al. conducted a large-
scale study on multiple thyroid nodule classification [22]. Both InceptionResnetv2 and VGG-19
architectures were utilized for the classification [22]. It was a microscopic histopathological
image(rather than an ultrasound image) was used in the investigation. Liu et al. proposed a
multi-scale nodule detection approach and a clinical-knowledge-guided CNN for the detec-
tion and classification of thyroid nodules. By introducing prior clinical knowledge such as
margin, shape, aspect ratio, and composition, the classification results showed an impressive
sensitivity of 98.2%, specificity of 95.1%, and accuracy rate of 97% [16]. The method involves
using separate CNNs to extract features within the nodule boundary, around margin areas,
and from surrounding tissues [16]. As a result, the architecture of the network is complex with
a higher risk of overfitting [16]. Juan Wang et al. developed an Artificial Intelligence–based
diagnosis model based on both deep learning and handcrafted features based on risk factors
described by ACR-TIRADS [23]. Yifei Chen et al. proposed two kinds of neural networks,
which are GoogleNet and U-Net, respectively [24]. GoogleNet was utilized to obtain the
preliminary diagnosis results based on the original thyroid nodules in the ultrasound images.
U-Net was used to obtain the segmentation results and medical features are extracted based
on the segmentation results. The mRMR feature selector was used as the feature selector.
The 140 statistical and texture features were sent to the designed feature selector to obtain 20
features. Then, they were utilized for training an XgBoost classifier. The above CNN-based
approaches have achieved good performance in classifications, but they still have limitations
in global feature learning and modeling. CNNs always focus on the fusion of local features,
owing to the locality of their convolutional kernels. Some improved extraction strategies of
global features, such as downsampling and pooling, have been proposed. However, they
tend to cause the loss of contextual and spatial information. Jiawei Sun et al. proposed a
vision-transformer-based thyroid nodule classification model using contrast learning [25].
Using ViT helps to explore global features and provide a more accurate classification model.
Geng Li et al. proposed a deep-learning-based CAD system and transformer fusing CNN
network to segment the malignant thyroid nodule automatically [26].

As in the above papers, various deep learning networks, training methods, and feature
extraction methods were utilized to develop an efficient thyroid nodule diagnosis model.
In general, there have been many papers on applying deep learning techniques to achieve
computer-aided diagnosis of thyroid nodules. However, only a few of them address the issues
regarding small datasets. In 2021, Y. Chen et al. proposed a multi-view ensemble learning
model based on a voting mechanism that integrates three kinds of diagnosis results obtained
from thyroid ultrasound images. They utilized features from the GoogleNet architecture,
medical features obtained from the U-Net architecture, and several statistical and textural
features to develop the ensemble model.

To date, Artificial Intelligence–based Computer-aided Diagnosis (AI-CAD) systems have
been developed for specific medical fields or specific organs. Integrating these systems
and evaluating related organs with similar characteristics would benefit AI-CAD system
development. For example, several researchers have reported an association between the
incidence rate of thyroid and breast carcinoma, possibly related to the effect of estrogen, which
is the transport mechanism of iodine. Considering that thyroid and breast nodules exhibit
similar characteristics over high-frequency ultrasound, Zhu et al. developed a generic VGG-
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based framework to classify thyroid and breast lesions in ultrasound imaging [4]. Xiaowen
Liand et al. proposed a multi-organ CAD system based on CNN for classifying thyroid
and breast nodules from ultrasound images [27]. Inceptive characteristics of Googlenet and
CaffeNet were exploited to classify nodules in the ultrasound images.

However, this paper mainly focuses on the concept of inception network and squeeze
and excitation network. We also integrate the idea of multi-level transfer learning by
considering the relationship between thyroid and breast nodule ultrasound images.

3. Proposed Approach
3.1. Framework Overview

In this paper, we mainly explore the effectiveness of parallel convolutions in the inception
architecture, squeeze and excitation module and the idea of multi-level transfer learning for
characterizing thyroid nodules. In Sections 3.2 and 3.3, we introduce the basic concepts
regarding the inception architecture and squeeze and excitation modules, respectively. In
Section 3.4, we explained how the inception blocks are updated using the squeeze and
excitation module. Section 3.5 discusses the proposed convolutional neural network based
on improved inception blocks. Section 3.6 discusses the essential information regarding
multi-level transfer learning and how it is implemented in the proposed system.

3.2. Inception Module

The most straightforward way to improve the performance of a deep neural network is to
increase its size. This includes expanding the depth and the width. The depth of the network
defines the number of levels of the network, and the width represents the number of units at
each level [28]. It is easy to train higher-quality models, especially if a significant amount of
labeled training data are available. A larger network tends to have more parameters, making
it more prone to overfitting when the size of the dataset is limited [7,29]. Another drawback
of a uniformly increased network size is the significantly higher demand for computational
resources [7]. These issues can be resolved by switching from fully connected to sparsely
connected architectures, even within the convolutions.

Likewise, the size of the significant elements of the image can vary considerably. The
area occupied by one element in an image differs from that occupied by the same element
in another image. Selecting the right kernel size for convolution becomes challenging due to
the wide variation in the location of significant information [28]. A larger kernel is preferred
for the information distributed globally, while a smaller kernel is chosen for the information
distributed locally. Unlike traditional deep neural networks, inception networks are well
known for parallel stacked convolutions. The inception module is illustrated by the incor-
poration of convolution kernels of various scales in the same convolution module [7]. As
opposed to a single convolutional kernel, the inception module can extract a wide range of
significant features from single-layer feature maps using a variety of convolutional kernels. It
expands the dimension of each layer of the feature map without affecting neural networks
as a whole [7]. Figure 1 represents various inception blocks. Figure 1a presents the naive
inception module. It performs convolution on the input with three different sizes of filters:
1 × 1, 3 × 3, and 5 × 5, respectively. Additionally, max pooling is also performed [7]. The
outputs are concatenated and sent to the next inception module.

