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Abstract: Atrial fibrillation is a prevalent cardiac arrhythmia that poses significant health risks
to patients. The use of non-invasive methods for AF detection, such as Electrocardiogram and
Photoplethysmogram, has gained attention due to their accessibility and ease of use. However, there
are challenges associated with ECG-based AF detection, and the significance of PPG signals in this
context has been increasingly recognized. The limitations of ECG and the untapped potential of
PPG are taken into account as this work attempts to classify AF and non-AF using PPG time series
data and deep learning. In this work, we emploted a hybrid deep neural network comprising of
1D CNN and BiLSTM for the task of AF classification. We addressed the under-researched area of
applying deep learning methods to transmissive PPG signals by proposing a novel approach. Our
approach involved integrating ECG and PPG signals as multi-featured time series data and training
deep learning models for AF classification. Our hybrid 1D CNN and BiLSTM model achieved an
accuracy of 95% on test data in identifying atrial fibrillation, showcasing its strong performance
and reliable predictive capabilities. Furthermore, we evaluated the performance of our model using
additional metrics. The precision of our classification model was measured at 0.88, indicating its
ability to accurately identify true positive cases of AF. The recall, or sensitivity, was measured at 0.85,
illustrating the model’s capacity to detect a high proportion of actual AF cases. Additionally, the
F1 score, which combines both precision and recall, was calculated at 0.84, highlighting the overall
effectiveness of our model in classifying AF and non-AF cases.

Keywords: atrial fibrillation; photoplethysmogram; electrocardiogram; deep learning; BiLSTM
network; 1D convolution neural networks

1. Introduction

The heart, as a vital component of the circulatory system, functions as a muscular
pump, ensuring the continuous flow of blood to various organs and tissues of the body [1].
The sinoatrial node, frequently referred to as the heart’s natural pacemaker and located in
the right atrium, produces electrical impulses that cause the heart to begin pumping. These
electrical impulses move through the heart, orchestrating coordinated contractions and
promoting the action potential’s quick spread [2].

A heartbeat consists of the contraction (systole) and relaxation (diastole) of the my-
ocardium, regulated by electrical signals originating within the heart and propagated
through the cardiac conduction system [3]. The signals begin at the SA node, triggering
atrial systole as they travel across the atria, facilitating the transfer of blood to the ventricles.
Subsequently, the signals pass through the atrioventricular node, allowing adequate time
for atrial blood transfer before continuing towards the ventricles, initiating ventricular
systole and pumping blood into the arteries. The relaxation and repolarization of the atria
and ventricles follow, denoted as atrial diastole and ventricular diastole, respectively, before
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the cardiac cycle recommences [3,4]. This contraction and relaxation of the heart muscle,
which pumps blood throughout the body, is what is referred to as a heartbeat. In contrast,
a heart rhythm is the pattern or sequence of heartbeats over a period of time. The electrical
signals that govern how the heart contracts serve as a determinant. Sinus rhythm is the
name for the typical heartbeat. However, there can be abnormalities in the heart’s rhythm,
known as cardiac arrhythmias, where the electrical signals are disrupted or irregular. De-
pending on the type of arrhythmia, the heart may beat excessively quickly a condition
known as tachycardia or too slowly called bradycardia, or in an irregular pattern [5,6].
These rhythm disturbances can arise from various causes, including structural heart defects,
electrolyte imbalances, cardiovascular diseases, and other underlying health conditions [7].
Cardiac arrhythmia encompasses a wide range of abnormal heart rhythms, of which atrial
fibrillation is the most common type [8].

Atrial fibrillation affects millions of individuals each year, an estimated 33.5 million
people worldwide [9,10]. Its presence increases the risk of strokes, heart failure, and even
mortality. According to the Global Burden of Disease study, the worldwide prevalence of
AF was reported to be approximately 0.51% of the global population, with an increasing
trend [11]. It leads to irregular heartbeats caused by disorganized electrical signals orig-
inating from the atria and propagating through the heart. The result is inefficient blood
perfusion, leading to symptoms such as fatigue, coagulation issues, strokes, and potential
life-threatening consequences [12]. Figure 1 depicts the flow of electrical signals via the
cardiac conduction system in atrial fibrillation (right) and normal sinus rhythm (left) [13].

Figure 1. Electrical signal Flow in Atrial Fibrillation (right) and Normal Sinus Rhythm (left) [13].

A common test to identify AF is an ECG. It can identify unnatural cardiac rhythms
and records the electrical activity of the heart [14]. Electrodes are positioned on the chest,
limbs, or both during this painless and non-invasive technique to measure the electrical
signals of the heart [15]. Photoplethysmography (PPG) is another non-invasive method
that uses light to measure blood volume changes in peripheral blood vessels [16]. When
compared to ECG, PPG has a number of benefits. Since it doesn’t require electrodes or close
skin contact and it is less complicated. Moreover, wearable gadgets like smartwatches or
fitness trackers can incorporate PPG sensors, enabling continuous monitoring throughout
the day [17]. PPG is more suited for monitoring during physical exercise because it is less
susceptible to motion artefacts. The technique uses light to illuminate the skin and detect
the light reflected back to monitor changes in blood volume. The photoplethysmogram is a
waveform that is produced when the amount of light reflected changes as a result of the
blood pulsing through the vessels. This waveform can reveal details regarding blood flow,
heart rate, and perhaps even detect abnormal heartbeats [18].

