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Abstract: Anterior segment optical coherence tomography (AS-OCT) allows the explore not only the
anterior chamber but also the front part of the vitreous cavity. Our cross-sectional single-centre study
investigated whether AS-OCT can distinguish between vitreous involvement due to vitreoretinal
lymphoma (VRL) and vitritis in uveitis. We studied AS-OCT images from 28 patients (11 with
biopsy-proven VRL and 17 with differential diagnosis uveitis) using publicly available radiomics
software written in MATLAB. Patients were divided into two balanced groups: training and testing.
Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making them eligible
for analysis. We studied five different sets of grey-level samplings (16, 32, 64, 128, and 256 levels),
finding that 128 grey levels performed the best. We selected the five most effective radiomic features
ranked by the ability to predict the class (VRL or uveitis). We built a classification model using
the xgboost python function; through our model, 87% of eyes were correctly diagnosed as VRL or
uveitis, regardless of exam technique or lens status. Areas under the receiver operating characteristic
curves (AUC) in the 128 grey-level model were 0.95 [CI 0.94, 0.96] and 0.84 for training and testing
datasets, respectively. This preliminary retrospective study highlights how AS-OCT can support
ophthalmologists when there is clinical suspicion of VRL.
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1. Introduction

Vitreoretinal lymphoma (VRL) is the most common uveitis masquerade syndrome
and thus a diagnostic challenge [1]. The insidious clinical presentation as chronic and
recurrent uveitis, combined with the transient response to lymphocytolytic steroids, leads
to diagnostic and therapeutic delay, often resulting in a poor prognosis with high mortality
if the central nervous system (CNS) is involved [2]. Therefore, a timely and accurate
diagnosis is essential to improve the prognosis of patients with VRL, and overcoming the
difficulties encountered in its diagnosis is an urgent need [3].

Definite diagnosis of VRL is based on different laboratory methods that analyse the
vitreous and/or aqueous sample. The gold standard of cytology combined with immunohis-
tochemistry shows the presence of large-sized atypical cells with irregular hyperchromatic
nuclei, recognisable nucleolus, and small cytoplasm, which are characteristically CD20+,
diffuse large B-cell lymphomas (DLBCLs) being present in over 95% of cases of VRL [4].
Scanty amounts of vitreous samples, rare lymphoma cells often admixed with inflamma-
tory cells, and inadequate cellular preservation are the main confounding factors, which
make diagnosis particularly difficult, thus causing delay [5]. Although not generally diag-
nostic in isolation, ancillary tests are therefore used to support the diagnosis. These tests
include flow cytometry, detection of interleukins 6 (IL-6) and 10 (IL-10) and their ratio
IL10:IL6, clonality analyses through immunoglobulin heavy (IgH) chain rearrangements,
and MYD88 mutation analysis [5–7]. The diagnostic laboratory tools for VRL ideally are
tests with high positive predictive value, thereby being able to detect as many cases of
VRL as possible while carefully distributing the small sample. Currently, however, no one
method or combination of tests allows a diagnosis in every case of VRL. Next-generation
sequencing (NGS) analysis represents a recent technology that offers high performance,
making it possible to find particular genomic alterations. Although there are few NGS
analysis studies in VRL, this technique is catching on as a useful additional diagnostic
method using even the least quantities of vitreous humour [8].

In this context, vitreoretinal multimodal imaging could aid diagnosis when VRL is clin-
ically suspected [9]. Fluorescein angiography shows well-defined hypofluorescent lesions
corresponding to the lymphomatous infiltrates in the early and late phases. Other fluoran-
giographic findings in VRL include punctate hyperfluorescent window defects, optic disc
leakage, and patchy late hyperfluorescence [10]. Fundus autofluorescence shows a granular
hyperautofluorescence pattern [11]. The literature amply describes the well-known use of
optical coherence tomography (OCT) to recognise subretinal pigment epithelium (sub-RPE)
and subretinal infiltrates [12]. In fact, hyper-reflective nodular lesions within or below the
RPE are considered a highly suggestive finding in VRL but should be carefully differenti-
ated from drusen or choroidal neovascularisation [13]. Currently, posterior spectral domain
OCT represents the only helpful diagnostic OCT in suspected VRL [14].

