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Abstract: White blood cells (WBCs) are crucial components of the immune system that play a vital
role in defending the body against infections and diseases. The identification of WBCs subtypes is
useful in the detection of various diseases, such as infections, leukemia, and other hematological
malignancies. The manual screening of blood films is time-consuming and subjective, leading to
inconsistencies and errors. Convolutional neural networks (CNN)-based models can automate such
classification processes, but are incapable of capturing long-range dependencies and global context.
This paper proposes an explainable Vision Transformer (ViT) model for automatic WBCs detection
from blood films. The proposed model uses a self-attention mechanism to extract features from
input images. Our proposed model was trained and validated on a public dataset of 16,633 samples
containing five different types of WBCs. As a result of experiments on the classification of five different
types of WBCs, our model achieved an accuracy of 99.40%. Moreover, the model’s examination of
misclassified test samples revealed a correlation between incorrect predictions and the presence or
absence of granules in the cell samples. To validate this observation, we divided the dataset into two
classes, Granulocytes and Agranulocytes, and conducted a secondary training process. The resulting
ViT model, trained for binary classification, achieved impressive performance metrics during the test
phase, including an accuracy of 99.70%, recall of 99.54%, precision of 99.32%, and F-1 score of 99.43%.
To ensure the reliability of the ViT model’s, we employed the Score-CAM algorithm to visualize the
pixel areas on which the model focuses during its predictions. Our proposed method is suitable for
clinical use due to its explainable structure as well as its superior performance compared to similar
studies in the literature. The classification and localization of WBCs with this model can facilitate the
detection and reporting process for the pathologist.

Keywords: vision transformers; white blood cells; explainable AI models; deep learning; Score-CAM

1. Introduction

White blood cells (WBCs), also known as leukocytes, play a vital role in the body’s im-
mune response [1]. They are produced in the bone marrow and are an essential component
of the body’s defense system against infection and disease. WBCs are classified as either
granulocytes, which possess granules in their cytoplasm, or agranulocytes, which lack
granules [2]. Granulocytes include neutrophils, eosinophils, and basophils. Agranulocytes
include lymphocytes and monocytes. Neutrophils, the most common type of WBCs, are
the first to arrive at the site of an infection and are responsible for engulfing and destroying
bacteria and other foreign particles [3]. Lymphocytes include T and B cells, which are
responsible for cell-mediated and antibody-mediated immunity, respectively [4]. T cells
help to identify and attack infected or cancerous cells, while B cells produce antibodies
that can neutralize pathogens. Monocytes mature into macrophages, which consume and
destroy microorganisms and debris [5]. Eosinophils play a role in the body’s response to
parasitic infections and allergies [6]. Basophils release histamine and other inflammatory
chemicals in response to allergens and other stimuli [7].

Diagnostics 2023, 13, 2459. https://doi.org/10.3390/diagnostics13142459 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13142459
https://doi.org/10.3390/diagnostics13142459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-5628-3543
https://doi.org/10.3390/diagnostics13142459
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13142459?type=check_update&version=1


Diagnostics 2023, 13, 2459 2 of 19

WBCs number can increase in response to infection, inflammation, or other stimuli.
An abnormal increase in WBCs count is called leukocytosis, while a decrease is called
leukopenia [8]. Abnormalities in WBCs counts can indicate a variety of medical conditions,
including infections, cancers, and immune system disorders. A complete blood count (CBC)
test, which isolates WBCs from a blood sample and studies their number and appearance
under a microscope, is commonly used as part of a routine medical check-up [9].

The utilization of artificial intelligence-based systems to automatically classify WBCs
in a CBC test can provide several benefits. Firstly, it can enhance the accuracy and consis-
tency of the results by removing the subjective nature of manual classification. Manual
classification of WBCs is a complex and time-consuming task that requires a high level
of expertise and experience [10]. However, with AI-based systems, the process can be
automated, and the results can be more consistent, as the system does not get tired or make
mistakes due to human error. Secondly, it can also increase the efficiency of the process
by reducing the time required for manual classification. This can be especially beneficial
in high-volume settings, such as in hospital laboratories, where a large number of CBC
tests are performed daily. Automated classification can also help to reduce the workload
of laboratory staff, allowing them to focus on other tasks. Furthermore, AI-based systems
can also provide additional information that may not be visible to the human eye, such as
detecting rare or abnormal cells, which can assist in the diagnosis of certain blood disorders.

In recent years, there has been a growing interest in using machine learning and
artificial intelligence to automate the analysis of WBCs. Deep learning algorithms have
been employed to develop automated systems that can identify and segment WBCs in
digital images of blood samples, providing a faster and more accurate alternative to manual
analysis [11]. To perform WBCs classification using deep learning, a dataset of labeled
images is first employed to train a neural network model. The model is subsequently able
to make predictions on new images, accurately identifying and classifying various types of
WBCs. This approach has demonstrated promising results, with some studies showing the
ability to achieve high levels of accuracy and precision in WBCs classification [12–14].