Machine learning techniques have gained prominence in the analysis and interpreta-
tion of physiological signals such as PPG and ECG, enabling advancements in detection,
classification, and prediction tasks, with potential applications in various domains [19–26].
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By analyzing large datasets of ECG and PPG signals, these models extract meaningful
patterns and features associated with AF. Deep learning models, such as convolutional
neural networks [27], recurrent neural networks [28] and long short term memory net-
works [29] also have demonstrated the ability to accurately identify various patterns and
features within raw data. These models can be applied to diverse domains, showcasing
their efficacy in tasks such as data classification, prediction, and anomaly detection.

Both ML and DL algorithms have also been widely employed in the detection, predic-
tion, and classification of cardiac arrhythmias [30,31], with a particular focus on AF [23].
However, existing studies predominantly utilize ECG datasets for these tasks [32]. Al-
though PPG-based approaches, mainly utilizing smart cameras and transmissive PPG [33],
have been explored to some extent, the combined use of PPG and ECG for AF classification
remains an underexplored area with limited research conducted thus far.

The aim of this study is to apply deep learning methods in the classification of atrial
fibrillation by leveraging multiple data sources, with the objective of achieving higher
accuracy. Mainly the study focuses on the comparison of LSTM, BiLSTM, and 1DConv
models for the task of atrial fibrillation classification. While the application of deep learning-
based methods on transmissive photoplethysmography signals for AF classification is an
under-researched area, we propose a novel approach in this study.

The other sections of the study are broken down into the ones below, with Section 2
offering an overview of current research and studies on the identification of atrial fibrillation.
The resources and procedures used in this investigation are described in Section 3. The
section presents details about the data sources used for the task of AF classification. The
results of the investigation are presented in Section 4. The findings are discussed in
Section 5. In this section, the results are discussed and compared to past studies while
being interpreted in light of the literature that is now accessible. In Section 6, the study
discusses the key findings and their implications.

2. Literature Review
2.1. The Role of ECG in AF Detection

ECG or EKG plays a pivotal role in the detection and diagnosis of AF [34]. The
recordings provide valuable insights into the electrical activity of the heart and serve as the
gold standard for the diagnosis [35]. By capturing the electrical signals generated during
each cardiac cycle, ECG enables the identification of specific patterns and abnormalities
associated with AF.

Atrial fibrillation is characterized by the absence of distinct P waves in ECG leads
I and III as shown in Figure 2. Instead of the regular and organized P waves observed
in normal sinus rhythm, AF exhibits chaotic and irregular atrial electrical activity. These
irregular electrical signals in the atria result in an erratic ventricular response, leading to
irregular heartbeats.

Figure 2. Lead I ECG recording. (a) ECG Recording of NSR and (b) ECG Recording of AF. In NSR,
a clear and distinct P wave is observable, which is absent in AF. Additionally, the interval between
consecutive QRS complexes remains constant in NSR, whereas it becomes irregular in AF. Adapted
from [36].

While ECG is highly valuable for diagnosing AF, it has some limitations [37]. Firstly,
AF episodes can be sporadic and transient, making it challenging to capture an episode
during a short recording period. Consequently, longer ECG monitoring duration may be
necessary to increase the chances of detecting AF episodes. Additionally, ECG requires
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direct contact with electrodes placed on the body, which can be inconvenient for continuous
monitoring in everyday settings [38].

2.2. The Significance of PPG in AF Detection

PPG has emerged as a promising non-invasive technique for AF detection. Tradition-
ally used for pulse oximetry and heart rate monitoring, PPG utilizes optical sensors to
measure variations in blood volume at the peripheral blood vessels [39]. PPG signals reflect
changes in blood flow and can provide valuable information about the cardiovascular
system, including the presence of irregular heart rhythms like AF [40]. Figure 3 shows a
raw PPG wave segment of a normal sinus rythym and atrial fabrilation patient’s rhythm.

Figure 3. Raw PPG waveform of (a) Normal Sinus Rhythm (b) Atrial Fibrillation. As can be seen that
the AF waveform exhibits the distinctive pattern of being “irregularly irregular”, characterized by
variations in both the amplitude and period of the waveform [41].

The non-invasive nature of PPG, which may easily be carried out utilising wearable
technology or even smartphone applications, is one of its main advantages, according to [42].
This qualifies PPG for continuous monitoring in a variety of contexts, including ambulatory
care and home scenarios. Furthermore, PPG is capable of recording physiological data in
real-time, enabling the identification of dynamic changes in heart rhythm [43].