Thanks to the improvement in imaging technology, swept-source anterior segment
OCT (AS-OCT) has been proven useful to identify cells and indirectly quantify flare in
the anterior chamber of patients with uveitis [15,16]. Likewise, the posterior segment
OCT image has such high resolution that it correlates with the clinical grading of vitreous
haze [17–20]. Zicarelli et al. were able to obtain OCT images of the anterior vitreous in the
area just behind the lens, which had previously been inaccessible to this imaging technique
due to its location, too forward for the posterior segment and too back for anterior segment
OCT [21]. These authors pushed the device towards the eye being studied and disabled the
tracking, thus not following the recommendations on its use. As a result, the cornea was
flipped onto the lens, which was in the upper part of the image, and the structures behind
it could be seen in the lower part of the scan. This revised capture technique produced a
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reflection artefact due to the projection of the cornea as a hyper-reflective curved band on
the lens; it is important that the device is not pushed too far in order not to compromise the
view of the vitreous chamber.

A key feature of VRL is the vitreous involvement represented by a characteristic
infiltration due to the invasion of lymphoma cells that form sheets or strands with vitreous
turbidity [6]. This is evident during the ophthalmological examination when carefully
looking at the anterior vitreous. However, because this feature is difficult to recognise, it
enters the differential diagnosis with the uveitis that causes significant vitreous haze; among
these, the most frequent and confusing are Fuchs uveitis, sarcoidosis uveitis, and Behçet
uveitis. The clinical picture cannot always, anyway, be matched to a defined nosological
entity even after an extensive diagnostic uveitis work-up that includes brain magnetic
resonance imaging, chest computed tomography, and invasive surgical procedures such as
aqueous tap or diagnostic vitrectomy; these intraocular inflammations are called uveitis
of unknown origin [22]. Fuchs uveitis is the only viral anterior uveitis to have significant
vitreous involvement, especially anterior although not exclusively [23]. It should also be
highlighted that Fuchs uveitis is bilateral albeit in few patients (5–10%), entering even more
into the differential diagnosis with VRL in these cases [24]. Sarcoidosis uveitis is a bilateral
granulomatous uveitis which can have intense vitritis, able to present as intermediate
uveitis [25]. Behçet uveitis is a recurrent non-granulomatous uveitis associated with
haemorrhagic or occlusive retinal vasculitis, and diffuse vitritis is a constant feature [26].
Moreover, to complicate the differential diagnosis process, anterior chamber involvement
is also possible in VRL [27]. Particular types of vitritis have been associated with specific
clinical entities such as vitritis in Fuchs uveitis and multiple whitish puff balls floating
in the vitreous chamber in endogenous candida endophthalmitis [28,29]. As such, the
possibility of imaging and objectively evaluating the anterior vitreous with AS-OCT would
be a significant added value for the differentiation between vitreous haze, make it possible
to detect a particular potential pattern in VRL, and could be an important ancillary test in
its diagnosis.

Radiomics is a novel methodology in precision medicine that employs well-defined
mathematical formulas to describe medical images quantitatively [30]. This approach is an
application of artificial intelligence (AI) that calculates features directly from the images’
pixel values or filtered versions of the original captures. The mathematical formulas express
the distribution and relationships between pixels and voxels within a specific region of
interest (ROI) in the images. Haralick et al. showed how emphasising the relationships
between the grey levels and the textural patterns could be used to detect different regions
in an image (i.e., segmentation tasks) [31]. Later, textural information was applied in
medical imaging [32–34]. Within a biomedical image, there are complex details that may be
beyond the human eye’s perception; this is what radiomics is based on. Radiomic features
are numerical descriptors that enable a non-invasive exploration of potential correlations
between the information derived from the images acquired during the routine clinical
pathway of the patient and the clinical or biological features seen on the images [35].

To our knowledge, no other study has investigated the ability of radiomic features to
perform a differential diagnosis of the vitreous using OCT imaging. We hypothesised that
there are particular radiomic features that make it possible to distinguish between VRL
and vitritis.

2. Materials and Methods

We analysed patients evaluated at the Ocular Immunology Unit of the AUSL-IRCCS
of Reggio Emilia (Italy) between January 2019 and December 2022; we considered biopsy-
proven VRL and uveitis characterised by anterior vitritis, such as Fuchs uveitis, sarcoidosis
uveitis, Behçet uveitis and uveitis of unknown origin, in differential diagnosis with VRL.
We name the latter group “vitritis”, which will be used in the remainder of this article.
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2.1. Image Acquisition

The images were obtained with swept-source AS-OCT ANTERION (Heidelberg Engi-
neering, Heidelberg, Germany), which offers an improved signal penetration (wavelength
1300 nm), a very high resolution (axial and transverse resolution in tissue <10 µm and
30 µm, respectively) and an enhanced depth of scan (14 ± 0.5 mm) [21]. Before May 2022,
the acquisitions were performed using the recommended acquisition settings of the OCT
device (referred to here on as “old”). Conversely, the new acquisition technique described
above will be referred to as “new” [21].