A number of studies have explored the utilization of deep learning for WBCs classifi-
cation, employing techniques such as convolutional neural networks (CNNs) and recurrent
neural networks (RNNs) to classify various types of WBCs. Cheuque et al. [15] proposed
a two-stage hybrid multi-level scheme for efficiently classifying four groups of WBCs
(lymphocytes, monocytes, segmented neutrophils, and eosinophils) using a combination of
a Faster R-CNN network and parallel CNNs with the MobileNet structure. The proposed
model achieved a performance metric of approximately 98.4% in terms of accuracy, recall,
precision, and F-1 score. Sharma et al. [16] proposed a deep learning model, specifically the
DenseNet121 model, for classifying various types of WBCs in blood cell images. They uti-
lized preprocessing techniques, such as normalization and data augmentation, to optimize
the model. The model was evaluated using a dataset from Kaggle containing 12,444 images
of various types of WBCs. The results indicated that the model achieved an accuracy of
98.84%, precision of 99.33%, sensitivity of 98.85%, and specificity of 99.61%. Jung et al. [17]
proposed a CNN-based method, referred to as W-Net, for WBCs classification, which
was evaluated on a large-scale dataset of real images of the five types of WBCs. The pro-
posed method, W-Net, achieved an average accuracy of 97% and demonstrated superior
performance compared to other CNN and RNN-based model architectures. The authors
also proposed the utilization of Generative Adversarial Networks (GANs) to generate
synthetic WBCs images for educational and research purposes. Rustam et al. [18] proposed
a hybrid feature set that combines texture and RGB features from microscopic images for
classifying various types of WBCs in blood cell images. They utilized a synthetic minority
oversampling technique-based resampling to mitigate the influence of imbalanced datasets,
which is a common problem in existing studies. The authors also adopted machine and
deep learning models for performance comparison using the original dataset, augmented
dataset, and oversampled dataset to analyze the performances of the models. The results
suggest that a hybrid feature set of both texture and RGB features from microscopic images,
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yields a high accuracy rate of 97.00% with random forest. Chola et al. [19] proposed a
deep learning framework, referred to as BCNet, for the identification of various types of
blood cells in an eight-class identification scenario. The proposed BCNet framework is
based on transfer learning with a CNN. The dependability and viability of BCNet were
established through exhaustive experiments consisting of five-fold cross-validation tests.
The performance of BCNet was compared with state-of-the-art deep learning models such
as DenseNet, ResNet, Inception, and MobileNet. The BCNet framework achieved the
highest performance with the RMSprop optimizer, with 98.51% accuracy and 96.24% F-1
score. Ahmad et al. [20] proposed a hybrid methodology for the classification of WBCs.
They utilized a synthetic dataset comprising five distinct types of WBCs, with each class
consisting of 1000 samples. The researchers conducted feature extraction on the dataset
samples by employing pre-trained DarkNet-53 and DenseNet-201 models. Subsequently,
they performed feature selection using the entropy-controlled marine predators algorithm
(ECMPA). The support vector machine (SVM) classifier achieved an accuracy of over 99%
when applied to the selected features. Bairaboina et al. [21] developed a deep learning
model aimed at classifying WBCs, based on images of peripheral blood smears. The
researchers employed a GhostNet-based deep learning framework to extract crucial fea-
ture maps from three distinct datasets. Classification was carried out using an optimized
ResNext model, leveraging the Wildebeest Herd Optimization (WHO) algorithm. To assess
the model’s performance, the Leukocyte Images for Segmentation and Classification (LISC)
dataset samples were utilized as input, resulting in an impressive accuracy of 99.16% for
these images.

CNN-based architectures have been extensively employed in the majority of studies
published in the literature. However, CNNs heavily rely on local receptive fields and
pooling operations, which impose limitations on their capability to capture long-range
dependencies within an image. This constraint impedes their potential to acquire a compre-
hensive understanding of the input and comprehend intricate relationships among various
regions of the image. Additionally, CNN architectures frequently necessitate meticulous
engineering and optimization efforts to attain optimal performance on particular datasets,
thereby reducing their flexibility and adaptability. Unlike traditional CNNs that use spatial
convolutions to extract features from images, Vision Transformer (ViT) models that use
self-attentional mechanisms to capture the relationships between different regions of an
image can improve performance [22]. ViT models have significant advantages over tra-
ditionally used deep learning architectures. Firstly, ViT models offer a more general and
universal architecture. To process visual data, these models first decompose the image into
small patches and then process these patches with a set of attention mechanisms [23]. This
approach allows the model to learn more general features and detect objects at different
scales. The application of transformer-based approaches for classifying medical images
is an emerging field of research [24]. Presently, numerous studies focusing on disease
detection using transformer-based models have been presented. Wu et al. [25] proposed
a ViT model for the classification of emphysema subtypes using CT images. The dataset
samples underwent preprocessing, followed by training of five distinct CNN-based models
(AlexNet, Inception-V3, MobileNet-V2, ResNet34, and ResNet50) alongside the ViT model.
he ViT model exhibited superior performance in comparison to the CNN-based models,
achieving an accuracy rate of 95.95%. Feng et al. [26] developed the ViT-Patch model for
the detection of benign and malignant tumors in ultrasound images. Ammar et al. [27]
proposed the ViT-TB model specifically designed for the identification of Tuberculosis
disease from X-Ray images.

Although ViT models have shown very high performance in studies on medical
images, they are not reliable for clinical use. The main reason for this is that the areas they
focus on in their predictions are not known. This black box structure, which is also valid
for CNN-based models, can be overcome with various CAM algorithms. Oztekin et al. [28]
proposed a CNN-based explainable model for detecting caries in panoramic dental images.
The model visualizes the pixel areas it focused on in its predictions using the Grad-CAM
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algorithm. Lee et al. [29] developed a pre-trained CNN-based model for identifying
acute intracranial hemorrhage. The model visualizes the specific areas it focuses on in
its predictions through the utilization of the Grad-CAM. CAM algorithms, commonly
employed to provide interpretability to CNN-based models, utilize the outputs of the final
convolutional layer preceding the classifier layer. However, since ViT models lack any
convolutional layer prior to the classifier, the outputs required for feeding CAM algorithms
become intricate. Consequently, the application of CAM algorithms with ViT models
remains limited in the number of studies conducted.

This paper proposes an explainable ViT model for computer-assisted automatic WBCs
classification. The proposed model first divides the input image into 16 × 16 pixel patches
and then processes these patches in encoder blocks to predict the class. The model visualizes
the specific pixel areas it emphasizes in its predictions utilizing the Score-CAM algorithm.
The approach proposed in this study has the potential to be applied clinically for computer-
aided automatic WBC detection due to its explainable structure. Moreover, to the best of
the author’s knowledge, this is the first study on Raabin-WBC dataset classification from
blood films using explainable ViT model.

The main contributions of this study can be summarized as follows:

• Using Raabin-WBC, a dataset that contains five different types of WBCs and is more
comprehensive than previous datasets, classification is performed with the ViT deep
learning model.

• A method is proposed to visualize the areas that the ViT model focuses on in its
predictions with the Score-CAM algorithm.

• In the predictions made on the input images, which are divided into 16 × 16 pixel
patches and then vectorized, the class probabilities are calculated with the softmax.

• The proposed method shows high accuracy and precise localization. The model also
achieves high softmax values in successful predictions, outperforming CNN models
in similar studies.