2.3. Traditional Approach to Classify Atrial Fibrillation

ECG or PPG approaches have typically been used by qualified medical professionals,
such as cardiologists, to find AF. To identify cardiac irregularities and disorders, these spe-
cialists would examine the ECG waveform patterns, including the size, amplitude, duration,
and timing of the various waves, intervals, and segments. The manual interpretation of
these waveforms posses several challenges and limitations [44]. Firstly, it relied heavily on
the expertise and experience of the interpreting physician, leading to potential variations in
diagnoses and the possibility of human error [45]. Moreover, the manual interpretation of
ECGs was a labor-intensive task, requiring significant time and effort from the interpreting
physician. This could lead to delays in diagnosis, especially in situations where timely
intervention was crucial for patient care. Furthermore, the availability of experienced
cardiologists for ECG interpretation may be limited, particularly in resource-constrained
settings or remote areas [46].

Researchers and developers used computer-assisted image processing and analysis
approaches to get over the challenges and constraints [47]. These methods attempted to
produce objective and standardised outcomes by automating portions of the ECG interpre-
tation process. To recognise and categorise ECG waveform patterns, computer algorithms
were developed, facilitating a quicker and more reliable analysis. Numerous studies in-
vestigated techniques for automated ECG interpretation, including template matching,
feature extraction, and rule-based algorithms. While computer-assisted interpretation
showed promise, it still faced some limitations [48]. Traditional algorithms often relied
on handcrafted features, which required expert knowledge and may not capture the full
complexity of underlying patterns. They also struggled with handling variability and noise
in signals, making them less robust in real-world scenarios. Furthermore, the increasing
volume of ECG and PPG data require more advanced and adaptable approaches [49].

2.4. Emergence of Machine Learning and Deep Learning

Over the past decade, machine learning and deep learning techniques have emerged
as powerful tools for the detection, classification, and prediction of various phenomena,
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ranging from disease diagnoses in healthcare to fraud detection in finance, and from object
recognition in computer vision to sentiment analysis in natural language processing, among
many other domains [50–54]. These computational approaches leverage the analysis of
large datasets to extract meaningful patterns and features.By training algorithms on labeled
datasets, these models have the ability to learn and accurately identify and differentiate
between different classes or categories of data in various domains [55–57].

2.4.1. Machine Learning Based Atrial Fibrillation Classification

For detection and classification of atrial fibrillation, machine learning algorithms can
be trained using a diverse set of features extracted from ECG and PPG signals, including
statistical measures [58,59], frequency-domain analysis [60,61], wavelet transformations [62–64],
and nonlinear dynamics [65]. These features capture specific characteristics of AF, such
as irregular heart rate, absence of distinct P waves, and chaotic atrial electrical activity.
By feeding these features into supervised learning algorithms such as support vector
machines [66], random forests [67], or neural networks [68]. Once trained on big data all
these the models have ability to learn and classify new instances as AF or non-AF with
high accuracy.

One of the most commonly used models of machine learning in medical research is the
Support Vector Machine. SVM has been widely applied to the detection and classification
of arrhythmias, with a particular focus on atrial fibrillation. The robustness and accuracy
of SVM make it a valuable tool in identifying abnormal heart rhythms [69,70].

Using SVM and the Radial Basis function, [71] focused on the variabilities of elec-
trocardiographic heart rate for AFib detection. The designed model outputs a prediction
indicating whether these variabilities in the features belong to the AFib or non-AFib classes.
In another study by [72], a Lagrangian SVM was proposed to detect atrial fibrillation using
sixteen features as input vector. Other studies which employed AF classification using
SVM include [73–78].

A different method was used in another study by [79] to identify AF. The analysis
of ECG data from portable devices was the study’s main objective. Independent of ECG
lead location, a wide range of discriminative features was examined, including features
from several domains like time, frequency, time-frequency, phase space, and meta-level.
The suggested classification algorithm successfully classified four different ECG types,
including AF rhythms, by using a feature selection method based on a random forest
classifier. Employing random forest with ecg to detect af was also studied by [80–82].

Decision trees are also extensively used in the classification of atrial fibrillation (AF) in
various studies. For instance, in a study by [83], decision tree algorithms were employed
to classify ECG signals into different rhythm classes, including AF. The study utilized a
combination of hand-crafted features extracted from the ECG signals and a decision tree
classifier to achieve accurate AF classification. Similarly, in another study conducted by [84],
a decision tree-based approach was employed for AF detection using features derived from
the heart rate variability analysis.

All the above-discussed studies utilize ECG features for the classification of atrial
fibrillation (AF). However, it is worth noting that besides ECG, photoplethysmography
(PPG) has also been extensively employed for the classification of heart rhythm, including
AF. For example, in a study conducted by [85], PPG signals were utilized along with SVM
with linear kernel to classify AF rhythms. The study enables the use of affordable wearable
devices with limited processing and data storage resources for long-term ambulatory
monitoring of AF. HRV features were extracted in another study by [86] from the inter-beat
intervals, and SVM classifier was trained using these features utilizing face video recordings
of 200 patients.

2.4.2. Deep Learning Based Atrial Fibrillation Classification

Deep learning, a subset of machine learning, has also shown great potential in AF
detection and classification. Deep neural networks can effectively learn complex patterns
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and dependencies within data without the need for explicit feature engineering [87–89]. In
case of ECG based time-series data, they can automatically extract hierarchical representa-
tions, capturing both local and global patterns indicative of AF. One of the most prominent
and extensively used DL models within this domain is the Convolutional Neural Network
(CNN). Also, in the case of arrhythmia detection and classification, it has emerged as a
widely used and highly effective tool [90–93].

