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Abstract: The segmentation of gastrointestinal (GI) organs is crucial in radiation therapy for treating
GI cancer. It allows for developing a targeted radiation therapy plan while minimizing radiation
exposure to healthy tissue, improving treatment success, and decreasing side effects. Medical diag-
nostics in GI tract organ segmentation is essential for accurate disease detection, precise differential
diagnosis, optimal treatment planning, and efficient disease monitoring. This research presents a
hybrid encoder–decoder-based model for segmenting healthy organs in the GI tract in biomedical
images of cancer patients, which might help radiation oncologists treat cancer more quickly. Here,
EfficientNet B0 is used as a bottom-up encoder architecture for downsampling to capture contextual
information by extracting meaningful and discriminative features from input images. The perfor-
mance of the EfficientNet B0 encoder is compared with that of three encoders: ResNet 50, MobileNet
V2, and Timm Gernet. The Feature Pyramid Network (FPN) is a top-down decoder architecture used
for upsampling to recover spatial information. The performance of the FPN decoder was compared
with that of three decoders: PAN, Linknet, and MAnet. This paper proposes a segmentation model
named as the Feature Pyramid Network (FPN), with EfficientNet B0 as the encoder. Furthermore,
the proposed hybrid model is analyzed using Adam, Adadelta, SGD, and RMSprop optimizers.
Four performance criteria are used to assess the models: the Jaccard and Dice coefficients, model loss,
and processing time. The proposed model can achieve Dice coefficient and Jaccard index values of
0.8975 and 0.8832, respectively. The proposed method can assist radiation oncologists in precisely
targeting areas hosting cancer cells in the gastrointestinal tract, allowing for more efficient and timely
cancer treatment.

Keywords: semantic segmentation; gastrointestinal tract; FPN; PAN; MAnet; Linknet

1. Introduction

The gastrointestinal (GI) tract aids digestion by breaking down and absorbing food.
However, gastrointestinal cancer is a significant public health concern affecting millions
globally [1]. Tumors of the esophagus, stomach, large intestine, and small intestine are all
examples of GI cancer [2]. The choice of diagnostic method or combination of methods is
based on the patient’s symptoms, the suspected condition, and the healthcare provider’s
clinical judgment. The accuracy of a diagnosis is essential for the effective treatment and
management of diseases. Despite the availability of options such as surgery, chemotherapy,
and targeted therapy, radiation therapy has proved to be an effective treatment for GI
cancer [3].
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Radiation therapy, which employs high-intensity radiation to kill cancer cells, is
typically used with other medicines. However, because the GI tract organs are convoluted
and irregular in shape, accurate and precise targeting of cancer cells is essential to the
success of radiation treatment [4]. Medical diagnostics in GI tract organ segmentation
is critical for specific illness detection, multiple diagnosis, appropriate therapy planning,
and effective disease monitoring. Diagnostic tests assist in localizing and diagnosing
illnesses or anomalies in the GI system by segmenting the organs, allowing for focused
treatments and personalized treatment options. Accurate segmentation helps differentiate
distinct GI illnesses with similar symptoms, leading to appropriate diagnosis and care. It
is critical for detecting the extent and location of conditions, enabling surgical decisions,
targeted medicines, and monitoring disease progression or treatment response, all of which
contribute to better patient outcomes [5].

Deep learning models have demonstrated significant promise in medical image analy-
sis, notably in organ and structural segmentation [6,7]. This research proposes a hybrid
encoder–decoder-based model for semantic segmentation of the GI tract. In the proposed
hybrid model, EfficientNet B0 is used as a bottom-up encoder architecture for down-
sampling to capture contextual information by extracting meaningful and discriminative
features from input images. The performance of the EfficientNet B0 encoder is compared
with that of three encoders: ResNet 50, MobileNet V2, and Timm Gernet. Here, the Feature
Pyramid Network (FPN) is used as a top-down decoder architecture for upsampling to
recover spatial information. The performance of the FPN decoder is compared with that
of three decoders: PAN, Linknet, and MAnet. Furthermore, the proposed hybrid model
is analyzed using Adam, Adadelta, SGD, and RMSprop optimizers. The experiment is
carried out utilizing the UW Madison GI tract dataset, which contains 38,496 MRI pictures
of cancer patients.