2. Materials and Methods

This study presents a cutting-edge deep learning model for the accurate identification
and classification of various subtypes of WBCs using the ViT model. This approach utilizes
a dataset of images of WBCs to train the model, enabling it to accurately classify the cells
into different subtypes with high accuracy. The model takes an image of a WBC as input
and employs its deep learning capabilities to output a prediction of the WBC’s subtype. In
this prediction process, the Score-CAM algorithm is utilized to demonstrate which regions
within the image influence the classification decision. The proposed approach is illustrated
in the diagram in Figure 1.
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Figure 1. Block representation of the proposed WBC classification and localization method. Figure 1. Block representation of the proposed WBC classification and localization method.



Diagnostics 2023, 13, 2459 5 of 19

2.1. WBCs Dataset

In this study, we utilized the publicly available dataset Raabin-WBC [30], created
from 72 regular peripheral blood films. The samples in the dataset were stained using the
Giemsa technique and viewed at 100× magnification using two microscopes. Additionally,
smartphones equipped with an adapter designed and fabricated via 3D printing were
employed to capture images by mounting the phone to the microscope ocular lens. A
total of approximately 23,000 images were acquired and processed utilizing a color filter
and a Faster RCNN network to extract WBCs. The data were further cleaned to eliminate
duplicate cell images and a comprehensive labeling process was undertaken to accurately
determine the cell types. The classes in the dataset obtained after the labeling process and
the number of samples they contain are presented in Figure 2.
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Figure 2. An illustration of the dataset with number of classes and some class images.

Upon examination of the class distributions of the Raabin-WBC dataset samples, it
becomes apparent that the dataset is unbalanced. While this may initially be perceived as a
problem for use in model training, it is in fact more suitable for real-world data. This is
because the distribution of WBCs in the population is not equal, with certain types of WBCs
being more prevalent than others. An unbalanced dataset accurately reflects this reality
and allows more accurate diagnosis and treatment. Conversely, a balanced dataset may
lead to oversampling of less common WBCs, resulting in skewed results and inaccurate
conclusions. Additionally, a balanced dataset may lead to oversampling of certain types
of WBCs, thereby biasing the training of a machine learning model and resulting in poor
performance on real-world data. For this reason, no data augmentation method was applied
to the dataset samples. A total of 80% of the dataset samples were reserved for training,
10% for validation, and 10% for testing. The number of data used at each stage as a result
of the splitting process is presented in Table 1.

Table 1. Data distribution at each stage of the splitting process for training, validation, and testing.

Phase Basophil Eosinophil Lymphocyte Monocyte Neutrophil Total

Training 241 852 2887 637 8688 13,305
Validation 30 107 361 79 1087 1664

Testing 30 107 361 79 1087 1664
Total 301 1066 3609 795 10,862 16,633
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2.2. Transformer-Based Image Classification Method

Transformers are a type of neural network architecture that have been widely utilized
in natural language processing (NLP) tasks, such as language translation and language
modeling [31]. The transformer architecture is based on the concept of self-attention,
which enables the model to weigh the importance of different parts of the input when
making predictions. Self-attention is implemented through an attention mechanism, which
calculates a weighted sum of the input values based on their relationships to a particular
position or query [32]. This mechanism allows the transformer to learn relationships
between different parts of the input, which is particularly beneficial in NLP tasks where
the meaning of a word or phrase depends on its context. Furthermore, the transformer
architecture also employs an encoder–decoder structure [33]. The encoder takes in the
input and generates a set of hidden representations, which are then passed to the decoder
to generate the output. Both the encoder and decoder are composed of multiple layers,
each containing multiple self-attention mechanisms. This enables the model to learn and
extract information from the input at multiple levels of abstraction, which is essential for
understanding the meaning of the input. The block diagram depicting the multi-head
self-attention (MHA) mechanism employed in this study is presented in Figure 3.
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In the context of MHA, each patch of the input vector undergoes a self-attention
process, wherein it is transformed into three distinct vectors: query (Q), key (K), and value
(V), through the use of weight matrices [34]. The saliency of each patch is determined
by calculating the dot product of its query and key vectors, producing a score matrix.
The softmax activation function is then applied to the score matrix, generating attention
weights. Finally, the attention weights are multiplied with the value vector, resulting
in the self-attention output. After the self-attention mechanism to each patch and the
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computation of resulting self-attention matrices, they are aggregated and processed by a
linear layer. Subsequently, a regression head is employed to generate the final output of the
MHA mechanism.

Dosovitskiy et al. [35] proposed the ViT model, which is based on transformers and
comprises self-attention blocks and multilayer perceptron (MLP) networks. ViTs are similar
to standard transformers, but are designed to handle images as input. Specifically, ViTs di-
vide images into smaller non-overlapping patches and then use a transformer architecture
to process each patch separately [36]. This enables the model to learn and extract infor-
mation from the images at multiple levels of abstraction, similar to how the transformer
architecture works for NLP tasks. A key feature of ViTs is their ability to handle images as
input without the need for a pre-processing step, such as applying convolutional layers. In-
stead, ViT divide images into smaller non-overlapping patches and then use a transformer
architecture to process each patch separately. A particularly noteworthy aspect of ViT is
their use of a linear projection to reduce the dimensionality of image patches before feeding
them into the transformer network. This approach may seem counterintuitive as it reduces
the information in the image patches. However, this linear projection serves a crucial role in
the ViT architecture and has several benefits. It allows for a more computationally efficient
model. By reducing the dimensionality of the image patches, the model can be trained on
larger images without requiring a large amount of computational resources, making ViT
more accessible to researchers and practitioners and allowing for more widespread usage
and experimentation.

The base model of the ViT architecture is used in this study. The details of the model
consisting of 12 Encoder blocks are presented in Table 2 (model available at: github.com/
oguzhankatar/ViT/). A ViT model with input size (1, 3, 224, 224) accepts an input image
with 3 channels (RGB) and 224 × 224 pixels. Then, the Conv2D (Projection) layer starts
by splitting the input image into a series of small pieces. These fragments are typically
called “patches” and each one represents a part of the image. The Conv2D layer subtracts
the patches using a 16 × 16 filter. ViT performs a transform for each patch using the
Conv2D layer. These transformations convert the image fragments into a set of vector
representations, and these vectors are processed in the encoder blocks of the ViT model.

Table 2. Proposed ViT model architecture.