Using the single lead ECG signal [94] stacked a SVM on statistical features of segment-
based recognition units produced by a CNN. The CNN architecture employed automatically
classified each segment without the need for feature engineering. For non linear decision
boundaries an RBF kernel was utilized with SVM. For the classification of raw ECG time
series data [32] employed 1D convolutional neural network with seven FCN layers and
achieved 86% validation accuracy. Similarly, one dimensional time series ECG data was uti-
lized by [95] for automatic detection of atrial fibrillation using 1D CNN model. Additionally,
a length normalization algorithm was presented to address the challenge of variable-length
ECG recordings. Other studies employing 1D CNN for the task include [96–101].

Amonst other deep learning models, LSTMs and BiLSTMs have also been widely
used in cardiac arrhythmia detection and classification due to their ability to capture
temporal dependencies and handle sequential data effectively. These RNN architectures
have shown promising results in accurately identifying and categorizing various types of
arrhythmias, such as AF, VT, and PVCs. By leveraging the temporal information in ECG
signals, LSTMs and BiLSTMs can learn complex patterns and make accurate predictions,
improving diagnostic accuracy in clinical settings.

Four different methods to detect AF were employed by [102] with a bidirectional
long short-term memory network. The identification and classification of two forms of
atrial fibrillation, chronic and paroxysmal, were the study’s main objectives. ECG signal
classification has also been done by [103,104]. The first one combined feed-forward and
recurrent neural networks to extract relevant features for accurate arrhythmia classification.
And the second utilized the LSTM model for the same task. Detection of AF directly by
utilizing the raw PPG data, collected over 180 h using multi-sensor wearable devices using
LSTM was studied by [105]. The authors reported The area under the receiver operating
characteristic (ROC) curve to be 0.9999 for classification labels output every 0.8 s.

Hybrid models combining CNN, LSTM, and BiLSTM architectures also have emerged
as popular choices in the literature for the classification of AF, leveraging their ability to
capture spatial and temporal dependencies in waveform data effectively. The hybrid CNN-
LSTM model studied by [106] is a lightweight 1D deep learning model for ECG beat-wise
classification into six classes. In another work proposed by [97] a combination of 1D and 2D
CNN is employed. In order to remove PPG data that has been affected by motion artefacts
and ambient light interference, the 1D-CNN is used. A 2D-CNN that has been pretrained on
ECG data is then utilised to detect AFib. PPIs obtained from wearable technology are used to
fine-tune the 2D-CNN. The Table 1 summarizes key studies that have utilized hybrid deep
learning models for cardiac arrhythmia classification and related tasks.

Table 1. Studies Utilizing Hybrid Deep Learning Models for Cardiac Arrhythmia Classification and
Related Tasks.

Study LSTM BiLSTM CNN Other ECG PPG Task Evaluation
Metrics Dataset

[102] X X X X AF Detection
Training

Accuracy, Test
Accuracy

4th China
Physiological

Signal
Challenge—2021

[107] X KMMBO X
Arrhythmia

Classification
Accuracy,
Sensitivity

China
Physiological

Signal Challenge
2018, MIT-BIH
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Table 1. Cont.

Study LSTM BiLSTM CNN Other ECG PPG Task Evaluation
Metrics Dataset

[108] X X
Attention

Mechanism
Heart Rate
Prediction RMSE -

[109] X X X
Arrhythmia

Classification
Accuracy,

AUC-ROC

MIT-BIH
Arrhythmia

Database, AFDB,
NSRDB

[110] X X X AF Detection Weighted F1
Score

MIT-BIT
Arrhythmia
Physionet

[111] X Non Hybrid X
Blood Pressure

Prediction

Mean Error,
Standard
Deviation

MIMIC-III
Waveform
Database

[112] SVM X X AF Classification Accuracy

MIT-BIH Atrial
Fibrillation

Database, 2017
Challenge
Database

[113] Random Forest X X AF Detection Accuracy ECG Databases,
PPG Databases

[114] X X X X AF Detection F1 value, Overall
Accuracy

ECG Databases,
PPG Databases

[115] X X X AF Classification
Accuracy,
Sensitivity,
Specificity

MIT-BIH ECG
Databases,

Unseen PPG
Dataset

2.5. Research Findings

Based on the above literature we conclude that one notable research gap in the field of
atrial fibrillation detection and classification lies in the exploration of PPG waveform data.
While current research predominantly focuses on using machine learning and deep learning
with ECG data to classify AF, there has been increasing interest in utilizing PPG for AF
detection. However, previous studies on PPG-based AF detection have mainly concentrated
on reflective PPG techniques. Reflective PPG measures the light reflected from the skin’s
surface and provides information about superficial blood vessels. In contrast, transmissive
PPG involves transmitting light through body tissues and measuring the attenuated light
after passing through the vessels. Transmissive PPG has the potential to offer deeper
insights into the cardiovascular system and may enhance AF detection accuracy. Therefore,
the use of bedside PPG data in combination with ECG for AF classification represents a
research gap that warrants further investigation.