The remaining part of this manuscript is arranged as follows. Section 2 shows the
related work for segmenting the GI tract. Section 3 described the input dataset used for
the segmentation task. Section 4 shows the proposed methodology for segmenting the
small intestine, large intestine, and stomach in MRI images of the UW Madison GI tract
dataset. Section 5 depicts the findings of implemented models, and Section 6 concludes the
complete manuscript.

2. Literature Review

A significant amount of research has been conducted on gastrointestinal tract seg-
mentation and categorization [8–10]. Yu et al. developed a unique architecture for polyp
identification in the gastrointestinal tract in 2016 [11]. They combine offline and online
knowledge to minimize the false acceptance created through offline design and boost recog-
nition results even more. Widespread testing using the polyp segmentation dataset indicated
that their solution outperformed others. In 2017, Yuan Y et al. suggested a unique auto-
mated computer-aided approach for detecting polyps in colonoscopy footage. They used
an unsupervised sparse autoencoder (SAE) to train discriminative features. Then, to iden-
tify polyps, a distinctive unified bottom-up and top-down strategy was presented [12]. In
2019, Kang J et al. used the strong object identification architecture “Mask R-CNN” to detect
polyps in colonoscopy pictures. They developed a fusion technique to improve results by
combining Mask R-CNN designs with differing backbone topologies. They employed three
open intestinal polyp datasets to assess the proposed model [13]. In 2019, Cogan T et al.
published approaches for enhancing results for a collection of images using full-image pre-
processing with a cutting-edge deep learning technique. Three cutting-edge designs based on
transfer learning were trained on the Kvasir dataset, and their performance was accessed on
the validation dataset. In each example, 80% of the photos from the Kvasir dataset were used
to test the model, leaving 20% to validate the model [14]. In 2020, Öztürk et al. developed a
successful classification approach for a gastrointestinal tract classification problem. The CNN
output is enhanced using a very efficient LSTM structure. To assess the contribution of the
proposed technique to the classification performance, experiments were carried out utilizing
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the GoogLeNet, ResNet, and AlexNet designs. To compare the results of their framework, the
same trials were replicated via CNN fusion with ANN and SVM designs [15]. Özturk et al.
2021 presented an artificial intelligence strategy for efficiently classifying GI databases with
a limited quantity of labeled images. As a backbone, the proposed AI technique employs
the CNN model. Combining LSTM layers yields a categorization. To accurately analyze the
suggested residual LSTM architecture, all tests were conducted using AlexNet, GoogLeNet,
and ResNet. The proposed technique outperforms previous state-of-the-art techniques [16].
In 2022, Ye R et al. suggested the SIA-Unet, an upgraded Unet design that utilizes MRI data.
It additionally contains an attention module that filters the spatial information of the feature
map to fetch relevant data. Many trials on the dataset were carried out to assess SIA-Unet’s
performance [17]. In 2022, Nemani P et al. suggested a hybrid CNN–transformer architecture
for segmenting distinct organs from images. With Dice and Jaccard coefficients of 0.79 and
0.72, the proposed approach is resilient, scalable, and computationally economical. The sug-
gested approach illustrates the principle of deep learning to increase treatment efficacy [18].
Chou, A. et al. used U-Net and Mask R-CNN approaches to separate organ sections in 2022.
Their best U-Net model had a Dice score of 0.51 on the validation set, and the Mask R-CNN
design received a Dice value of 0.73 [19]. In 2022, Niu H et al. introduced a technique for GI
tract segmentation. Their trials used the Jaccard index as the network assessment parameter.
The greater the Jaccard index, the better the model. The results demonstrate that their model
improves the Jaccard index compared to other methods [20]. In 2022, Li, H, and colleagues
developed an improved 2.5D approach for GI tract image segmentation. They investigated
and fused multiple 2.5D data production methodologies to efficiently utilize the association
of nearby pictures. They suggested a technique for combining 2.5D and 3D findings [21].
In 2022, Chia B et al. introduced two baseline methods: a UNet trained on a ResNet50
backbone and a more economical and streamlined UNet. They examined multi-task learning
using supervised (regression) and self-supervised (contrastive learning) approaches, building
on the better-performing streamlined UNet. They discovered that the contrastive learning
approach has certain advantages when the test distribution differs significantly from the
training distribution. Finally, they studied Featurewise Linear Modulation (FiLM), a way of
improving the UNet model by adding picture metadata such as the position of the MRI scan
cross-section and the pixel height and breadth [22]. Georgescu M. et al. suggested a unique
technique for generating ensembles of diverse architectures for medical picture segmentation
in 2022 based on the variety (decorrelation) of the models constituting the ensemble. They
used the Dice score among model pairs to measure the correlation between the outputs of
the two models that comprise each pair. They chose models with low Dice scores to foster
variety. They conducted gastrointestinal tract image segmentation studies to compare their
diversity-promoting ensemble (DiPE) with another technique for creating ensembles that
relies on picking the highest-scoring U-Net models [23].