Layer Name Input Shape Output Shape

PatchEmbed (1, 3, 224, 224) (1, 196, 768)
Conv2D (proj) (1, 3, 224, 224) (1, 768, 14, 14)
Idenity (norm) (1, 196, 768) (1, 196, 768)

Dropout (1, 197, 768) (1, 197, 768)
Idenity (patch_drop) (1, 197, 768) (1, 197, 768)
Idenity (norm_pre) (1, 197, 768) (1, 197, 768)
Encoder Block-1 (1, 197, 768) (1, 197, 768)

LayerNorm (norm1) (1, 197, 768) (1, 197, 768)
Attention (1, 197, 768) (1, 197, 768)
Idenity (ls1) (1, 197, 768) (1, 197, 768)
Idenity (drop_path1) (1, 197, 768) (1, 197, 768)
LayerNorm (norm2) (1, 197, 768) (1, 197, 768)
MLP (1, 197, 768) (1, 197, 768)
Idenity (ls2) (1, 197, 768) (1, 197, 768)
Idenity (drop_path2) (1, 197, 768) (1, 197, 768)

Encoder Block-2 (1, 197, 768) (1, 197, 768)
Encoder Block-3 (1, 197, 768) (1, 197, 768)
Encoder Block-4 (1, 197, 768) (1, 197, 768)
Encoder Block-5 (1, 197, 768) (1, 197, 768)
Encoder Block-6 (1, 197, 768) (1, 197, 768)

github.com/oguzhankatar/ViT/
github.com/oguzhankatar/ViT/
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Table 2. Cont.

Layer Name Input Shape Output Shape

Encoder Block-7 (1, 197, 768) (1, 197, 768)
Encoder Block-8 (1, 197, 768) (1, 197, 768)
Encoder Block-9 (1, 197, 768) (1, 197, 768)
Encoder Block-10 (1, 197, 768) (1, 197, 768)
Encoder Block-11 (1, 197, 768) (1, 197, 768)
Encoder Block-12 (1, 197, 768) (1, 197, 768)
LayerNorm (norm) (1, 197, 768) (1, 197, 768)
Idenity (fc_norm) (1, 768) (1, 768)
Dropout (1, 768) (1, 768)
Linear (head) (1, 768) (1, 5)

Each Encoder Block receives an input of the form (1, 197, 768) and produces an output
of the same form (1, 197, 768). Encoder blocks consist of an attention mechanism, an
intermediate layer, and an output layer. The attention mechanism is used in the ViT model
to extract features of the image and highlight important information. The intermediate
layer is used to transform the output of the attention mechanism into more complex and
rich features. This layer consists of the Dense layer and an activation function called
GELUActivation. The output layer resizes the output of the intermediate layer back to
the original dimensions and includes a Dropout layer. Before the input and after the
output of each encoder block are LayerNorm layers. LayerNorm normalizes the output and
applies weighted normalization operations. This helps the model to run stably and robustly.
The Normalization layer after Encoder Block-12 normalizes the data of size (1, 768) and
produces an output of size (1, 5). Then, a Linear layer is used to transform the data into
class labels of (1, 5). In this way, predictions can be made for five different classes of WBCs.

3. Experiments
3.1. Experimental Setup

In this study, a pre-trained ‘vit-base-patch16-224’ model with the ImageNet-21k (14 mil-
lion images, 21,843 classes) dataset was utilized due to the high cost of training a ViT model
from scratch with random weights. Timm and PyTorch libraries were used in the im-
plementation of the model. The output layer of the model was modified to match the
number of classes in the dataset. In the pre-processing stage, only the input images were
resized according to the ViT model. As the default input size of the pre-trained ViT model
is 224 × 224, all of the dataset samples were resized to this size. The model was then
trained on the samples allocated for the training set using the AdamW optimizer and the
CrossEntropyLoss function. During training, the pre-trained weights of the model were
constantly updated to better fit the set of WBCs. The batch size value was kept constant
at 16, and the learning rate at 0.00002. The maximum number of epochs was set to 100,
but an early stopping function was defined to monitor the validation loss value. If there
was no decrease in the validation loss for five consecutive epochs, the early stopping
function would terminate the model training, and the weights of the epoch with the highest
classification ability would be recorded. A brute-force approach was used to determine
these parameters. The parameters that give the most optimum result were determined by
studies on the validation set. Once the parameters were established, all experiments were
conducted in the Google Colab environment.

3.2. Performance Evaluation Metrics

In the evaluation of deep learning models for classification tasks, confusion matrix-
based metrics are commonly employed. A confusion matrix illustrates the correspondence
between the model’s predicted class label for a given input image and the true class label
of that image. In artificial intelligence-based classification studies, various situations may
arise in the output layer of the model. However, these situations can be encapsulated by
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four metrics: True Positive (TP), True Negative (TN), False Positive (FP), and False Negative
(FN). Figure 4 illustrates the placement of these metrics in the fields of multi-class and
binary classification studies, with respect to a random class.
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Evaluation of an image classifier deep learning model can be accomplished utilizing
a variety of performance metrics, including accuracy, precision, recall, and F-1 score.
Accuracy, which is the proportion of correct predictions made by the model, is calculated
as the number of correct predictions divided by the total number of predictions. Recall,
which is a measure of the model’s ability to detect all positive instances, is calculated as the
number of true positive predictions divided by the total number of actual positive instances.
Precision is a measure of the model’s ability to correctly identify positive instances, and
is determined by dividing the number of true positive predictions by the total number of
positive predictions. The F-1 score, which is the harmonic mean of precision and recall, is a
useful metric for balancing precision and recall when they are in conflict. The mathematical
definitions for these measures are provided below.

Accuracy (Acc) = (TP + TN)/(TP + FP + FN + TN) (1)

Recall (Rec) = TP/(TP + FN) (2)

Precision (Pre) = TP/(TP + FP) (3)

F-1 Score (F1) = (2 × (Pre × Rec))/(Pre + Rec) (4)

3.3. Results

Using a pre-trained model can have several implications for the training phase. The
pre-trained model provides a starting point that is already optimized, reducing training
time and saving computational resources compared to training a model from scratch. Pre-
trained models often perform better than models trained from scratch as they have already
learned general representations from a large dataset, providing a strong foundation for
fine-tuning the target task. Utilizing the pre-trained models, the training duration for the
ViT model was set to a maximum of 100 epochs. However, the activation of the early
stopping function resulted in the cessation of training at the 10th epoch, and the weights
were saved in the ‘.pth’ format. During the training process, each epoch was completed in
an average of 47 s. The accuracy and loss graphs generated during the training phase of
the model are illustrated in Figure 5.
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The performance of the proposed ViT model on both the training and validation
sets was consistent with the expectations based on the pre-trained models and reached
the desired level. Specifically, the model attained a validation accuracy of 99.27% and a
validation loss of 0.02% at the end of the 10th epoch. However, test images were utilized to
assess the model’s capability to generalize to new and unseen scenarios, which is crucial
in practical applications. The confusion matrix and recall, precision, and F-1 score graphs
obtained from the testing phase are presented in Figure 6. The ViT model achieved an
accuracy of 99.40%, with only 10 misclassifications on a set of 1664 test images.
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Figure 6. The confusion matrix and some graphs of metrics for multi-class for test dataset.