As stated before, deep neural networks are computationally expensive. By adding an
additional 1 × 1 convolutions before the 3 × 3 and 5 × 5 convolutions, the author reduces
the number of input channels (represented in Figure 1b) [28]. Hence, it makes the network
computationally cheaper. Although adding an extra operation may seem counter-intuitive,
1× 1 convolutions are far more affordable than 5× 5 convolutions and will reduce the number
of input channels [28]. However, the 1 × 1 convolution is introduced after the max pooling
layer. In [7], a new neural network architecture was developed using the improved inception
module. It was referred to as GoogLeNet (Inception-v1). GoogleNet consists of nine linearly
stacked inception modules. It is 22 layers in depth (27 layers deep, including the pooling
layers). At the end of the last inception module, a global average pooling is applied. The
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concept of auxiliary classifiers is introduced to prevent the middle part of the network from
“dying out”. SoftMax is applied to the outputs of two of the inception modules. Moreover, an
auxiliary loss is computed over the same labels [28]. The weighted sum of the auxiliary loss
and the real loss is calculated, and it is considered as the total loss [28]. For each auxiliary loss,
the weight value is fixed as 0.3 [28].

Previous layer

1x1 Conv 3x3 Conv 5x5 Conv 3x3 Max Pooling

Filter Concatenation

(a)
Previous layer

1x1 Conv

3x3 Conv 5x5 Conv

3x3 Max Pooling

Filter Concatenation

1x1 Conv

1x1 Conv

1x1 Conv

(b)
Previous layer

1x1 Conv

3x3 Conv

3x3 Conv

3x3 Max Pooling

Filter Concatenation

1x1 Conv

1x1 Conv

1x1 Conv

3x3 Conv

(c)

Previous layer

1x1 Conv

3x3 Conv

3x3 Max Pooling

Filter Concatenation

1x1 Conv

1x1 Conv

1x1 Conv

1x3 Conv 3x1 Conv

1x3 Conv 3x1 Conv

(d)

Figure 1. (a) Naive inception module. (b) Inception module with dimension reduction. (c) Factorizing
the 5 × 5 convolution into two 3 × 3 convolutions. (d) Factorizing convolutions of filter size nxn to a
combination of 1 × n and n × 1.
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totalloss = realloss + 0.3 ∗ auxloss1 + 0.3 ∗ auxloss2 (1)

Two versions of inception have been presented together in a single paper: Inception-v2
and Inception-v3 [28]. The authors proposed a number of upgrades which increased the
accuracy and reduced the computational complexity. Inception-v2 explores the following:

• Reducing the Representational Bottle Neck: The neural network performs better when
convolutions did not alter the dimensions of the input drastically. Reducing the
dimensions too much may cause loss of information, known as representational bottle
neck.

• Convolution operations can be made more efficient in terms of computational com-
plexity by using some smart factorization methods.
For instance, factorize the 5 × 5 convolution to two 3 × 3 convolutions to improve
computational speed (represented in Figure 2a). Although this may seem counter-
intuitive, a 5 × 5 convolution is 2.78 times more expensive than a 3 × 3 convolution.
Hence, stacking two 3 × 3 convolutions in fact leads to a boost in performance. This is
illustrated in Figure 2a. Moreover, they factorize convolutions of filter size n × n to a
combination of 1 × n and n × 1 convolutions) [30]. For example, a 3 × 3 convolution
is equivalent to first performing a 1 × 3 convolution and then performing a 3 × 1
convolution on its output (represented in Figure 2b. They found this method to be
33% cheaper than the single 3 × 3 convolution.

• In addition, the filter banks in the module were expanded (made wider instead
of deeper) to address the issue of representational bottleneck. In contrast, if the
module were made deeper, the dimensions would be reduced excessively, resulting in
information loss. This is depicted in the Figure 2c.

The above three principles were used to develop three different types of inception
modules (Let us call them modules A, B, and C in the order in which they were introduced).
Inception-v3 incorporated all of the above upgrades stated for Inception-v2, and in addition
used the following [28]:

• RMSProp Optimizer [28].
• Factorized 7 × 7 convolutions [28].
• BatchNorm in the fully connected layer of Auxillary Classifiers: The authors observed

that the auxiliary classifiers did not make a significant contribution until near the end
of the training phase, when accuracies were approaching saturation. In particular,
they claimed that they act as regularizers, especially if they had BatchNormalization
or Dropout operations [28].

• Label Smoothing: It is a regularization technique that can address issues regarding
overconfidence and overfitting behavior of a convolutional neural network [28,31].

Inception-v4 was introduced by Christian Szegedy et al. in 2016 [32]. It had three main
inception modules, which are termed A, B, and C, which are very similar to those from
Inception-v2 (or v3). Inception-v4 introduced a specialized reduction block that changes
the width and height of the grid (represented in Figure 3). Even though the functionality
of the reduction blocks was incorporated in the earlier version, they were not explicitly
implemented [33].
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Figure 2. Various inception modules.
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Figure 3. Various Reduction Modules.

3.3. Attention Mechanism and Squeeze and Excitation Networks

Recently, attention mechanisms have been widely used in pattern recognition and
have been proven effective. In contrast to natural images, medical images tend to be similar
in appearance. Even though they are from different image sources, they are acquired
from standardized positions using similar set of acquisition parameters. For radiologists,
experience in analyzing the images is associated with knowing where exactly to look to
detect specific abnormalities in the images [8]. Furthermore, extensive variability in the
shape and appearance of nodules in the ultrasound images led to false positive predic-
tions [34]. To address these issues, for reducing false positive predictions, we used squeeze
and excitation networks because they used fewer parameters and provided superior results
when compared with other techniques. In fact, we claim that the inability to exploit global
information is a common problem in medical image analysis. This type of network is a
modular mechanism that allows for the efficient exploitation of global information, which
also provides soft object localization during forward pass. This type of network helps to
focus on regions that are disease-specific. Generally, this strategy is particularly effective
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for focusing on nodule regions. It can reduce the impact of the noise in the non-nodule
region, and misalignment can be alleviated. In the attention mechanism, re-weighting of
certain features of the network has been accomplished with the help of some externally
or internally (self attention) supplied weights [9]. In order to understand what a model is
doing from an attention point of view, we need to familiarize with both hard attention and
soft attention. Soft attention allows their weights to be continuous, while hard attention
requires them to be binary (0 or 1) [8]. In the case of hard attention, certain parts of the
image are cropped out. In essence, the original image is re-weighted so that the cropped
part has a weight of 1 and the rest has a weight of 0. It is not differentiable and cannot
be trained end-to-end, which is the main disadvantage of hard attention. Instead, the
authors use the activation of a certain layer to determine the ROI and train the network
in a complicated multistage process [9]. In order to train the attention gates, we have to
use soft attention. Instead of using hard attention and recalibrating weights in terms of
cropping the feature maps, Hu et al. looked at re-weighting the channel-wise responses in
a certain layer of a CNN by using soft self attention to model interdependencies between
the channels of the convolutional features [9]. For this purpose, the authors proposed the
concept of squeeze and excitation building block. Normally, the network weights each of
its channels equally when creating the output feature maps. The squeeze and excitation
Networks (SENets) are all about changing this by adding a content-aware mechanism to
weight each channel adaptively. It adds a single parameter to each channel and gives it a
linear scale of how relevant each one is. First, they obtain a global understanding of each
channel by squeezing the feature maps to a single numeric value. This results in a vector
of size n, where n is the number of convolution channels. Afterwards, it is fed through a
two-layer neural network, which outputs a vector of the same size. These n values can now
be used as weights on the original feature maps, scaling each channel based on importance.