3. Input Dataset

This research employs magnetic resonance imaging (MRI) data collected from patients
who underwent MRI-guided radiotherapy at the University of Wisconsin-Madison Car-
bone Cancer Center. This research uses a dataset comprising 85 patients, encompassing
38,496 scans of various GI parts. The 16-bit grayscale Portable Network Graphics (PNG)
layout represents the scans, while the annotations are given in comma-separated values
(CSV) representations. The ground truth mask is generated from these annotations using
an RLE encoder. Hence, there are 14,085 masks for the large bowel, 11,201 masks for the
small bowel, and 8627 masks for the stomach. A number of 33,913 masks do not include
any organs from the GI tract, so these are blank masks. The RLE-encoded masks are used
to describe the segmented areas. The dataset is available on the Kaggle website [24]. The
dimensions of each slice exhibit variability, ranging from 234 × 234 to 384 × 384 pixels.
Figure 1 shows an image of the dataset with its ground truth masks. Figure 1a shows the
input image of case32_day19_slice_0089. Figure 1b shows the mask for the large bowel,
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Figure 1c shows the small bowel, Figure 1d shows the mask for the stomach, and Figure 1e
shows an image with three concatenated masks.

Diagnostics 2023, 13, x FOR PEER REVIEW 4 of 16 
 

 

384 × 384 pixels. Figure 1 shows an image of the dataset with its ground truth masks. 
Figure 1a shows the input image of case32_day19_slice_0089. Figure 1b shows the mask 
for the large bowel, Figure 1c shows the small bowel, Figure 1d shows the mask for the 
stomach, and Figure 1e shows an image with three concatenated masks. 

     

(a) (b) (c) (d) (e) 

Figure 1. UW Madison GI tract dataset, (a) input image mask, (b) large bowel mask, (c) small bowel 
mask, (d) stomach mask, and (e) concatenated mask with large bowel in yellow color, small bowel 
in green color and stomach in red color [24]. 

4. Proposed Methodology 
This research presents a segmentation model for segmenting GI tract parts such as 

the stomach and small and large bowel. Figure 2 depicts the proposed technique, which 
includes the input dataset, which is the UW Madison GI tract dataset. The second block is 
a downsampling encoder. Several encoders are used for downsampling in semantic 
segmentation to derive meaningful and hierarchical representations from the input data. 
To discover the optimum encoder for the segmentation job, four different encoders are 
implemented: ResNet 50 [25], EfficientNet B0 [26], MobileNet V2 [27], and Timm Gernet 
[28]. These encoders are pre-trained transfer learning models that did well on the 
ImageNet dataset. These encoders play a vital role in downsampling the input data, al-
lowing the decoder network to construct accurate and complete semantic segmentation 
maps of the gastrointestinal system. Different performance measures are used to assess 
these encoders. The best encoder will then be finalized based on the results and utilized 
as the encoder component of the final optimized model. 

Several decoders are used for upsampling in semantic segmentation to regain spatial 
resolution and construct high-resolution segmentation maps. Upsampling is required 
because it restores the fine-grained details lost during downsampling. Dilated convolu-
tion-based decoders maintain spatial resolution while increasing the receptive field. By 
varying the dilation rates in the decoder, these devices successfully capture fine features 
and contextual information at several scales. The sort of decoder employed is decided by 
the application’s specific requirements and the nature of the target objects. Some decod-
ers are better at capturing little details, while others may be better at maintaining spatial 
context. Four alternative decoders are used to determine the optimum decoder for GI 
tract segmentation. The Feature Pyramid Network (FPN) [29], Pyramid Attention Net-
work (PAN) [30], Linknet [31], and MAnet [32] are the names of the four decoders. These 
segmentation models were chosen for their excellent performance in earlier medical im-
aging research and their versatility in dealing with characteristics of various sizes. The 
best decoder is selected based on the findings of these four models. 