Upon examination of the test results, it was observed that exceptional performance
scores were obtained for each class. However, the precision value for the Monocyte class
was lower than the other classes. The primary cause for this is the overestimation of
samples as Monocytes, despite their actual classification as Lymphocytes. These two classes
of samples share similar visual features and do not contain granules. WBCs are commonly
classified into five distinct types. However, based on their morphological characteristics, it
is feasible to divide the cells into two groups: Granulocytes and Agranulocytes. The cells
that constitute Granulocytes and Agranulocytes are depicted in Figure 7.
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Figure 7. A schematic representation for types of white blood cells.

Samples of datasets for binary classification of WBCs are annotated under the classifi-
cation scheme depicted in Figure 7. The datasets were trained using the same data split
ratios and hyperparameters as in the 5-class classification task. The ViT model demon-
strated the capability to differentiate between Granulocytes and Agranulocytes, achieving
an accuracy of 99.70% on the test samples. The results of the testing phase, including the
confusion matrix and ROC curve, are presented in Figure 8.
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The traditional view of deep learning models has been that they are black boxes due
to their complex structure, making it challenging to comprehend the internal workings
of the models and how they arrive at a specific decision. However, recent advancements
in explainability techniques have altered this perception, enabling us to shed light on the
inner workings of deep learning models [37,38]. One such technique is Score-CAM [39],
which allows visualization of the most important features of the input data for the model’s
decision-making process. With the application of these techniques, deep learning models
have transformed from being black boxes to becoming more explainable. This is crucial in
applications where the model’s decisions have significant consequences, as it enables the
building of trust and confidence in the model. The aggregate performance measures, such
as accuracy, recall, and precision, only provide a general view of the model’s performance
and do not reveal the underlying mechanisms that drive the model’s decisions. On the
other hand, Score-CAM-like algorithms offer a way to understand the model’s behavior
and decision-making process, which is vital for establishing accountability and trust in the
model. In this study, the predictions made by the ViT model were explained by utilizing
the Score-CAM algorithm, which was used to focus on and highlight the areas of interest.
ViT models are characterized by the utilization of self-attention mechanisms, which enable
the model to focus on relevant parts of the input image while disregarding irrelevant ones.
One of the notable characteristics of ViT models is the output of their layers, which is
typically of the shape BATCH × 197 × 192. In this dimension, the first element represents
the class token, while the remaining 196 elements represent the 14 × 14 patches in the
image. The class token is employed in making the final classification, and the remaining
196 elements can be viewed as a 14 × 14 spatial image with 192 channels. To integrate the
Score-CAM algorithm into vision transformers, it is necessary to reshape them into 2D
spatial images. This can be accomplished by passing a reshape transform function to the
CAM constructor. By doing so, it is possible to visualize the regions of the input image that
are most crucial for the model’s final classification. The final classification is based on the
class token computed in the last attention block. As a result, the output of the model is
not affected by the 14 × 14 channels in the last layer, and the gradient of the output with
respect to them is 0. Therefore, it is recommended to choose any layer prior to the final
attention block when generating CAMs to better understand the model’s behavior. The
operational framework of the explainable ViT model proposed in this study, along with its
constituent layers, is depicted in Figure 9.
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Figure 9. The operational framework of the explainable ViT model.

The areas upon which the model correctly focuses its predictions on the test images
are presented in Figure 10. The regions of focus identified by the ViT model exhibit a
significant overlap with the areas of WBCs.
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This alignment between the Score-CAM output and the ground truth is a promising
indication that the model is effectively learning meaningful features from the input data and
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utilizing these features to make accurate predictions. The softmax probability percentages
exhibited by the model in its true predictions on the test images are given in Figure 11.
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Performing the 5-class classification task, the model produced an average softmax
probability of 98.25% for Basophil class samples, 98.92% for Eosinophil class samples,
98.97% for Lymphocyte class samples, 98.82% for Monocyte class samples and 99.84% for
Neutrophil class samples. The prediction with the lowest probability was 49.89% for a
sample from the Lymphocyte class.

Performing the 2-class classification task, the model produced an average softmax
probability of 99.77% for Granulocytes class samples, 99.42% for Agranulocytes class
samples. The prediction with the lowest probability was 50.30% for a sample from the
Agranulocytes class.

Besides accurate predictions, analysis of Score-CAM outputs for images misclassified
by the ViT model can provide valuable information about the strengths and weaknesses of
the model. Figure 12 illustrates a few examples of misclassified images and probabilities.
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In the case of incorrectly predicted images, the model continued to focus on WBCs
areas. However, the inaccuracies in the model’s predictions could be attributed to visual
similarities between cells.

4. Discussion

WBCs classification plays a crucial role in diagnosing of many diseases, including
infections and blood-related disorders. Although WBC classification is a process that can
be easily performed in a laboratory environment, the automation of basic problems by
machine learning is valuable in the field of health as in every field. The achievements in the
field of deep learning, which started with CNN, are developing with different architectures
every day. This study covers an application of recently popularized ViTs in WBC detection.
Table 3 provides details for a hand-curated selection of research studies on that topic.
Tavakoli et al. [40] introduced a novel approach for the classification of white blood cells
utilizing image processing and machine learning techniques. The proposed method encom-
passes three main stages, namely nucleus and cytoplasm detection, feature extraction, and
classification through an SVM model. The achieved accuracy rate of the proposed method
in categorizing WBCs in the Raabin-WBC dataset was 94.65%. Katar and Kilincer [41]
proposed an approach for the automatic classification of WBCs using pre-trained deep
learning models, including ResNet-50, VGG-19, and MobileNet-V3-Small. The proposed
approach achieved high accuracy rates, with the MobileNet-V3-Small model reaching the
highest accuracy of 98.86%. Akalin and Yumusak [42] present a study on the real-time
detection and classification of WBCs in peripheral blood smears using object recognition
frameworks. YOLOv5s, YOLOv5x, and Detectron2 R50-FPN pre-trained models were
used, and two original contributions were made to improve the model’s performance. The
maximum accuracy rate achieved on the test dataset for detection and classification of
WBCs was 98%. Leng et al. [43] present a study on developing a deep learning-based object
detection network for leukocyte detection using the detection transformer (DETR) model.
The study findings indicate that the improved DETR model outperforms the original DETR
and CNN with a mean average precision (mAP) detection performance of up to 96.10%.
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Table 3. Comparison of our work with some state-of-the-art study techniques for WBC classification.