The squeeze and excitation block work as follows. For any transformation of features
Ftr from X to U (e.g., Convolution), there is a transformation Fsq that aggregates the global
feature responses across spatial extents (H,W) [9]. This represents the squeeze operation.
The squeeze operation is followed by the excitation operation Fex, which is a self-gating
operation that constructs a channel-wise weight response [8]. The output of Ftr is subse-
quently multiplied channel-wise by the result of excitation. This is depicted as Fscale in
Figure 4 [35].

X

Ftr

W’
C’

H’ H

C
W

U
Fsq (.)

Fex (.,W)

1X1XC 1X1XC

F scale (
.,.)

X’

H

W
C

Figure 4. Squeeze and Excitation Block.

The mathematical representation of the squeeze operation is as follows [9].

zc = Fsq(uc) =
1

H × W

H

∑
i=1

W

∑
j=1

uc(i, j) (2)

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (3)

Here, uc are the outputs of the operation Ftr. The squeeze operation uses global average
pooling to create a global embedding. We could also use global max pooling. The authors
note that average pooling slightly improves the overall performance [35]. The excitation
block is represented by:

s = Fex(z, W) = σ(g(z, W)) = σ(W2δ(W1z)) (4)
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The significant advantage of the squeeze and excitation block is in incorporating
global information while decision making [8]. Conversely, a convolution operation focuses
on local spatial information within a specific area [9]. According to the authors, in the
early stages of the network, excitation weights are almost the same for different classes
but become more specific in later stages [9]. In other words, lower layers of the network
learn more general input features, whereas higher layers are more likely to be specific [9].
Additionally, the squeeze and excitation block does not make much sense at the last stage
of the network, where most excitations become one [35]. This can be explained by the fact
that the last stage of the network already contains most of the global information and the
squeeze and excitation operation brings in no new information content [35]. squeeze and
excitation building blocks offers the advantage of being extremely versatile; the authors
mention that it can integrate with any convolutional neural network architecture, such
as ResNet and Inception. We can integrate the squeeze and excitation building block to
every stage of the network or just at certain stages. Additionally, it introduces only a slight
overhead concerning the number of learnable parameters.

Therefore, we consider the construction of SE-blocks for inception modules. Here,
we simply transform Ftr to be an entire inception module (see Figure 5). By making this
change for each such module (see Figure 2) in the architecture, we obtain an SE-Inception
network [9]. This will help the network to learn the importance of channel in the process of
network training.

Inception

Global Pooling

Fully Connected

ReLU

Sigmoid

Scale

Fully Connected

X

X’

Inception

X

X’

Inception Module

SE - Inception Module

HxWxC

1x1xC

1x1xC

1x1xC/r

1x1xC/r

1x1xC

HxWxC

Figure 5. The schema of the original inception module (left) and the SE-inception module (right).

3.4. Proposed Improved Inception Squeeze–Excitation Blocks

Jie Hu et al. proposed an inception architecture combined with the squeeze and
excitation module, which is given in Figure 5. In this architecture, the SE-block is inserted
into every inception block. Assessment of ultrasound images for thyroid nodule diagnosis
is based on the experience of the clinicians. On ultrasound images, clinicians tend to focus
on certain places pertinent to diagnosis when examining thyroid nodules. We include
the SE-block in each inception module to ensure that the inception modules learn these
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key areas independently during the network training process. Accordingly, the SE-block
produces corresponding attention heat maps of the same size as the traditional inception
blocks. We define that all the values have a range of (0, 1) activated by the sigmoid activation
function. If the value of the heat map is closer to 1, the more the location is concerned by
the network. Finally, the significant feature map is obtained by multiplying the attention
heat map by the corresponding feature map produced by the traditional inception block.
In other words, the more focused on the pixel, the more completely retained the feature
value and vice versa. Thus, in the process of gradient descent during network training,
when the classification is correct, the weight of the feature will be increased and vice versa.
Eventually, the network reduces the attention values in the irrelevant part and learns the
significant features for classification.

Furthermore, the inception module is distinguished by incorporating convolutional
kernels of different scales within the single convolutional module. The advantages are
obvious: Instead of using a single convolutional kernel, the inception module can extract
multiple types of features from a single layer feature map using multiple convolutional
kernels that expand the dimension of each layer of feature maps without increasing the
depth of the network. We believe that this module brings a new problem as well: the feature
map dimension disaster [36]. Feature maps of thousands of channel appear in the final
concatenation layer (As shown in Figure 2). However, these channels are not fully utilized,
as doctors could hardly consider so many channels when examining thyroid ultrasound
images [36]. Therefore, we introduce a fully connected module along with the squeeze and
excitation block and inception module [36]. The improved inception blocks along with the
SE-blocks are given in Figure 6.

The improved inception blocks allow the network to learn the significant features that
are crucial for the diagnosis, fully utilizing the features obtained from parallel convolu-
tions. Figure 6 presents the improved version of the different inception blocks used in the
traditional inception architecture [30,33,36].