2.2. Image Segmentation

We extracted anonymised Digital Imaging and Communications in Medicine (DICOM)
images directly from the OCT system. Next, two experienced ophthalmologists manually
segmented the vitreous area in the images from the sub-lens region up to the end of the
visible vitreous using a rectangular-shaped ROI as shown in Figure 1. The area of these
ROIs depended on several variables, particularly the exam technique, the anatomical
localisation of the slice, and the patient’s individual clinical conditions. We performed
exams with the old and the new method of pushing the device forward, the latter one for
patients referred after May 2022. Image width depended on the relative distance from the
optical axis, and the length relied on the exam technique. If the selected area was less than
13,500 pixels, we did not include its respective images in our analysis according to similar
results found for the radiomics predictive model applied in oncology [36]. In addition, we
rejected slices with artefacts caused by the hyper-reflective bend zone generated by the
cornea shadow on the anterior vitreous cavity, as mentioned above.
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Figure 1. Comparison of two images: one patient with vitreous involvement in VRL (left) and one
with vitritis (right). The rectangular-shaped ROI shows the area where the software calculated the
radiomic features. In the upper left are shown, for example, the numerical value of the features used
by the model built using 128 grey levels.

2.3. Radiomic Analysis

We used the Radiomics tool (Version 1.2.0.0 by Martin Vallières, publicly available
at https://it.mathworks.com/matlabcentral/fileexchange/51948-radiomics, accessed on
5 July 2023) to extract radiomic features with the aforementioned image segmentations
as inputs [37]. Radiomics software is a free program running on MATLAB® (Mathworks,

https://it.mathworks.com/matlabcentral/fileexchange/51948-radiomics
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Natick, MA, USA). We used MATLAB version R2021b. This software was designed to
calculate 43 features: three from the image histogram (variance, skewness, and kurtosis),
nine from the Gray-Level Co-Occurrence Matrix (GLCM), 13 from the Gray-Level Run-
Length Matrix (GLRLM), 13 from the Gray-Level Size Zone Matrix (GLSZM) and five from
the Neighborhood Gray-Tone Difference Matrix (NGTDM) [37–39].

Before feature extraction from 2D images, we used the following pre-processing pa-
rameters: the number of grey levels (Ng = 16, 32, 64, 128, 256), equal quantisation (i.e., the
ROI was equalised to increase the contrast), isotropic pixel size (8.843 µm), and ‘scanType’
equal to ‘Other’; no wavelet band-pass filtering was performed. The patients were pre-
liminarily divided into two groups: training and testing. The first set was composed of
14 patients (seven vitritis—11 eyes—53% images of the training dataset, and seven
VRLs—11 eyes—47% images), as well as the second one (10 vitritis—17 eyes—68% images
of the testing dataset, and four VRLs—eight eyes—32% images). The dataset had a good
balance in the training group in terms of acquisition method, lens type, and outcome.

The first step in the analysis consisted of feature scaling using Scikit learn [40].

2.4. Statistical Analysis

The correlation between the variables was studied using the Pearson correlation
coefficient (r) for radiomic models built with five different sets of grey-level sampling (16,
32, 64, 128, and 256 levels).

Within the training dataset, five features were selected per each model using the
xgboost python function; the features were selected using feature importance greater than
0.03. Then five models were built using the xgboost algorithm using early stopping round
equal to 100 and a learning rate equal to 0.01. The areas under the receiver operating
characteristic curves (AUCs) were calculated with their confidence interval for the training
dataset using bootstrapping methods (500 repetitions were performed). In addition, the
accuracy and precision were calculated for training and testing sets.

The models assigned to each image have the probability of belonging to the VRL class.
If this probability was less than 0.5, the image was classified as belonging to the vitritis
group, as the outcome was binary. Each eye was assigned to a group based on whether the
majority of that eye’s images were classified as VRL or as vitritis.