Figure 1. UW Madison GI tract dataset, (a) input image mask, (b) large bowel mask, (c) small bowel
mask, (d) stomach mask, and (e) concatenated mask with large bowel in yellow color, small bowel in
green color and stomach in red color [24].

4. Proposed Methodology

This research presents a segmentation model for segmenting GI tract parts such as
the stomach and small and large bowel. Figure 2 depicts the proposed technique, which
includes the input dataset, which is the UW Madison GI tract dataset. The second block
is a downsampling encoder. Several encoders are used for downsampling in semantic
segmentation to derive meaningful and hierarchical representations from the input data.
To discover the optimum encoder for the segmentation job, four different encoders are im-
plemented: ResNet 50 [25], EfficientNet B0 [26], MobileNet V2 [27], and Timm Gernet [28].
These encoders are pre-trained transfer learning models that did well on the ImageNet
dataset. These encoders play a vital role in downsampling the input data, allowing the
decoder network to construct accurate and complete semantic segmentation maps of the
gastrointestinal system. Different performance measures are used to assess these encoders.
The best encoder will then be finalized based on the results and utilized as the encoder
component of the final optimized model.
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Several decoders are used for upsampling in semantic segmentation to regain spatial
resolution and construct high-resolution segmentation maps. Upsampling is required
because it restores the fine-grained details lost during downsampling. Dilated convolution-
based decoders maintain spatial resolution while increasing the receptive field. By varying
the dilation rates in the decoder, these devices successfully capture fine features and con-
textual information at several scales. The sort of decoder employed is decided by the
application’s specific requirements and the nature of the target objects. Some decoders are
better at capturing little details, while others may be better at maintaining spatial context.
Four alternative decoders are used to determine the optimum decoder for GI tract segmen-
tation. The Feature Pyramid Network (FPN) [29], Pyramid Attention Network (PAN) [30],
Linknet [31], and MAnet [32] are the names of the four decoders. These segmentation
models were chosen for their excellent performance in earlier medical imaging research
and their versatility in dealing with characteristics of various sizes. The best decoder is
selected based on the findings of these four models.

Optimizers for hyperparameter tuning are additional components of the proposed
technique. Semantic segmentation employs several optimizers to improve training efficacy
and subsequent model performance. Several variables impact the selection of which
optimizer to utilize, including the dataset, model design, available computational resources,
and the demands of the segmentation task. In this case, four different optimizers are
evaluated: Adam [33], Adadelta [34], RMSprop [35], and SGD [36]. The best optimizer is
chosen based on the results obtained by several optimizers. After the encoder, decoder,
and optimizer selection experiments, the most optimized model will be finalized. The
final model will partition the input picture into three classes: small bowel, big colon, and
stomach. In both the mask and the segmented image, yellow represents the big intestine,
green represents the small colon, and red represents the stomach.

5. Results and Discussions

This section displays the results of the different encoder, decoder, and optimizer
evaluations. We used the Google Colab platform, Keras and TensorFlow environments,
and the Python programming language for the experiments.

5.1. Encoder Evaluation for Downsampling

Figure 3 compares four encoders that segment GI organs in the GI tract using the Dice
coefficient, Jaccard coefficient, and loss. The four encoders are EfficientNet B0, MobileNet
V2, Timm_Gernet_S, and ResNet 50. Figure 4 compares different encoders in terms of the
processing time required by each encoder model. The findings reveal that EfficientNet B0 had
the most significant Dice coefficient of 0.8975 and Jaccard coefficient of 0.8832, with a loss of
0.1251 and the shortest processing time of 2 h and 25 min. MobileNetV2 likewise performed
well, with a Dice coefficient of 0.8968, a Jaccard coefficient of 0.866, and a loss of 0.1378, but
needed slightly more processing time than EfficientNet B0. Timm_gernet_s obtained a Dice
coefficient of 0.8917, a Jaccard coefficient of 0.8610, and a loss of 0.1351 in 2 h and 26 min.
ResNet 50 had the same Dice and Jaccard coefficients as Adam, with a loss of 0.1301 and a
processing time of 2 h and 39 min. In conclusion, the results indicate that EfficientNet B0 is
the most effective encoder model for segmenting GI organs in the GI tract.