Inception

Global Pooling

Fully Connected

ReLU

Sigmoid

OUT 1

OUT 2

OUT 

Fully Connected

Sigmoid

Fully Connected

X

X’

Figure 6. Improved inception attention module.
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3.5. Proposed Network

The proposed network architecture is based on Inception-v4 and it is shown in Figure 7.
In this work, the stem of Inception-v4 was kept similar. However, the inception modules
were updated to obtain a more lightweight network (please refer to Figures 2, 3, 6, 7 and 8).
The stem refers to the initial set of operations performed before introducing the inception
blocks (please refer to Figure 8). Figure 7 presents the complete architecture of the network
and Figures 2, 3, 5, 6 and 8 show the detailed structure of its components. Our proposed
architecture contains improved inception blocks that utilize parallel stacked convolutions
and attention mechanism, and it is shallower and narrower. The number of layers and
number of filters are reduced, compared with the conventional Inception-v4. This was
applied to reduce computational cost and, at the same time, produce a smaller model with
less capacity which would be less prone to overfitting. Unlike in Inception-v4, we have not
utilized an auxiliary classifier, since our network is not as deep. The Relu activation was
used after every convolution due to its simplicity and efficacy. All the convolutions marked
with V are valid padded, which indicates that the input patch of each unit is fully contained
in the previous layer and the grid size of the output activation map is reduced accordingly.
All the convolutions that are not marked with V are same padded, which indicates that the
their output grid matches the size of their input. The default input size for the proposed
Inception network is 299 × 299. Thus, we resized the ultrasound images in a dataset into
this size.
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Figure 7. Network Architecture.
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Figure 8. Stem of the network.

3.6. Overall Framework of the Multi-Level Transfer Learning for Thyroid Nodule Classification
Using Breast Ultrasound Images

Recently, deep learning has taken over the field of image processing with its state-of-
the-art performance. The problem is that deep learning models require enormous amounts
of well-labeled training data. Generally, medical image datasets are difficult to access
due to the rarity of the diseases and to ethical issues. In addition, manually collecting
a massive amount of high-quality, labeled medical images is a time-consuming, labor-
intensive, and expensive process. Therefore, insufficient training data makes it challenging
to build an appropriate deep learning model [37]. These are the main challenges faced
while developing a deep-learning model for thyroid ultrasound images. Thus, transfer
learning has been introduced to address these concerns in the domain. Transfer learning
involves transferring knowledge between different domains and tasks to create robust
and flexible target models [38]. Transfer learning consists of using models trained for
specific tasks and leveraging the model they acquired on different but related tasks. This
can be highly advantageous when sufficient instances are not available for direct training
on the target domain. In addition, traditional deep learning models require training
from scratch, which is computationally expensive and requires a large amount of data to
achieve high performance. The transfer learning approach is computationally efficient and



Diagnostics 2023, 13, 2463 14 of 28

helps to achieve better results using small datasets. Transfer learning achieves optimal
performance faster than the traditional machine learning model. The model that leverages
knowledge from previously trained models already understands the basic features. The
traditional machine learning model has an isolated training approach where each model
is independently trained for a specific purpose without dependency on past knowledge.
Contrary to that, transfer learning uses knowledge acquired from a pre-trained model is
applied to the development stage of the target model.

Transfer learning algorithms generally assume that the source and target domains
share some information. Many real-world applications, like medical image processing
and recommendation systems, do not always conform to this assumption. Moreover,
knowledge transfer between two loosely related domains usually causes a negative transfer,
meaning that the knowledge transfer adversely affects the performance of the task in the
target domain, producing worse performance than the traditional deep learning model [37].
Medical and natural images vary significantly in several aspects, such as shape, color,
resolution, and dimensionality. Compared with medical images, natural images appear
diverse and possess more contour details and colors reflecting rich visual information.
By contrast, medical images look almost identical, indicating considerably lesser visual
information. Accordingly, natural image tasks are usually accomplished by identifying
major morphological characteristics such as edges, colors, and shapes of the objects. In
contrast, in medical image applications, pathologies are identified by detecting small
abnormalities and local texture variations, such as bleeding and inconsistent structures.
For instance, the signal-to-noise ratio of natural images is exceptionally high compared to
that of medical images. Specifically, natural images have virtually no noise and are usually
high-contrast and high-resolution images. Meanwhile, medical images are often noisy, and
low contrast and low spatial resolution can limit detection of medical components in the
images(such as nodules, cysts, bloodflow). It is obvious that such differences can hinder the
effective transition of learned features from natural images for analyzing medical images.
These modality differences can significantly undermine transfer learning performance.
Moreover, there can be considerable modality differences even between different medical
images (MRI and CT) [39]. However, the modality difference between different medical
images is not significant when compared with the modality difference between medical and
natural images. In addition, it was recently proven that the performance of the pre-trained
model declined when they were employed for images such as chest X-ray, ultrasound, and
brain MRI [40].

In 2021, J.C Hung and J.W Chang proposed the concept of multi-level transfer learn-
ing to address the issues regarding modality differences that exist among different do-
mains [41,42]. In this approach, if optimal performance is gained at one level, knowledge
gained by the corresponding model will be transferred from the current level to the next
higher level.

In 2017, Kim et al. proposed an approach, named modality bridge transfer learning, to
address issues regarding insufficient data in the medical domain. Here, a bridge domain is
introduced between the source and target domain to address the modality gap between
the source and target domain. Figure 9 shows the overall framework of the modality
bridge transfer learning proposed by H.G Kim et al. [39]. In a single level transfer learning
approach (or traditional transfer learning), to extract image characteristics such as edge
and texture, we learn the projection function,which is mapping from source image space to
source feature space through the source dataset. The source database consists of a large
number of natural images. To learn the features of medical images, the knowledge learned
from the source domain is transferred to the target domain. However, this model does
not reflect the characteristics of the target domain due to the domain difference. To learn
the characteristics of the target domain (medical image), the model obtained from the
source domain is supposed to be fine-tuned with images of target domain. As mentioned
earlier, in the medical imaging domain, it is difficult to collect a large number of labeled
images because of patient privacy protection and the high cost of reliable labeling. For
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this reason, training the model using this small dataset may cause overfitting or failure to
converge during training. Therefore, in modality bridge transfer learning, a bridge domain
is introduced between the source and target domain. A bridge domain will be from the
same modality or almost similar modality to that of the target domain, but it is better in
terms of the number of training samples. By learning the model from the source to the
bridge domain and then from the bridge to the target domain, the domain differences
between the source and target domain can be reduced. This provides a two-level approach
for transfer learning. The knowledge gained from natural images (basic image features) is
transferred to the bridge domain to learn the abstract features of the bridge domain. Finally,
based on the learned features from two domains (source domain and bridge domain), the
model is fine-tuned with the images in the target domain [43]. This particular model is
applied for the different tasks in the target domain.

Source database

(Natural Images)
Bridge database

(Breast ultrasound images)

Target database

(Thyroid ultrasound images)

Transfer knowledge from 

source domain to bridge domain
Transfer knowledge from 

bridge domain to target domain

Feature space of 

source domain

Feature space of 

bridge domain

Feature space of 

target domain

Classes of 

TinyImageNet

* Benign

* Malignant

Xs
XB XT

Xs
XB XT

* Benign

* Malignant

Figure 9. Overall framework for multi-level transfer learning for the classification of thyroid nodules
from ultrasound images.