Clinical features considered in the statistical analysis were age at diagnosis (years),
sex, laterality, lens status (phakic or pseudophakic), and acquisition method (old and/
or new).

The study was conducted in agreement with the principles of the Declaration of
Helsinki and received approval from the local ethics committee (protocol n. 2019/0085664
Comitato Etico dell’Area Vasta Emilia Nord, Italy).

3. Results

Eleven patients with biopsy-proven VRL (a total of 19 eyes) and 17 patients (a total of
28 eyes) with vitritis were included in this retrospective study. Specifically, five patients
with Fuchs uveitis, four patients with sarcoidosis uveitis, two patients with Behçet uveitis,
and six patients with uveitis of uncertain origin were enrolled in the group of vitritis.
Clinical features are summarised in Table 1. In both groups, there were more bilateral
than unilateral cases, and unilateral uveitis were Fuchs uveitis or uveitis of uncertain
origin. A total of 31 eyes were phakic and 16 were pseudophakic. There were 13 males and
15 females. The mean age of vitritis patients was 55 years old (20–79), while that of VRL
patients was 72 (51–94) years old.

Overall, 3260/3705 (88%) AS-OCT images met our defined quality criteria, making
them eligible for analysis. Specifically, 2131 images were from eyes of patients with uveitis,
while 1129 were from eyes of patients with biopsy-proven VRL.

Table 2 shows the patient stratification per eye site, acquisition method, lens type,
and sex.
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Table 1. Database representation showing the patient selection and images number used for training
and testing groups. The lens description per each eye site is also reported (L: left or R: right). F:
female; M: male; N.A.: not acquired; FU: Fuchs uveitis; OS: ocular sarcoidosis; BU: Behçet uveitis;
UUO: uveitis of uncertain origin.

Patient
Code

Patient
Sex

Analyzed
Images (n) Label Site Age (y) Acquisition

Method Training Testing Lens Type Left
Eye (L)

Lens Type
Right Eye (R)

433 F 124 Vitritis (FU) R,L 26 both X Phakic Phakic
434 M 98 Vitritis (OS) R,L 57 new X Phakic Phakic
439 F 132 Vitritis (OS) R,L 74 new X Phakic Phakic
440 M 99 Vitritis (FU) L 50 new X Phakic N.A.
444 M 97 Vitritis (FU) L 39 new X Phakic N.A.
445 M 114 Vitritis (OS) R,L 52 new X Pseudo-phakic Pseudo-phakic
405 M 111 Vitritis (FU) R 38 old X N.A. Phakic
435 F 96 Vitritis (BU) R,L 20 new X Phakic Phakic
437 F 239 Vitritis (BU) R,L 26 new X Phakic Phakic
438 M 95 Vitritis (OS) R,L 46 new X Pseudo-phakic Pseudo-phakic
448 F 217 Vitritis (FU) R,L 65 old X Phakic Phakic
410 F 109 Vitritis (UUO) R,L 79 old X Pseudo-phakic Pseudo-phakic
446 F 110 Vitritis (UUO) L 66 both X Phakic N.A.
466 F 90 Vitritis (UUO) R 62 both X N.A. Phakic
468 F 124 Vitritis (UUO) R,L 78 both X Pseudo-phakic Pseudo-phakic
491 M 174 Vitritis (UUO) R,L 75 both X Pseudo-phakic Pseudo-phakic
493 F 102 Vitritis (UUO) L 79 both X Pseudo-phakic N.A.
393 F 56 VRL R,L 91 New X Pseudo-phakic Pseudo-phakic
432 M 132 VRL R,L 73 new X Phakic Phakic
436 M 166 VRL R,L 76 new X Pseudo-phakic Phakic
442 F 62 VRL R,L 88 new X Phakic Pseudo-phakic
447 M 95 VRL R 99 new X N.A. Pseudo-phakic
103 M 82 VRL R,L 55 old X Phakic Phakic
173 M 145 VRL R,L 51 old X Phakic Phakic
186 M 18 VRL L 58 old X Phakic N.A.
363 F 80 VRL R,L 71 old X Phakic Phakic
364 F 32 VRL L 82 old X N.A. Phakic
398 F 261 VRL R,L 58 old X Phakic Phakic

Table 2. Patients’ stratification per eye site, acquisition method, lens type, and sex. n: number of
images for each class; y: years; L: left; R: right; M: male; F: female; N.A.: not acquired.