3. Materials and Methods

In this section, we will provide a detailed overview of the dataset used in our study and
describe the preprocessing steps undertaken to ensure data quality and consistency. Subse-
quently, we will delve into the discussion of three deep learning architectures employed
in our research: 1DCNN (1D Convolutional Neural Network), LSTM (Long Short-Term
Memory), and BiLSTM (Bidirectional Long Short-Term Memory). We will present the
architectural details, highlighting the unique characteristics and advantages of each model
in the context of our AF classification task. The diagram showing the block diagram of our
proposed procedure is shown in Figure 4.
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Figure 4. Block Diagram of our proposed procedure.

3.1. Dataset Preprocessing

The dataset used in this study was extracted from MIMIC PERform dataset [18] which
itself is derived from the MIMIC III Waveform Database and offer valuable insights into
the physiological state of critically-ill patients. The training dataset contains recordings
from 200 patients, with an equal number of adults and neonates, with 100 having NSR
and the other half having atrial fibrillation. Likewise, the distribution is the same in the
testing dataset. Two instances from the MIMIC PERform dataset are shown in Figure 5,
each representing a different physiological signal captured during standard clinical care.
The first example shows ECG and PPG data for normal sinus rhythm. While the NSR ECG
records the electrical activity of the heart, the NSR PPG visualises the pulsatile variations
in blood volume. These signals operate as a benchmark for the common heart activity seen
in healthy people.

Figure 5. Cont.
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Figure 5. Physiological signals from the MIMIC PERform dataset. Subfigure (a) shows NSR ECG,
(b) displays NSR PPG, (c) depicts AFib ECG, and (d) exhibits AFib PPG.

In contrast, the second example exhibits signals associated with atrial fibrillation. The
AFib PPG depicts the irregular and chaotic fluctuations in blood volume caused by the
abnormal rhythm, while the AFib ECG highlights the irregularities in the electrical activity
of the heart. This example demonstrates the distinct patterns observed in the PPG and ECG
signals when the patient is experiencing AFib.

3.2. Baseline Architectures

Following a broad introduction to bidirectional LSTM and 1D convolutional neural
networks (CNNs), we will explain the architecture used and the rationale behind combining
these two types of networks.

3.2.1. 1D Conv Net

CNNs are widely used for image classification tasks, but they can also be applied to
time series sequential data using a variant of vanilla CNN called 1D convolution neural
network. In 1D CNNs, local patterns or motifs in the sequence are captured by convolu-
tional filters that slide along the temporal axis of the input. Figure 6 shows the architecture
of a simple 1D ConvNet.
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Figure 6. The architecture of a Simple 1D CNN adapted from [116].

By applying multiple convolutional layers with increasing filter sizes, CNNs can learn
hierarchical representations of the input data, capturing both low-level and high-level
features. Such models are useful for extracting meaningful features from sequential data,
such as time series, audio signals, and text data.

3.2.2. BiLSTM

Recurrent neural networks of the LSTM variety are particularly good at capturing
long-distance dependencies in sequential data. The bidirectional LSTM combines two
LSTMs, one of which moves the input sequence forward while the other moves it backward.
By processing the input in both ways, they are able to capture dependencies from both
past and future context, making them suitable for applications that require a thorough
understanding of the sequence. Figure 7 shows the architecture of a vanilla BiLSTM.

Figure 7. The architecture of a Simple BiLSTM network adapted from [117].
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3.3. Our Proposed Hybrid Architecture

The architecture is designed to classify atrial fibrillation using time-series ECG and
PPG data. It consists of the following components. Figure 8 illustrates the model summary.

Figure 8. The summary of our proposed architecture.

3.3.1. 1D Convolutional Layers

• The initial convolutional layers with increasing filter sizes and ReLU activation func-
tions aim to capture local patterns and features from the ECG and PPG data.

• The convolutional filters slide along the temporal axis of the input to extract meaning-
ful features.

• Each convolutional layer is followed by a max pooling layer, which reduces the spatial
dimensions and retains important features.

3.3.2. Bidirectional LSTM Layers

• The sequence is processed in both forward and reverse directions by the bidirectional
LSTM layers, which also collect dependencies and contextual data from both past and
future states.

• By leveraging the bidirectional nature, the model can effectively understand the
temporal dynamics of the ECG and PPG signals.
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3.3.3. Additional Convolutional and Pooling Layers

• Another convolutional layer with a smaller filter size and a max pooling layer follow
the bidirectional LSTM layers.

• This additional layer aims to extract more refined features from the combined infor-
mation obtained from the previous layers.

3.3.4. Dense Layers and Dropout Layers

• Dense layers with leaky ReLU activation functions are used to introduce non-linearity
and capture higher-level representations.

• Dropout layers are included to prevent overfitting by randomly dropping out a fraction
of the connections during training.

3.3.5. Output Layer

• The binary classification output, indicating the presence or absence of atrial fibrillation,
is produced by the final dense layer with a sigmoid activation function.