Based on these concepts, we utilized a multi-level transfer learning approach for
the thyroid nodule classification problem, which consists of three domains: the source
domain (natural images), bridge domain (breast ultrasound images), and target domain
(thyroid ultrasound images) [44]. Here, we selected breast ultrasound images as the bridge
domain due to the similar characteristics of thyroid and breast nodules. The bridge and
target domain both belong to ultrasound images (breast ultrasound images and thyroid
ultrasound images).

4. Experimental Framework
4.1. Datasets

For applying the transfer learning technique to the thyroid ultrasound image clas-
sification model, the proposed network was evaluated using four different benchmark
datasets: a part of CIFAR-10 [45], a part of CIFAR 100 [45], and a part of TinyImageNet [46].
Based on the performance of the network on these datasets, we selected the part of TinyIm-
ageNet [46]. The TinyImageNet dataset contains square images of 64 × 64 pixels. There are
three channels for color in almost all images, meaning they are 64× 64× 3 arrays. However,
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18% of the examples are grayscale images [46]. The images are instantly converted from
grayscale to RGB by replicating pixel values across three channels [46]. Each image belongs
to exactly one of the 200 categories. The entire training set for TinyImageNet consists of
100K images (500 images from each category). The validation and test set has 10K images
each (50 from each category) [47]. Due to the high computational requirements, we selected
a subset from the training set consisting of 20K images (100 from each category). Likewise,
the test set contains 2K images (10 images from each category). Another advantage of
choosing TinyImageNet is the presence of grayscale images. All the images in the bridge
domain (breast ultrasound) and the target domain (thyroid ultrasound) are grayscale.

For the multi-level transfer learning, we utilized a breast ultrasound image dataset
as the bridge dataset [44]. This dataset consists of 1312 images, where 891 images exhibit
benign nature and 421 images exhibit malignant nature. At this stage, we utilized pre-
trained weights taken from the model trained on the part of TinyImageNet [46]. We selected
this bridge dataset based on the approach proposed by Y-C Zhu et al. [4]. They proposed
a generic deep-learning algorithm to classify thyroid and breast lesions [4]. Both breast
and thyroid nodules are similar in basic internal or external characteristics and hormonal
influences. Several studies demonstrated that a high frequency of thyroid-stimulating
hormones and estrogen might contribute to the pathological evaluation of breast nodules
and thyroid nodules [48,49]. Possible correlations between breast and thyroid cancer have
also been explained in [4], as well as hormonal risk factors and genetic susceptibility. Under
high-frequency ultrasound scans for malignant lesions, thyroid and breast nodules show
similar imaging characteristics, including being taller than wide, having hypoechogenicity,
and having ill-defined margins [4]. This observation strongly motivates using the breast
ultrasound image dataset as the bridge dataset in multi-level transfer learning to classify
thyroid nodule ultrasound images.

For the thyroid nodule dataset, we initialized the proposed network with pre-trained
weights taken from the breast ultrasound image classification model. We utilized an open-
source thyroid nodule image dataset named DDTI. It contains ultrasound nodular thyroid
images. Currently, DDTI contains 980 ultrasound images in total (322 images exhibit
malignant nature and 658 images exhibit benign nature), around 60% for the training set
and around 40% for the validation and test sets. This dataset was collected and published by
Pedrazza et al. in 2015 [50–52]. The proposed database includes B-mode ultrasound images
with a complete annotation and diagnostic description of suspicious thyroid lesions by
expert radiologists [53]. The dataset includes several types of lesions like thyroiditis, cystic,
adenomas, and carcinomas, and accurate lesion delineation is provided in an XML format.
The diagnostic confirmation of malignant lesions was confirmed by their histopathological
analysis [53]. Some sample images from DDTI dataset are given in Figure 10.

(a) (b) (c)

Figure 10. Sample images from the DDTI dataset. The first image (a) and the last image (c) represent
benign nodules and the middle image (b) represents a malignant nodule.

The details of the breast and thyroid ultrasound image dataset are given in Table 1.
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Table 1. Details of the breast and thyroid ultrasound image datasets.

Phase Phase 2 Phase 3

# of Images 1312 980
Class distribution (891 B, 421 M) (658 B, 322 M)
Training 1004 750
Testing 111 83
Validation 197 147

4.2. Implementation Details

Our experiments were conducted on a PC with the following specifications: Intel (R)
Core (TM) i7 7700 HQ with 16 GB RAM clock speed or frequency of CPU @ 2.80 GHz and a
GPU of NVIDIA GeForce GTX 1080 Ti. The algorithms were implemented in Python 2.7
using the Anaconda 64-bit Windows platform. The OpenCV, Skearn, Keras, and TensorFlow
libraries were used to develop the machine learning model.

4.3. Training Setting and Hyperparameter Setting

In the training phase, the initial value of the learning rate (initlr) was set to 0.001 and
it was attenuated according to the formula.

newlr = initlr × γ
epoch

stepsize

where γ was set to 0.5 and stepsize was set to 4. For adequate training, we empirically
set the epoch to 100, as most training procedures converge around it. We randomly split
the dataset 85:15 at the patient level to create independent training and test sets. The
training data was further split 90:10 to create an independent validation set. The splits
were carried out in a stratified fashion to maintain the same proportion of cancer cases in
the training, validation, and test sets. For the breast ultrasound dataset (bridge domain),
the total number of images in the training, validation, and testing were: 1004, 111, and
197, respectively. For the DDTI dataset (target domain), the total number of images in the
training, validation, and testing sets were: 750, 83, and 147, respectively.

We used TensorFlow 2.0 with Keras API to train, evaluate, and predict all the models.
All the hyperparameters for the three stages of model training are given in Table 2.

Table 2. Various hyperparameters and their value for the training.