Site

L R
Acquisition Method Acquisition Method

New Old New Old
Lens Type Lens Type Lens Type Lens Type

Phakic Pseudo-Phakic Phakic Pseudo-Phakic Phakic Pseudo-Phakic Phakic Pseudo-Phakic
Sex Sex Sex Sex Sex Sex Sex Sex

M F M F M F M F M F M F M F M F

Vitritis (n) 247 326 161 44 0 40 19 98 47 432 172 27 111 113 31 64
Average age (y) 47.1 46.3 63.8 78 NA 41.9 78 79 57 45.4 59 78 38 46.7 66 79

VRL (n) 44 37 94 0 129 191 23 39 137 0 95 25 116 182 0 17
Average age (y) 73 88 76 NA 53.2 61.3 76 91 74.1 NA 94 88 52.4 64.5 NA 91

The Pearson correlation coefficients between the variables for the five models are
shown in the Supplementary Materials (Figures S1–S5). Age, sex, lens type (phakic or
pseudophakic) and eye site (left or right) did not demonstrate any correlation with the
outcome (r = 0.4, r = −0.1, r = 0.1, and r = 0.0, respectively). We observed a moderate
correlation (r = −0.5) between vitritis outcome and acquisition method that was intrinsically
dependent on the ROI area.

Table 3 reports the models’ results for the different sets of grey-level sampling consid-
ered in the radiomic analysis pre-processing. Model outcomes by each patient are available
in the Supplementary Materials (Tables S1 and S2). The model using 128 grey levels (Dataset
Ng = 128) demonstrated the best performance in terms of AUC in both the training and
the testing dataset, 0.95 [CI 0.94, 0.96] and 0.84, respectively; in this model, accuracy was
0.860 and 0.781 in the training and the testing dataset, respectively, and precision was 0.985
and 0.582 in the training and the testing dataset, respectively. Using this model, 41/47
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(87%) of eyes corresponding to 23/28 (82%) of patients were correctly diagnosed as VRL
or uveitis (see Table S3 in the Supplementary Materials), regardless of the exam technique
used or lens status. We clarify that we have considered a patient as correctly classified only
if both eyes were properly identified in case of bilateral involvement. The ROC curves
relative to models considered in our study are shown in the Supplementary Materials
(Figures S6–S10).

Table 3. Radiomic model performance for the different grey levels (Ng). Accuracy, precision, and
AUC are reported. The last column on the right describes the five features selected in each model.

Accuracy
(Train)
(Test)

Precision
(Train)
(Test)

AUC
(Train [CI 95%])

(Test)
Radiomic Features Selected

Dataset Ng = 16 0.878 0.968 0.947 [0.937–0.956] GLCM_Homogeneity, NGTDM_Busyness, GLRLM_LRHGE,
NGTDM_Coarseness, GLCM_Correlation0.735 0.525 0.813

Dataset Ng = 32 0.844 0.987 0.938 [0.928–0.949] GLRLM_LRHGE, GLCM_Contrast, NGTDM_Coarseness,
GLCM_Correlation, GLCM_Homogeneity0.825 0.790 0.798

Dataset Ng = 64 0.860 0.995 0.942 [0.932–0.951] GLRLM_LRHGE, GLCM_Homogeneity, NGTDM_Coarseness,
GLCM_Correlation, GLCM_Contrast0.827 0.798 0.809

Dataset Ng = 128 0.860 0.985 0.949 [0.940–0.958] GLRLM_LRHGE, NGTDM_Strength, GLSZM_HGZE,
NGTDM_Coarseness, GLCM_Correlation0.830 0.795 0.843

Dataset Ng = 256 0.853 0.990 0.945 [0.935–0.954] GLRLM_LRHGE, NGTDM_Coarseness, GLCM_Correlation,
GLRLM_SRE, NGTDM_Complexity0.785 0.589 0.841

Table 4 gathers the Pearson correlation coefficients among the radiomic features
employed in the 128 grey-level model since the latter is the one that proved to perform the
best.

Table 4. Radiomic feature Pearson correlation coefficient used in the 128 grey-level model.