3.4. Reasons for Hybridizing 1D CNN and Bidirectional LSTM

The categorization of atrial fibrillation gains from using both ECG and PPG data.
PPG detects variations in blood volume, whereas ECG delivers electrical signals from the
heart. The model is able to efficiently process and extract features from both forms of data
by combining 1D CNN and bidirectional LSTM. Local patterns and characteristics in the
ECG and PPG signals are well-captured by 1D CNNs. The ability to recognise long-term
dependencies and comprehend the temporal context is a strength of bidirectional LSTM
layers. The capacity of the model to distinguish between regular and atrial fibrillation
signals is improved by integrating the two designs, which may capture both spatial and
temporal patterns. The hybrid architecture improves performance in AF classification tasks
by combining the advantages of bidirectional LSTM with 1D CNN.

3.5. Hyperparameter Tuning

To optimize the performance of our models, we conducted parameter tuning exper-
iments. We investigated a number of hyperparameters, such as regularisation methods,
dropout rates, and various optimisation approaches. The following are some of the precise
specifics of the parameter tweaking experiments:

3.5.1. Regularization

We experimented with different regularization techniques, such as L1 and L2 regular-
ization, to prevent overfitting and improve generalization. We varied the regularization
strength to find the optimal balance between model complexity and performance.

3.5.2. Dropout Rate

Dropout is a regularisation strategy that prevents the model from depending too much
on particular features by randomly removing a portion of the connections during training.
We tested different dropout rates, ranging from 0.1 to 0.5, to find the dropout rate that
achieved the best performance.

3.5.3. Optimization Algorithms

We compared different optimization algorithms, such as Adam and SGD to find the
algorithm that resulted in faster convergence and better performance.

3.5.4. Final Hyperparameters

By systematically varying these hyperparameters and evaluating the models’ perfor-
mance using appropriate metrics, we identified the optimal combination of parameters for
our AF classification task as presented in Table 2.
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Table 2. Final Hyperparameters.

Hyperparameter Value

Conv1D Filters 32, 64, 128

Conv1D Kernel Size 3

LSTM Units 64, 32

Dense Units 256, 128

Dropout Rate 0.5

Regularizer L2

Optimizer Adam

Learning Rate 0.001

Epochs 25

Batch Size 20

Validation Split 0.2

These parameter tuning experiments allowed us to fine-tune our models and enhance
their performance in accurately classifying atrial fibrillation.

4. Results and Experimentation

In the classification of atrial fibrillation using a hybrid 1D-CNN and BiLSTM model,
we achieved promising results. The model showed a continuous increase in training and
validation accuracy and decrease in the loss over the course of the 25 epochs that made
up the training procedure. Details of the evaluation metrics and training procedures are
discussed in Appendices A and B. Figure 9 illustrates the model’s learning process through
the training and validation accuracy curves and the loss curves over time. When evaluated
on test data the model achieved total loss of 0.1955 and accuracy of 0.9500, which is also
highlighted in the each sub-figure. Figure 10 displays the distribution of predicted and
actual classes, revealing 50 true negatives (non-AF) and 35 true positives (AF), with no
false negatives and no false positives.

Figure 9. Training and validation accuracy and loss curves during the model training process. The
testing accuracy and loss are also displayed. (a) Training and Validation Accuracy Curve along with
Testing Accuracy, (b) Training and Validation Loss Curve along with Testing Loss.
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Figure 10. Obtained Confusion Matrix.

To further evaluate the performance of our model, we computed precision, recall, and
F1-score for each class. The classification report in Figure 11 provides a comprehensive
overview of the model’s performance metrics. Class 0 (non-AF) achieved a precision of
0.77, recall of 1.0, and an F1-score of 0.87. Class 1 (AF) achieved perfect precision, recall,
and F1-score, all equal to 1.0.

Figure 11. Precision, Recall, and F1-score for Atrial Fibrillation Classification.

We also evaluated the model’s sensitivity and specificity as shown in Figure 12. The
non-AF category has a sensitivity (recall) of 0.7, which means that 70% of real non-AF cases
were accurately identified. The sensitivity for Class AF was 1.0, indicating a 100% accurate
identification of AF cases. Class AF’s specificity was 0.7 whereas Class non-AF’s was 1.0,
indicating that all non-AF cases were correctly identified.
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Figure 12. Sensitivity and Specificity for Atrial Fibrillation Classification—Comparison of class-
wise sensitivity and specificity values for class Non-AF and class AF. The bar plot illustrates the
performance of the classification model in terms of correctly identifying positive (sensitivity) and
negative (specificity) instances for each class.

We also generated the Receiver Operating Characteristic curve as shown in Figure 13
to analyze the model’s overall performance. The area under the ROC curve was calculated
as 0.99, indicating excellent discriminative ability between AF and non-AF cases.

Figure 13. The ROC curve illustrates the trade-off between the true positive rate (sensitivity) and the
false positive rate for the atrial fibrillation classification model. The AUC is a measure of the model’s
overall performance, with higher values indicating better discrimination between the classes. The
diagonal line represents the performance of a random classifier. The AUC value for this model is 0.85,
indicating good predictive performance.

Finally, using the same dataset and evaluation metrics, we trained and evaluated
a variety of models, including CNN, LSTM, Bidirectional LSTM, BiLSTM, and SVM, to
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determine how well they performed for classifying atrial fibrillation using PPG and ECG
signals as shown Table 3.