Parameter Value

Image size 256 × 256
convolution layer filters [16, 32, 64, 128, 256, 512]
convolution-layer,kernel size, stride,padding 3 × 3, 1 × 1, same
Activation function Relu
Maxpooling: pool size, stride, padding 2 × 2, 2 × 2, same
Depth 5
Dropout 0.3
Batch size 32
Activation Function Sigmoid
Number of epochs 100
Cross Validation Stratified 5-Fold

Initially, for the source dataset, the network was trained using a mini-batch stochastic
gradient descent algorithm. Binary cross-entropy was used as a loss function. As we
already said, the learning rate was set at 0.001. The number of training epochs was set
as 100 with an early stop mechanism, which would cease the optimization process if 20
consecutive epochs returned the same validation loss errors. Additional details of the
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model training are provided in Table 2. In the case of the bridge domain, RMSProp was
used as an optimizer and binary cross-entropy as a loss function. Here, we utilized a slower
learning rate to avoid overfitting. For the target domain, adam was used as the objective
function and binary cross-entropy was used as the loss function. For the target domain, we
followed similar hyperparameters as the bridge domain.

Overfitting may adversely affect the performance of the model when it deals with
previously unseen data. Dropout methods, which temporarily remove specific nodes
from the model and reduce its complexity, can help to avoid this problem. Expanding the
training set could eliminate the overfitting issue in the training process. Hence, we utilized
a data augmentation strategy to expand the training set. By using the ImageDataCreator
package from the Keras library, we generated batches of tensor images with real-time data
augmentation. All the parameters, along with the values, are shown in Table 3.

Table 3. Parameter Settings for Data Augmentation.

Parameters of Image Augmentation Values

Zoom range 0.2
Rotation range 20

width shift range 0.2
height shift range 0.2

feature-wise center True
feature-wise standard normalization True

horizontal flip True
validation split 0.2

fill-mode reflect

4.4. Data Preprocessing

The grayscale thyroid ultrasound image is 380 × 580 in the dataset. We modified the
input to 299 × 299 to overcome the effects of image distortion.

4.5. Evaluation Metrics

In this study, we computed the accuracy, precision, recall, f1-score, g-mean and speci-
ficity of each class. Likewise, we computed accuracy, specificity, sensitivity, f1-score, and
g-mean for the entire model for thyroid nodule classification. They are defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

f 1 − score =
2 × Precision × Recall

Precision + Recall
(8)

Speci f icity =
TN

TN + FP
(9)

The performance of the model was also evaluated using the Receiver Operating Character-
istics Curve (ROC Curve).

5. Results and Discussions

In this section, the experimental results are discussed to validate the performance
of the proposed model for the characterization of thyroid nodules. Section 5.1 discusses
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the performance of the obtained intermediate models based on both the selected part of
TinyImageNet and the breast ultrasound images. Section 5.2 deals with interpreting the
training and validation curves of classification models obtained for thyroid ultrasound
images. Section 5.3 summarizes the results of evaluating various models based on a test set
in terms of several evaluation matrices. Section 5.5 interprets the receiver operating charac-
teristic curves associated with each implemented model. Section 5.6 illustrates the results
of several state-of-the-art methods for thyroid nodule characterization. Section 5.7 explains
several benefits of the proposed method, and Section 5.8 discusses several limitations of
the current study and some future directions from it.

5.1. Evaluation of the Proposed Network for Breast Cancer Ultrasound Images

First, the network is trained with part of TinyImageNet, as discussed in Section 4.1.
Then the bridge dataset, the breast ultrasound image dataset, acts as a bridge across the
source and target domains by constructing a high-level feature space and reducing the
corresponding distribution divergences. The performance of the network for the source
domain (part of TinyImageNet) is reported in Table 4 as Phase 1. It achieves an accuracy of
0.9857, a precision of 0.9790, a recall of 0.9286, and an F1-score of 0.8975. In Phase 2, the
network trained using the part of TinyImageNet is finetuned using the breast ultrasound
image dataset and achieves an accuracy of 0.8967, precision of 0.8567, recall of 0.9286, and
an F1-score of 0.8340. The performance of the network for these classifications is much
better. Hence, it is suitable for transfer learning. Next, we try to transfer the network
parameters to the target domain to characterize thyroid nodules in ultrasound images.

Table 4. Performance of the Network during Phase 1 and Phase 2.

Phase Accuracy Precision Recall F1-Score

Phase 1 0.9857 0.9790 0.9286 0.8975
Phase 2 0.8967 0.8567 0.9286 0.8340

5.2. Evaluation of the Proposed Method

As a first attempt, the architecture proposed in Section 3.5 was trained from scratch
using the DDTI dataset. In the remainder of the article, this model will be referred to as
the baseline model. Figure 11 depicts the evolution of the running average of the training
and validation accuracy and loss function. However, we noticed that the model severely
overfitted the training data at 30 epochs. The training accuracy had already exceeded
90% and was improving rapidly. At the same time, the validation accuracy remained
stable at around 75%. We can see a significant deviation in training loss and validation
loss. It suggests that applying more regularization approaches to our model could help it
generalize to validation sets or data that have never been seen before.
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Figure 11. Training and validation curve for the baseline model.

Next, we improved our baseline model by adding more convolutional and dense
layers. We add a dropout of 0.3 after each hidden dense layer to facilitate regularization.
Dropout is a powerful regularization method for deep convolutional neural networks. It
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can be applied separately to both the input and hidden layers. The dropout layer sets
the output of a few layers to zero to prevent overfitting (in our case, 30% of the units
in dense layers). Figure 12 depicts the training and validation curve for the regularized
model. It is evident from the training and validation curves that the model still continues
in a state of overfitting. However, it takes slightly longer, and our validation accuracy is
somewhat better, which is decent but not amazing. Due to limited training data, the model
continuously sees the same occurrences across epochs, leading to model overfitting. The
solution to this challenge would be to augment images in our training set using an image
augmentation strategy that uses minor alterations to existing data.
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Figure 12. Training and validation curve for the model with regularization.

For the next attempt, we added data augmentation at training time. This means that
we added a preprocessing step to each batch before training. Each image was randomly
flipped from left to right and altered in brightness and contrast. All the details of data
augmentation are given in Section 4.3. The training parameters described in the earlier
attempts were kept identical. The validation and training accuracy are plotted and given
in Figure 13. While there are some spikes in the validation accuracy and loss curves, we
can see a significant improvement in the validation accuracy. It is significantly closer to
training accuracy, which indicates the generalization capability of the model compared
to our previously obtained models. Here also, the variation in training and validation
accuracy curve indicates the state of model overfitting.
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Figure 13. Training and validation curve for the regularized model + data augmentation.