GLRLM_LRHGE NGTDM_Strength GLSZM_HGZE NGTDM_Coarseness GLCM_Correlation

GLRLM_LRHGE 1.00
NGTDM_Strength 0.54 1.00

GLSZM_HGZE 0.43 0.81 1.00
NGTDM_Coarseness 0.59 0.86 0.59 1.00
GLCM_Correlation 0.44 0.44 0.48 0.37 1.00

4. Discussion

The incidence of VRL has increased over the last decades thanks to improvements
in diagnostics and advances in health care, resulting in longer life expectancies [41]. It
must be emphasised that patients later found to be affected by VRL are being referred
more frequently to a uveitis specialist because these tumours may mimic inflammatory
eye disease [42]. For this reason, recognising VRL, especially, in differential diagnosis with
uveitis is a great challenge; the high rate of diagnostic delay worsens not only the visual
prognosis, it also, and more importantly, shortens the patient’s life [2]. It is important to
objectively discriminate between vitreous infiltration in VRL and vitreous inflammation in
uveitis. Indeed, the former has characteristics that are so beyond clinical uveitis grading
that it can be defined as “muddy”, corresponding to aurora borealis and string of pearls in
ultrawide-field imaging [43]. Vitreous morphological characteristics are traceable to two
different etiopathogenic pathways: inflammation in the case of uveitis and cancer in the
case of VRL [44,45].

Multimodal imaging could aid in detecting “muddy” vitreous. The only imaging
valuable for diagnosing VRL is currently that of the posterior segment [9,12]. This study
evaluated the possible usefulness of the AS-OCT in diagnosing this rare but dangerous
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tumour. To obtain this result, we based our predictive model on biopsy-proven lymphoma-
tous cases to distinguish between vitreous involvement in VRL and vitritis. To verify
the accuracy of AS-OCT, data from 28 patients (11 with biopsy-proven VRL and 17 with
differential diagnosis uveitis) were used to train and test our model’s performance.

Our results show that age did not influence the model outcome. On the one hand, it is
true that the vitreous undergoes morphological changes with age, leading to an increase
in opacities perceived as floaters, which sometimes functionally disturb vision (the so-
called “vision degrading myodesopsia”) [46,47]. On the other hand, it has recently been
highlighted that the structural and morphological alterations of the anterior vitreous can be
analysed with OCT, which is able to distinguish between the vitreous cisterns and lacunae,
which are hyporeflective, and the hyper-reflective macromolecular aggregates of collagen
that form the bundles of linear fibrils typical of the aging vitreous [48,49].

This is the first study that evaluates radiomics in uveitis. However, in ophthalmology,
radiomic models have been preliminarily studied in diabetic retinopathy, retinal venous
occlusions, and relative response to anti-vascular endothelial growth factors (VEGF) [50,51].
The basis of radiomics consists of extracting well-defined, hand-crafted features from the
image pixels in order to grasp what is not explainable using the clinician’s eye [30,52].
Indeed, looking at the OCT scans of the anterior vitreous, clinicians would not be able
to distinguish between vitreous involvement due to VRL or vitritis. On the contrary,
radiomics performs a mathematical analysis on each single OCT capture, so it is able to
catch differences in the pattern of all analysed images and allow it to reach the correct
diagnosis in 87% of eyes and in 82% of patients. Our study shows that radiomic processing
of the AS-OCT images could be an important supportive test helping the clinician in the
diagnostic pathway of VRL.

In other fields of medicine, especially in oncology, radiomic analyses using statistical
learning methods by analysing ultrasound [53,54], computed tomography [55–57], mag-
netic resonance [58,59], or positron emission tomography [60] images are very useful for
differentiating between cancer and inflammation [61].

It is important to note that we did not use the acquisition method as a feature to train
the models because it would have been a bias, given the retrospective nature of this study.
Due to the rarity of VRL, it is very difficult to collect a sizable cohort of these patients.

Based on the results listed in Table 4, we found that several features were collinear,
which could cause a problem with the proposed radiomic model. However, the xgboost
algorithm was not affected by collinearity issues because it consisted of a decision tree
ensemble classifier [62].