Study Year Number of Class Method Explainability Performance

Tavakoli et al. [40] 2021 5 (Basophil, Eosinophil, Lymphocyte,
Monocyte, Neutrophil) SVM Black-box Acc = 94.65%

Katar and Kilincer [41] 2022 5 (Basophil, Eosinophil, Lymphocyte,
Monocyte, Neutrophil) CNN Grad-CAM Acc = 98.86%

Akalin and Yumusak [42] 2022 5 (Basophil, Eosinophil, Lymphocyte,
Monocyte, Neutrophil) Hybrid Black-box Acc = 98.00%

Leng et al. [42] 2023 3 (Eosinophil, Monocyte, Neutrophil) DETR Black-box mAP = 96.10%

The proposed study 2023
2 (Granulocytes and Agranulocytes)

ViT Score-CAM
Acc = 99.70%

5 (Basophil, Eosinophil, Lymphocyte,
Monocyte, Neutrophil) Acc = 99.40%

In this study, the pre-trained ViT model was utilized for automatic classification of
white blood cells. The model trained for five distinct types of white blood cells attained an
accuracy rate of 99.70%. In contrast, the fine-tuned model, which classified cells based on
their granule content, achieved an accuracy rate of 99.40%. In comparison to the studies
listed in Table 3, we achieved higher accuracy and evolved the ViT model into an explain-
able structure using the Score-CAM algorithm. The ViT model’s superior performance can
be attributed to its unique architecture, which enables it to capture long-range dependencies
between different parts of the image, resulting in better image recognition performance.

The advantages of our explainable model can be summarized as follows:

• The proposed model is based on vision transformers that has become popular research
field. Therefore, this study is an example to examine vision transformers performance
in biomedical image classification.

• Since the ViT model used in the study was trained on large datasets, it performed well
on the WBC classification problem with a low training cost.

• This model can classify WBCs images with end-to-end transformer structure. There is
no need to use any feature engineering.

• Due to the explainable structure, the proposed model presents focused regions during the
classification process. According to these results, experts can validate model performance.

• Due to its high level of classification accuracy, it has the potential to be utilized in
clinical applications.

• Trained with the Rabbin-WBC dataset, the model can be fine-tuned to classify different
cell types and can be easily implemented.

The limitations of our study are outlined as follows. Although the proposed method
achieves a high success rate in classifying WBCs, its response time was not assessed in
a real-time study. Additionally, the model’s resilience to image variations due to factors
such as illumination and the noise was not verified. To address these limitations, future
research will involve generating synthetic images using data augmentation techniques and
training new models with these images. The computational and memory requirements of
these models are higher than other models. Processing large-sized images increases the
computational intensity and requires more memory space. Future work will be performed
to optimize the complex parameters of the network. The dataset used in the study is
a public WBC data. In future studies, machine learning studies for different cell-based
problems will be carried out in collaboration with clinical pathologists.

5. Conclusions

In this study, we propose an explainable method based on the vision transformer
for the automatic detection of white blood cells in blood film images. The model is
trained and validated using a public five-class dataset of 16,633 samples. The pre-trained
ViT model achieved a testing phase accuracy rate of 99.40% for the detection of five
different subtypes of white blood cells. Examination of the model’s predictions revealed
that the most misclassified samples belonged to the Lympochyte subtype, which was
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predominantly predicted as Monocyte. Since Lympochyte and Monocyte cells lack granules
and share similar visual features, this misclassification is understandable. The dataset used
to confirm this situation was labeled according to granule presence, and the ViT model
was trained using binary classification. The resulting model correctly classified test images
with a success rate of 99.70%. The pixel areas focused on in the ViT model’s predictions
were visualized using a heat mapping technique with the Score-CAM algorithm, further
enhancing the model’s reliability. The study’s main limitation is the lack of information on
real-time performance compared to object detection algorithms. The proposed ViT model
can automate the detection of cells in blood films and can be effectively used in medical
education due to its explainable structure. Moreover, the model can be fine-tuned for
similar tasks, benefiting from the knowledge accumulated during training and achieving
high accuracy rates.

Author Contributions: Conceptualization, O.K. and O.Y.; methodology, O.K.; software, O.K.; valida-
tion, O.Y.; formal analysis, O.K.; investigation, O.K. and O.Y.; writing—original draft preparation,
O.K. and O.Y.; writing—review and editing, O.K. and O.Y.; visualization, O.K.; supervision, O.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Al-Dulaimi, K.A.K.; Banks, J.; Chandran, V.; Tomeo-Reyes, I.; Nguyen Thanh, K. Classification of White Blood Cell Types from

Microscope Images: Techniques and Challenges. In Microscopy Science: Last Approaches on Educational Programs and Applied
Research (Microscopy Book Series, 8); Formatex Research Center: Badajoz, Spain, 2018; pp. 17–25.

2. Ahmad, Z.; Shah, T.A.; Reddy, K.P.; Ghosh, S.; Panpatil, V.; Kottoru, S.K.; Rayees, S.; Rao, D.R. Immunology in Medical
Biotechnology. In Fundamentals and Advances in Medical Biotechnology; Springer: Berlin/Heidelberg, Germany, 2022; pp. 179–207.