A way to combat this would be to adopt transfer learning strategies. Therefore, we
trained the model using a massive dataset with a more significant number of instances
(here, we used a subset of TinyImageNet). During this stage, the network can learn a
robust hierarchy of features: spatial, rotational, and translational invariants. The network
can extract relevant features from the images using this pre-trained model for thyroid
nodule classification. Here, the network is fine-tuned with thyroid ultrasound images from
DDTI datasets. As a result, we achieved a validation accuracy of close to 76%, which is an
improvement of almost 6–7% from our basic CNN model with image augmentation. The
model does seem to be overfitting, though. After the fifth epoch, there is a substantial gap
between model training and validation accuracy curves, suggesting that the model is in the
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state of overfitting. As of now, however, this appears to be the best model. The training
and validation curves for the model are shown in Figure 14.

Figure 14. Training and validation curve for the model which uses transfer learning from TinyIma-
geNet.

As a next step, we tried multi-level transfer learning based on TinyImageNet and the
breast ultrasound images. We can see the improvement in training and validation accuracy
and the corresponding loss. As a result, we obtained a better classification model with a
validation accuracy of 80%, which is nearly a 5–6% improvement over our previous CNN
model which used single-level transfer learning. The training and validation curve for the
model is shown in Figure 15.
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Figure 15. Training and validation curve for the model which uses transfer learning based on
TinyImageNet and breast ultrasound images.

5.3. Evaluation Metrics

We evaluated the performance of all the models, starting with the baseline model, in
terms of different evaluation metrics. Tables 5–7 shows the performance of all the models,
starting with the Data Augmentation + Regularization model. The results obtained for all
the models (data augmentation + regularization, single-level transfer learning, and multi-
level transfer learning) are given in Tables 5–7. We also included different characterization
models developed from different pre-trained CNN architectures, and the performance of
each model is given in Table 8. The performance of each class (for Inception-v3, Inception-
ResNet v2) is shown in Table 5. Table 5 lists the precision, recall, and F1-score results for
both benign and malignant classes. Table 6 lists the G-Mean and specificity for both benign
and malignant classes.

As presented in Table 7, the precision of the first model (Data Augmentation + Regu-
larization) without transfer learning was 88.68% for the benign class and 93.30% for the
malignant class, and training was performed using a single level transfer learning and
multi-level transfer learning to improve the accuracy further. In the case of single-level
transfer learning, it achieved a precision of 90% for the benign class and 93.33% for the
malignant class. In the case of multi-level transfer learning, it obtained a precision of 0.9057
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for the benign class and 0.9667 for the malignant class. Both approaches based on transfer
learning achieved higher precision when compared with the basic CNN approach.

Table 5. Detailed Evaluation of the performance of different Thyroid Nodule Ultrasound Classifica-
tion models.

Method Category Precision Recall F1-Score

Hybrid Inception-SE (without TL) Benign 0.8868 0.9592 0.9216
Malignant 0.9333 0.8235 0.8750

Hybrid Inception-SE (with sL-TL) Benign 0.9000 0.9600 0.932
Malignant 0.9333 0.8485 0.8888

Hybrid Inception-SE (with mL-TL) Benign 0.9057 0.9796 0.9412
Malignant 0.9667 0.8529 0.9062

Inception-V3 Benign 0.8868 0.9216 0.9038
Malignant 0.8667 0.8125 0.8387

Inception-ResNet v2 Benign 0.8868 0.9400 0.9126
Malignant 0.9000 0.8182 0.8571

Table 6. Detailed Evaluation of the performance of different Thyroid Nodule Ultrasound Classifica-
tion models.

Method Category G-Mean Specificity

Hybrid Inceptionv3 (without TL) Benign 0.8888 0.8235
Malignant 0.8888 0.9592

Hybrid Inceptionv3 (with sL-TL) Benign 0.9025 0.8485
Malignant 0.9025 0.9600

Hybrid Inceptionv3 (with mL-TL) Benign 0.9141 0.8529
Malignant 0.9141 0.9796

Inception-v3 Benign 0.8653 0.8125
Malignant 0.8653 0.9216

Inception-ResNet v2 Benign 0.8770 0.8182
Malignant 0.8770 0.9400

Table 7. Detailed Evaluation of the performance of different Thyroid Nodule Ultrasound Classifica-
tion models.

Method Specificity F1-Score G-Mean Sensitivityy Accuracy

Hybrid Inception-v3 (without TL) 0.8913 0.8982 0.8888 0.8913 0.9036
Hybrid Inception-v3 (with sL-TL) 0.9042 0.9104 0.9025 0.9042 0.9156
Hybrid Inception-v3 (with mL-TL) 0.9162 0.9237 0.9140 0.9162 0.9277
Inception-V3 0.8670 0.8713 0.8653 0.8670 0.8795
Inception-ResNet v2 0.8791 0.8849 0.8770 0.8791 0.8916

In the case of recall, the recall for the proposed approach based on multi-level transfer
learning is 0.9796 for the benign class and 0.8529 for the malignant class, while that of
single-level transfer learning is 0.9600 for the benign and 0.8485 for the malignant class.
Both strategies based on transfer learning obtained higher recall when compared with
the basic CNN approach. In the case of the F1-score, the proposed approach based on
multi-level transfer learning has an F1-score of 0.9412 for the benign class and 0.9062 for
the malignant class, while that of single-level transfer learning is 0.932 for the benign class
and 0.8888 for the malignant class. Both approaches based on transfer learning obtained a
higher F1-score when compared with the baseline approach, which uses regularization and
data augmentation. The above results indicate that our method significantly outperforms
the other two methods in all metrics. The performance of the pre-trained model for the
thyroid nodule classification is also given in Table 7. The performance of the proposed
model is considerably better than other methods.
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Table 8. Comparison of various CNN models in the Binary Classification task.

Model Specificity F1-Score G-Mean Sensitivity Accuracy

VGG8 0.7650 0.7651 0.7623 0.7651 0.7831
VGG11 0.7780 0.7798 0.7749 0.7779 0.7952
VGG16 0.7912 0.7912 0.7890 0.7912 0.8072
VGG19 0.8037 0.8056 0.8013 0.8037 0.8193
ResNet10 0.8172 0.8173 0.8157 0.8173 0.8313
ResNet18 0.8037 0.8056 0.8013 0.8037 0.8193
ResNet50 0.8162 0.8198 0.8135 0.8162 0.8313
DenseNet121 0.8416 0.8455 0.8394 0.8416 0.8554
Xception 0.8551 0.8575 0.8538 0.8551 0.8675
Inception-v3 0.8670 0.8713 0.8653 0.8670 0.8795
InceptionResNet-v2 0.8791 0.8849 0.8770 0.8791 0.8916

5.4. Comparison of Different Pre-Trained CNN Architectures for the Classification of Thyroid
Ultrasound Images

Table 8 provides the detailed experimental results for thyroid nodule characterization
from thyroid ultrasound images. It indicates that, for the DDTI datasets, the Xception and
Inception networks achieved the best accuracy, precision, and recall.