It is worth noting the meaning of the radiomic features selected to build the discrimi-
nant model. GLRLM_LRHGE quantifies grey-level runs (i.e., the number of consecutive
pixels having the same grey-level value). GLCM_Correlation shows the linear depen-
dency of grey-level values on their respective pixels in the grey-level co-occurrence matrix
(0 = perfect decorrelation, 1 = ideal correlation). NGTDM_Coarseness measures the average
difference between the central pixel’s grey level and that of its neighbour; this is an indicator
of the spatial rate of grey-level variation. A higher value means a lower spatial change
rate and a locally more uniform texture. NGTDM_Strength measures the primitive shapes
in the image (i.e., the presence of simple elements such as arcs, squares, or other simple
shapes in the image). A higher value means the primitives are easily defined and visible;
it also means a slow change in intensity but a larger coarse difference in grey-level tones.
GLSZM_HGZE quantifies the distribution of the higher grey-level-connected pixels that
share the same grey-level intensity. A higher value indicates a greater proportion of higher
grey-level tones and size zones in the image. GLRLM_SRE measures the distribution of
short run lengths. A higher value indicates shorter run lengths and more refined texture.
NGTDM_complexity describes the presence of many primitive components in the image; it
also measures the image’s non-uniformity and rapid changes in grey-level intensity [63].

Our research shows that using a higher number of grey levels can highlight finer
variations in the image as well as the complexity of their arrangement in the vitreal chamber.
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On the other hand, too many grey levels may introduce a bias in the model prediction
caused by image noise. Decreasing the number of levels is a sort of complexity reduction,
meaning that their ability to detect different details in the vitreal cavity diminishes. A
trade-off must be considered; our analysis found it in 128 grey levels. The selected features
to build radiomic models have in common their ability to describe how the higher number
of pixels (normal vitreous tends to be represented with zero values) are arranged, and their
relative displacement is better described in models with higher grey levels.

There has recently been an increasing number of studies employing deep learning in
differential diagnosis [64]. However, we decided to use a machine learning method because
we did not have a sufficient number of patients/eyes available due to VRL being a rare
pathology. The optimal starting point should be to adopt machine learning methods to
assess the feasibility of using AI techniques for this unexplored kind of imaging. A future
deep learning-based study is possible provided there are more data.

In summary, the strength of this work is the relative simplicity of application of
the described method based on a machine learning technique that allows calculating a
probability of discrimination of VRL in a short time. Moreover, this study has some
limitations. First, the retrospective nature of the analysis limited the consistency of the data.
Second, the small sample size decreased the power of our statistical analysis. Third, this was
a single-centre study. Because of these limitations, we could not perform a harmonisation of
our data because it was not possible to apply the methods described in the literature [65–68].

5. Conclusions

We built a classification model using the xgboost python function; through our model,
87% of eyes were correctly diagnosed as VRL or uveitis, regardless of the exam technique
used or lens status.

This preliminary retrospective study highlights how the AS-OCT can support the
clinician in suspected VRL. Clearly, it should be emphasised that it is still necessary to
collect a vitreous and/or aqueous sample to confirm a diagnosis, but AS-OCT is a quick and
easy-to-use additional tool for deciding whether a diagnostic vitrectomy is required. This
makes it possible to achieve the goal of reducing diagnostic delay, which would improve
not only the patient’s visual prognosis but above all the quoad vitam prognosis. Further
multicentre studies with a larger population sample are needed to confirm our results.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13142451/s1. Figure S1: Pearson correlation coefficients
(r) among the selected features and the other variables using 16 gray levels. Figure S2: Pearson
correlation coefficients (r) among the selected features and the other variables using 32 gray levels.
Figure S3: Pearson correlation coefficients (r) among the selected features and the other variables
using 64 gray levels. Figure S4: Pearson correlation coefficients (r) among the selected features and
the other variables using 128 gray levels. Figure S5: Pearson correlation coefficients (r) among the
selected features and the other variables using 256 gray levels. Figure S6: ROC curves obtained in
training and testing sets with relative AUCs for model using “Dataset Ng = 16”. Figure S7: ROC
curves obtained in training and testing sets with relative AUCs for model using “Dataset Ng = 32”.
Figure S8: ROC curves obtained in training and testing sets with relative AUCs for model using
“Dataset Ng = 64”. Figure S9: ROC curves obtained in training and testing sets with relative AUCs
for model using “Dataset Ng = 128”. Figure S10: ROC curves obtained in training and testing sets
with relative AUCs for model using “Dataset Ng = 256”. Table S1: Model outcomes by patient in the
training set. The number in brackets is the percentage of correctly detected images; if the percentage
was less than 50%, there was a misclassification. Table S2: Model outcomes by patient in the testing
set. The number in brackets is the percentage of correctly detected images; if the percentage was less
than 50%, there was a misclassification. Table S3: Model classification by patient and eye site. Y: Yes,
i.e., correctly classified eye. N: No, i.e., misclassified eye.
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