3. Kiboneka, A.N. Basic Concepts in Clinical Immunology: A Review. World J. Adv. Res. Rev. 2021, 12, 490–496. [CrossRef]
4. Tripathi, C. Tolerance and Autoimmunity. In An Interplay of Cellular and Molecular Components of Immunology; CRC Press: Boca

Raton, FL, USA, 2022; pp. 207–216, ISBN 1003286429.
5. Otieno, F.; Kyalo, C. Perspective Chapter: Macrophages Plasticity and Immune Metabolism. In Basic and Clinical Aspects of

Interferon Gamma; IntechOpen: London, UK, 2022; ISBN 1803558865.
6. Wechsler, M.E.; Munitz, A.; Ackerman, S.J.; Drake, M.G.; Jackson, D.J.; Wardlaw, A.J.; Dougan, S.K.; Berdnikovs, S.; Schleich, F.;

Matucci, A. Eosinophils in Health and Disease: A State-of-the-Art Review. In Proceedings of the Mayo Clinic Proceedings; Elsevier:
Amsterdam, The Netherlands, 2021; Volume 96, pp. 2694–2707.

7. Santos, A.F.; Alpan, O.; Hoffmann, H. Basophil Activation Test: Mechanisms and Considerations for Use in Clinical Trials and
Clinical Practice. Allergy 2021, 76, 2420–2432. [CrossRef] [PubMed]

8. Parente, J. Diagnostics for White Blood Cell Abnormalities: Leukocytosis and Leukopenia. Physician Assist. Clin. 2019, 4, 625–635.
[CrossRef]

9. Agnello, L.; Giglio, R.V.; Bivona, G.; Scazzone, C.; Gambino, C.M.; Iacona, A.; Ciaccio, A.M.; lo Sasso, B.; Ciaccio, M. The Value of
a Complete Blood Count (CBC) for Sepsis Diagnosis and Prognosis. Diagnostics 2021, 11, 1881. [CrossRef]

10. Wang, Q.; Bi, S.; Sun, M.; Wang, Y.; Wang, D.; Yang, S. Deep Learning Approach to Peripheral Leukocyte Recognition. PLoS ONE
2019, 14, e0218808. [CrossRef] [PubMed]

11. Khamael, A.-D.; Banks, J.; Nugyen, K.; Al-Sabaawi, A.; Tomeo-Reyes, I.; Chandran, V. Segmentation of White Blood Cell, Nucleus
and Cytoplasm in Digital Haematology Microscope Images: A Review—Challenges, Current and Future Potential Techniques.
IEEE Rev. Biomed. Eng. 2020, 14, 290–306.

12. Mohamed, E.H.; El-Behaidy, W.H.; Khoriba, G.; Li, J. Improved White Blood Cells Classification Based on Pre-Trained Deep
Learning Models. J. Commun. Softw. Syst. 2020, 16, 37–45. [CrossRef]

13. Patil, A.M.; Patil, M.D.; Birajdar, G.K. White Blood Cells Image Classification Using Deep Learning with Canonical Correlation
Analysis. IRBM 2021, 42, 378–389. [CrossRef]

https://doi.org/10.30574/wjarr.2021.12.3.0745
https://doi.org/10.1111/all.14747
https://www.ncbi.nlm.nih.gov/pubmed/33475181
https://doi.org/10.1016/j.cpha.2019.02.010
https://doi.org/10.3390/diagnostics11101881
https://doi.org/10.1371/journal.pone.0218808
https://www.ncbi.nlm.nih.gov/pubmed/31237896
https://doi.org/10.24138/jcomss.v16i1.818
https://doi.org/10.1016/j.irbm.2020.08.005


Diagnostics 2023, 13, 2459 18 of 19

14. Basnet, J.; Alsadoon, A.; Prasad, P.W.C.; Aloussi, S.; Alsadoon, O.H. A Novel Solution of Using Deep Learning for White Blood
Cells Classification: Enhanced Loss Function with Regularization and Weighted Loss (ELFRWL). Neural Process Lett. 2020,
52, 1517–1553. [CrossRef]

15. Cheuque, C.; Querales, M.; León, R.; Salas, R.; Torres, R. An Efficient Multi-Level Convolutional Neural Network Approach for
White Blood Cells Classification. Diagnostics 2022, 12, 248. [CrossRef]

16. Sharma, S.; Gupta, S.; Gupta, D.; Juneja, S.; Gupta, P.; Dhiman, G.; Kautish, S. Deep Learning Model for the Automatic
Classification of White Blood Cells. Comput. Intell. Neurosci. 2022, 2022, 7384131. [CrossRef]

17. Jung, C.; Abuhamad, M.; Alikhanov, J.; Mohaisen, A.; Han, K.; Nyang, D. W-Net: A CNN-Based Architecture for White Blood
Cells Image Classification. arXiv 2019, arXiv:1910.01091.

18. Rustam, F.; Aslam, N.; de La Torre Díez, I.; Khan, Y.D.; Mazón, J.L.V.; Rodríguez, C.L.; Ashraf, I. White Blood Cell Classification
Using Texture and RGB Features of Oversampled Microscopic Images. Healthcare 2022, 10, 2230. [CrossRef] [PubMed]

19. Chola, C.; Muaad, A.Y.; bin Heyat, M.B.; Benifa, J.V.B.; Naji, W.R.; Hemachandran, K.; Mahmoud, N.F.; Samee, N.A.;
Al-Antari, M.A.; Kadah, Y.M. BCNet: A Deep Learning Computer-Aided Diagnosis Framework for Human Peripheral Blood
Cell Identification. Diagnostics 2022, 12, 2815. [CrossRef] [PubMed]

20. Ahmad, R.; Awais, M.; Kausar, N.; Akram, T. White Blood Cells Classification Using Entropy-Controlled Deep Features
Optimization. Diagnostics 2023, 13, 352. [CrossRef]

21. Bairaboina, S.S.R.; Battula, S.R. Ghost-ResNeXt: An Effective Deep Learning Based on Mature and Immature WBC Classification.
Appl. Sci. 2023, 13, 4054. [CrossRef]

22. Bhojanapalli, S.; Chakrabarti, A.; Glasner, D.; Li, D.; Unterthiner, T.; Veit, A. Understanding Robustness of Transformers for Image
Classification. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 10–17
October 2021; pp. 10231–10241.

23. Bazi, Y.; Bashmal, L.; Rahhal, M.M.A.; Dayil, R.A.; Ajlan, N.A. Vision Transformers for Remote Sensing Image Classification.
Remote Sens. 2021, 13, 516. [CrossRef]

24. Chen, H.; Wang, Y.; Guo, T.; Xu, C.; Deng, Y.; Liu, Z.; Ma, S.; Xu, C.; Xu, C.; Gao, W. Pre-Trained Image Processing Transformer. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021;
pp. 12299–12310.