5.5. Receiver Operating Characteristics Curve

In addition, we plotted ROC curves for each model in Figure 16, along with the AUC
value for each model. It visualizes the trade-off between True Positive Rate (TPR) and False
Positive Rate (FPR). This figure illustrates how much difference single-level and multi-level
transfer learning can make. As shown in Figure 16, the ROC curve of the multi-level
transfer learning method is close to the upper-left corner compared with the other two
techniques. We can quantify the ROC curve to evaluate the performance of the models
further with the AUC value as shown in Figure 16. The AUC value of the model, which
follows the multi-level transfer learning technique, has a higher AUC value than the other
two methods. Compared with the model without transfer learning, the models that use
transfer learning exhibit improved performance, as indicated in Table 7 and Figure 16.
Likewise, compared with single-level transfer learning, more improvement can be seen in
multi-level transfer learning techniques, which use a medical dataset as a bridge dataset.

Figure 16. ROC analysis of the proposed models for DDTI dataset with 60–40% training and testing
set splitting in 10-fold cross validation average).
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5.6. Comparison with the State of the Art Methods

Previous studies have used CNN models to diagnose thyroid cancer in the past,
but the samples were small and their accuracy was not significant. As our results have
demonstrated, incorporating squeeze and excitation module in the inception architecture
along with the application of multi-level transfer learning improved the accuracy, sensitivity,
specificity, and AUC of the proposed model.

In the experiment analysis, we used the public dataset, DDTI, which includes thyroid
nodules with varying sizes, shapes, textures, and locations. A large number of published
works rely on private datasets which cannot be used for experimentation. Therefore,
comparing the performance of our approach with these existing approaches is difficult.
We have tabulated the performance of various models taken from the literature, and it is
shown in Table 9.

Table 9. Performance analysis of state-of-the-art thyroid nodule characterization methods for 2D
ultrasound images.

Methods Benign Malignant Accuracy Sensitivity Specificity AUC

Chang et al. [54] 403 207 0.9200 100 0.8788 NG
Acharya et al. [15] 651 386 0.9310 0.9080 0.9450 0.9770
Nam et al. [55] 2450 2557 0.9050 0.9376 0.9139 0.9091
Sun et al. [56] 400 400 0.8825 0.9000 0.8650 0.9286
Wang et al. [22] 69 86 0.9680 0.9821 0.9565 NG
Liu et al. [16] 2551 5139 0.971 0.982 0.951 NG
Liu et al. [16] 128 322 0.928 0.965 0.780 NG
Chi et al. [18] 71 357 0.9829 0.9910 0.9390 NG
Y.Chen et al. [24] 552 602 92.11 NG NG NG

5.7. Advantages

The proposed deep-learning approach for classifying thyroid nodules could contribute
to clinical practice in different ways. Predictions made by radiologists can differ depending
on the individual level of experience and expertise [4]. This automated deep-learning
solution can significantly reduce image interpretation time in clinical practice and can
provide more accurate results. The readout time for the model was roughly 1.15 s per image.
By contrast, the radiologists took approximately 30–40 s to classify one thyroid ultrasound
image [4]. Finally, the changes adopted in the improved inception network structure
are not only applicable to Inception networks but are also suitable for any convolutional
neural network architecture such as residual network and densenet architectures. It is
worth mentioning that the approach does not increase the depth of the neural network,
and it is easy to deploy. The proposed network architecture is applicable to any image
classification domain.

5.8. Limitations and Future Scope

It is important to emphasize that our study has several limitations. The lack of
sufficient annotated thyroid ultrasound images has been a predicament in the computer-
aided detection and characterization of thyroid nodules. A large dataset is required for
the development of an efficient CAD system for thyroid nodule diagnosis. To implement
and validate a new CAD system, it is necessary to use large datasets [57]. However, this
poses a considerable barrier to utilizing the capability of deep learning concepts [57]. Even
publicly available datasets of thyroid ultrasound images with manual annotations exist; the
number of thyroid cases is limited to hundreds. Collecting a large, comprehensive dataset
is required to develop effective CAD systems using deep learning techniques. As a pilot
study, our analysis revolves around a public dataset with limited samples drawn from a
retrospective and single-center study. Even though a different augmentation approach had
to be used to enlarge the sample size, the issues related to the small sample size must be
solved. Single-level and multi-level transfer learning have been utilized to address small
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sample size issues. In multi-level transfer learning techniques, a breast ultrasound image
dataset was used as a bridge dataset, consisting of 1200 images. In the future, we will
incorporate a dataset containing more samples as a bridge dataset. The proposed approach
centered on the presumption that each image included one nodule. In the image where the
sonographer delineated two nodules, we divided the image so that only one nodule could
be seen. This research has focused only on developing a computer-aided characterization
tool to classify benign and malignant thyroid nodules in thyroid ultrasound images. In the
future, several aspects must be explored to improve accuracy, performance, and clinical
applicability. We suggest a few directions and challenges for future research into thyroid
image analysis. In future work, we intend to refine our detection and characterization
framework. We can incorporate a detection network into the study that semantically
segments the thyroid nodules from thyroid ultrasound images for better thyroid nodule
diagnosis. It will provide physicians with a more comprehensive diagnostic model that
aids them in risk evaluation and characterization. Furthermore, inception blocks can be
replaced with dense or residual blocks. This approach is helpful for clinicians dealing with
low-contrast images or images with uneven contrast ratios.

6. Conclusions

This paper mainly explores the effectiveness of squeeze and excitation networks and
parallel convolutions in the inception architecture to characterize thyroid nodules. We
also utilized a multi-level transfer learning technique that uses a bridge dataset from the
same domain(ultrasound imaging) as the target domain to address limited sample size
issues. The domain difference between the source and target domain is a major concern in
single-level transfer learning. These models exhibited better diagnostic performance than
state-of-the-art models. Based on the performance of different convolutional neural network
models, the proposed approach can significantly improve the diagnosing capability of CAD
systems for thyroid nodules. Furthermore, the model represents a generalized platform
that can assist clinicians working across multiple domains.
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