Table 3. Comparison of precision and accuracy for different ML and DL methods on same dataset.

Method Precision Accuracy

Proposed (Hybrid) 0.85 0.95
CNN 0.78 0.90
LSTM 0.75 0.88

BiLSTM 0.82 0.92
SVM 0.70 0.85

In summary, we can conclude that our model successfully identified atrial fibrillation
with great accuracy and reliable prediction capabilities.

5. Discussion and Findings

In this study, we evaluated the performance of our proposed approach for the classifi-
cation of atrial fibrillation using a hybrid deep learning model. Our approach incorporated
both ECG and PPG signals to improve the accuracy of AF detection.

Comparing our findings with existing literature, we observed that previous studies
primarily focused on utilizing only the ECG signal for AF classification. However, our
proposed approach went beyond by integrating both ECG and PPG signals. This integration
allowed us to capture complementary information from both signals, potentially enhancing
the accuracy, precision, recall, and F1-score of the classification model.

Table 4 summarizes the main findings of the comparison between our proposed approach
and previous studies in terms of accuracy, precision, recall, and F1-score. It is evident that our
proposed approach outperformed the existing studies across all evaluation metrics.

Table 4. Comparison of results with benchmark studies.

Study
Metrics

Accuracy Precision Recall F1

[118] 80.0 0.80 0.79 0.80
[119] 77.1 0.77 0.76 0.76
[120] 86.5 0.86 0.85 0.86

Our proposed 95.0 0.88 0.85 0.84

Although the performance of the approach we suggested was greater, it is signifi-
cant to note that each study’s use of distinct deep learning models. Ref. [118] employed
densely connected convolutional neural networks (CNNs) to classify ECG recordings.
The model consisted of a main CNN that processed 15-s ECG segments and a secondary
CNN that analyzed shorter 9-s segments. In [119], a deep classifier was constructed using
a combination of CNNs and LSTM units. The network architecture included pooling,
dropout, and normalization techniques to improve accuracy. An ensemble classifier was
then created by cross-validating ten standalone models based on the same architecture.
For [120], the researchers explored the application of machine learning and deep learning
algorithms for AF detection. Specifically, they compared the performance of LSTM and
CNN algorithms against traditional machine learning classifiers such as support vectors
and logistic regression. The results of their experimentation revealed interesting findings.
The researchers reported that a simple CNN model achieved an accuracy of 0.865, indi-
cating its effectiveness in distinguishing AF cases from normal sinus rhythm. They also
evaluated a CNN+LSTM hybrid model, which combined the strengths of both architectures,
resulting in an accuracy of 0.811. Additionally, they explored the performance of a residual
network (ResNet) model, which achieved an accuracy of 0.792. This finding suggests that
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the ResNet architecture may not have been as effective in capturing the relevant features
for AF detection in this particular study. Furthermore, the researchers investigated the
performance of a standalone LSTM model, which achieved an accuracy of 0.875. This
demonstrates the potential of LSTM networks in capturing the temporal dependencies
present in the ECG signals. Building upon this we extended thier findings with hybrid
CNN and BiLSTM network achieving an impressive accuracy of 0.95, surpassing the per-
formance of the individual models and demonstrating the effectiveness of this combined
approach for AF detection. These findings are summarized in Table 5.

Table 5. Performance of deep learning models in classification of AF.

Model Accuracy

Simple CNN 0.865
CNN+LSTM 0.811

ResNet 0.792
LSTM 0.875

1DCNN-BiLSTM (Proposed) 0.950

The following contributions were made as a result of our method integrating both
ECG and PPG signals as multi-featured time series data for deep learning models.

• Our study utilized both ECG and PPG signals for AF classification. By leveraging the
complementary information provided by these two modalities, our research aims to
improve the accuracy of AF detection.

• Our methodology made use of multi-feature time series data from ECG and PPG
signals rather than depending just on a single feature. This thorough representation
enables the collection of various patterns and AF-related traits, improving classification
performance.

• With the use of a hybrid model that combines a 1D Convolutional Neural Network
with a Bidirectional Long Short-Term Memory architecture, we proposed a unique
method for classifying atrial fibrillation. Due to the deep learning models’ integration,
we were able to accurately detect temporal dependencies in the data.

• Through trials and evaluation, we were able to classify AF and non-AF cases with a
high degree of accuracy of 95%. The usefulness of your suggested technique was also
highlighted by the great performance of other evaluation criteria like specificity and
sensitivity.