25. Wu, Y.; Qi, S.; Sun, Y.; Xia, S.; Yao, Y.; Qian, W. A Vision Transformer for Emphysema Classification Using CT Images. Phys. Med.
Biol. 2021, 66, 245016. [CrossRef] [PubMed]

26. Feng, H.; Yang, B.; Wang, J.; Liu, M.; Yin, L.; Zheng, W.; Yin, Z.; Liu, C. Identifying Malignant Breast Ultrasound Images Using
ViT-Patch. Appl. Sci. 2023, 13, 3489. [CrossRef]

27. Ammar, L.B.; Gasmi, K.; Ltaifa, I. Ben ViT-TB: Ensemble Learning Based ViT Model for Tuberculosis Recognition. Cybern. Syst.
2022, 1–20. [CrossRef]

28. Oztekin, F.; Katar, O.; Sadak, F.; Yildirim, M.; Cakar, H.; Aydogan, M.; Ozpolat, Z.; Talo Yildirim, T.; Yildirim, O.; Faust, O. An
Explainable Deep Learning Model to Prediction Dental Caries Using Panoramic Radiograph Images. Diagnostics 2023, 13, 226.
[CrossRef]

29. Lee, H.; Yune, S.; Mansouri, M.; Kim, M.; Tajmir, S.H.; Guerrier, C.E.; Ebert, S.A.; Pomerantz, S.R.; Romero, J.M.; Kamalian, S. An
Explainable Deep-Learning Algorithm for the Detection of Acute Intracranial Haemorrhage from Small Datasets. Nat. Biomed.
Eng. 2019, 3, 173–182. [CrossRef]

30. Kouzehkanan, Z.M.; Saghari, S.; Tavakoli, S.; Rostami, P.; Abaszadeh, M.; Mirzadeh, F.; Satlsar, E.S.; Gheidishahran, M.; Gorgi, F.;
Mohammadi, S. A Large Dataset of White Blood Cells Containing Cell Locations and Types, along with Segmented Nuclei and
Cytoplasm. Sci. Rep. 2022, 12, 1123. [CrossRef] [PubMed]

31. Wolf, T.; Debut, L.; Sanh, V.; Chaumond, J.; Delangue, C.; Moi, A.; Cistac, P.; Rault, T.; Louf, R.; Funtowicz, M. Transformers:
State-of-the-Art Natural Language Processing. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing: System demonstrations, Online, 16–20 November 2020; pp. 38–45.

32. Guo, M.-H.; Liu, Z.-N.; Mu, T.-J.; Hu, S.-M. Beyond Self-Attention: External Attention Using Two Linear Layers for Visual Tasks.
IEEE Trans. Pattern. Anal. Mach. Intell. 2022, 45, 5436–5447. [CrossRef] [PubMed]

33. Wang, L.; He, Y.; Li, L.; Liu, X.; Zhao, Y. A Novel Approach to Ultra-Short-Term Multi-Step Wind Power Predictions Based on
Encoder–Decoder Architecture in Natural Language Processing. J. Clean Prod. 2022, 354, 131723. [CrossRef]

34. Thakur, P.S.; Khanna, P.; Sheorey, T.; Ojha, A. Explainable Vision Transformer Enabled Convolutional Neural Network for Plant
Disease Identification: PlantXViT. arXiv 2022, arXiv:2207.07919.

35. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;
Gelly, S. An Image Is Worth 16×16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.

36. Lee, S.H.; Lee, S.; Song, B.C. Vision Transformer for Small-Size Datasets. arXiv 2021, arXiv:2112.13492.
37. Ekanayake, I.U.; Meddage, D.P.P.; Rathnayake, U. A Novel Approach to Explain the Black-Box Nature of Machine Learning in

Compressive Strength Predictions of Concrete Using Shapley Additive Explanations (SHAP). Case Stud. Constr. Mater. 2022,
16, e01059. [CrossRef]

38. Liang, Y.; Li, S.; Yan, C.; Li, M.; Jiang, C. Explaining the Black-Box Model: A Survey of Local Interpretation Methods for Deep
Neural Networks. Neurocomputing 2021, 419, 168–182. [CrossRef]

https://doi.org/10.1007/s11063-020-10321-9
https://doi.org/10.3390/diagnostics12020248
https://doi.org/10.1155/2022/7384131
https://doi.org/10.3390/healthcare10112230
https://www.ncbi.nlm.nih.gov/pubmed/36360571
https://doi.org/10.3390/diagnostics12112815
https://www.ncbi.nlm.nih.gov/pubmed/36428875
https://doi.org/10.3390/diagnostics13030352
https://doi.org/10.3390/app13064054
https://doi.org/10.3390/rs13030516
https://doi.org/10.1088/1361-6560/ac3dc8
https://www.ncbi.nlm.nih.gov/pubmed/34826824
https://doi.org/10.3390/app13063489
https://doi.org/10.1080/01969722.2022.2162736
https://doi.org/10.3390/diagnostics13020226
https://doi.org/10.1038/s41551-018-0324-9
https://doi.org/10.1038/s41598-021-04426-x
https://www.ncbi.nlm.nih.gov/pubmed/35064165
https://doi.org/10.1109/TPAMI.2022.3211006
https://www.ncbi.nlm.nih.gov/pubmed/36197869
https://doi.org/10.1016/j.jclepro.2022.131723
https://doi.org/10.1016/j.cscm.2022.e01059
https://doi.org/10.1016/j.neucom.2020.08.011


Diagnostics 2023, 13, 2459 19 of 19

39. Wang, H.; Wang, Z.; Du, M.; Yang, F.; Zhang, Z.; Ding, S.; Mardziel, P.; Hu, X. Score-CAM: Score-Weighted Visual Explanations
for Convolutional Neural Networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 24–25.

40. Tavakoli, S.; Ghaffari, A.; Kouzehkanan, Z.M.; Hosseini, R. New Segmentation and Feature Extraction Algorithm for Classification
of White Blood Cells in Peripheral Smear Images. Sci. Rep. 2021, 11, 19428. [CrossRef] [PubMed]
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