6. Conclusions

For the categorization of atrial fibrillation, we used a hybrid model in this study that
combines a simple 1D CNN with a BiLSTM. The use of BiLSTM is an important component
of our research because it has been comparatively underutilised in prior AF detection inves-
tigations. Moreover, the utilization of a simple 1D CNN as the base model is advantageous
in terms of its lightweight architecture, which allows for efficient computation and reduced
model complexity. This is particularly important in the context of AF detection, where
real-time processing and low computational requirements are crucial for practical applica-
tions. In addition to this one other significance of our approach lies in the incorporation of
PPG alongside ECG, which allowed us to leverage the complementary information from
both signals. By considering additional features provided by PPG, we improved the detec-
tion and classification of AF, enhancing the overall performance of the model. Although
our suggested solution outperformed existing ones in terms of performance, it is crucial
to confirm its efficacy on a bigger and more varied dataset. This would guarantee our
model’s resilience and generalizability across various patient groups and data collection
environments. In future we plan to the deployment and evaluation of our proposed model
in a real-world clinical setting would provide valuable insights into its practical feasibility
and performance in a clinical context. Such studies can contribute to the translation of our



Diagnostics 2023, 13, 2442 18 of 25

research into clinical practice, ultimately benefiting patients by enabling early and accurate
detection of atrial fibrillation.
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AF Atrial Fibrillation
AFDB Atrial Fibrillation Database
AI Artificial Intelligence
AUC Area Under the Curve
AV Atrioventricular
CNN Convolutional Neural Network
DL Deep Learning
ECG Electrocardiogram
EKG Electrocardiogram
FCN Fully Convolutional Network
HRV Heart Rate Variability
KMMBO K-means Monarchy Butterfly Optimization
LSTM Long Short-Term Memory
MIMIC-III Medical Information Mart for Intensive Care III
ML Machine Learning
MIT-BIH Massachusetts Institute of Technology-Beth Israel Hospital
NSR Normal sinus rhythm
NSRDB Normal Sinus Rhythm Database
NSR Normal sinus rhythm
PPIs Peak-to-Peak Intervals
PPG Photoplethysmogram
PVCs Premature ventricular contractions
RBF Radial Basis Function
RNN Recurrent Neural Network
RMSE Root Mean Square Error
ROC Receiver Operating Characteristic
SA Sinoatrial
SVM Support Vector Machine
VT Ventricular tachycardia

Appendix A Experimental Setup and Hyperparameters

The following table provides an overview of the hyperparameters used in our study
for training the classification model. These hyperparameters define the architecture and con-
figuration of the model, influencing its performance and predictive capabilities. Table A1
summarizes the values chosen for each hyperparameter, including the model architecture,
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filter sizes, kernel sizes, LSTM units, dense layers and units, activation functions, dropout
rate, optimizer, and loss function. Understanding and optimizing these hyperparame-
ters are crucial steps in developing an accurate and reliable model for atrial fibrillation
classification.

Table A1. Hyperparameters used in the study.

Hyperparameter Value

Model Architecture Conv1D, MaxPooling1D, Bidirectional LSTM,
Dense

Conv1D Filters 32, 64, 128
Conv1D Kernel Size 3

LSTM Units 64, 32
Dense Layers 2
Dense Units 256, 128

Activation Function ReLU, LeakyReLU
Dropout Rate 0.5

Optimizer Adam
Loss Function Binary Crossentropy

Appendix B The Details of the Evaluation Metrics Used in Our Study

• Precision A measurement of precision is the percentage of accurately anticipated
positive instances among all positive instances that were forecasted. It measures
how accurately the model can detect positive cases while excluding false positives.
Precision in the classification of atrial fibrillation refers to the accuracy with which AF
cases are located.

PR =
Truepositive

Truepositive + Falsepositive

• Recall The proportion of accurately anticipated positive cases out of all actual positive
instances is measured by recall, also known as sensitivity or true positive rate. It
indicates the model’s ability to correctly identify positive cases and avoid false nega-
tives. In the context of atrial fibrillation classification, recall represents the accuracy of
identifying AF cases.

RC =
Truepositive

Truepositive + Falsenegative

• F1-score The F1-score is a harmonic mean of precision and recall. It provides a balanced
measure of the model’s performance, considering both precision and recall. The F1-
score combines the strengths of precision (correctly identifying positive cases) and
recall (avoiding false negatives) into a single metric. It is particularly useful when there
is an imbalance between the classes. In atrial fibrillation classification, the F1-score
represents the overall accuracy of the model in identifying both AF and non-AF cases.

F1 − score = 2 × PR × RC
PR + RC

• Sensitivity The proportion of accurately anticipated positive cases out of all actual
positive instances is measured by sensitivity, also known as true positive rate or recall.
It measures how well the model can recognise positive cases—in this case, cases of
AF—correctly.

Sensitivity =
Truepositive

Truepositive + Falsenegative

• Specificity Specificity is determined by the proportion of precisely foreseen negative
events to all actual negative events. It represents the model’s ability to correctly
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identify negative cases, in this case, non-AF cases. A specificity of 1.0 indicates that all
non-AF cases were correctly identified.

Specificity =
Truenegative

Truenegative + Falsepositive

• Receiver Operating Characteristic (ROC) curve The ROC curve is a graph that shows
how a binary classifier system performs as its discrimination threshold is changed.
It demonstrates the trade-off between the false positive rate and the actual positive
rate (sensitivity). One often used statistic to evaluate the overall effectiveness of the
model is the area under the ROC curve. AUC-ROC values range from 0.5 to 1.0, with
1.0 denoting perfect classification and 0.5 denoting random categorization. Figure A1
shows the good and worse ROC of a classifier.

Figure A1. Comparison of ROC curves for a superior and inferior classifier. The better classifier
exhibits a higher true positive rate (sensitivity) across various false positive rates, indicating its
improved discriminatory power.
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