5.2. Best Encoder—EfficientNet B0

The EfficientNet-B0 architecture has become a well-known convolutional neural net-
work (CNN) architecture suitable for use as an encoder in semantic segmentation tasks.
EfficientNet-B0 was used in the proposed research design as a backbone network to extract
features from the input image using downsampling. The current study proposes a unique
network design using a compound scaling strategy. A very accurate and efficient model is
produced by this approach, which balances the network’s depth, breadth, and resolution.
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EfficientNet-B0 is a convolutional neural network architecture composed of multiple
blocks, each incorporating a blend of convolutional layers, activation functions, and pool-
ing operations. It is a convolutional neural network architecture widely used for image
classification tasks. In the context of semantic segmentation, the output of EfficientNet-B0 is
commonly utilized as input to a decoder network. Using EfficientNet-B0 as an encoder for
semantic segmentation has resulted in exceptional levels of accuracy and efficiency across a
range of applications, including medical image segmentation [26]. Figure 5 shows the plots
of the encoder model. Figure 5a shows the validation Dice coefficient, Figure 5b shows
the validation Jaccard coefficient, and Figure 5c shows the model loss plot. EfficientNet B0
outperformed other encoders, such as ResNet 50, MobileNet V2, and Timm Gernet.
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5.3. Decoder Evaluation for Upsampling

Figure 6 compares the four decoders used to segment GI organs in the GI tract using
the Dice coefficient, Jaccard coefficient, and loss. The names of the four decoders used are
FPN, PAN, LinkNet, and MAnet. Figure 7 compares the different decoders in terms of
the processing time required by each decoder model. FPN had the most significant Dice
coefficient of 0.8975 and Jaccard coefficient of 0.8832, with a loss of 0.1251 and a processing
time of 2 h and 39 min. PAN fared similarly to FPN, with a Dice coefficient of 0.8936, a
Jaccard coefficient of 0.8638, and a loss of 0.1278. It took significantly longer to process.
Linknet produced a Dice coefficient of 0.8865, a Jaccard coefficient of 0.8567, and a loss
of 0.1319 in 2 h and 36 min. MAnet, on the other hand, had the lowest Dice and Jaccard
coefficients and the most significant loss, with a Dice and Jaccard coefficient of 0.7141 and a
loss of 0.3685. MAnet also needed the most processing time (3 h and 7 min). Finally, the
results indicate that FPN is the most successful segmentation model for segmenting GI
organs in the GI tract.
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5.4. Best Decoder—FPN

The FPN segmentation model is a famous deep learning architecture used for medical
picture segmentation and other semantic segmentation problems. The FPN segmentation
model’s structure entails a segmentation head, a top-down pathway, lateral connections,
and a backbone network. After several upsampling and convolutional layers, the top-down
route produces feature maps with varying spatial resolutions. The feature maps from the
top-down pathway are linked to the feature maps from the backbone network through
lateral connections. Because of this, the model can accurately represent details across
several scales. The segmentation head then uses the fused feature maps to predict the
segmentation masks for the various item classes in the input picture. As a result of its
well-designed architecture, the FPN segmentation model is widely used in a wide variety
of picture segmentation tasks [29]. Figure 8 shows the plots of the FPN segmentation model.
Figure 8a shows the validation Dice coefficient, Figure 8b shows the validation Jaccard
coefficient, and Figure 8c shows the model loss plot. The FPN outperformed decoders such
as PAN, Linknet, and MAnet.
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5.5. Optimizer Evaluation for Hyperparameter Tuning

Figure 9 evaluates the performance of the proposed model with four optimizers that
segment GI organs in the GI tract using the Dice coefficient, Jaccard coefficient, and loss.
Figure 10 compares different optimizers regarding the processing time required by the
proposed model. The findings reveal that the Adam optimizer obtained the most significant
Dice coefficient of 0.8975 and Jaccard coefficient of 0.8832, with the lowest loss of 0.1251.
Adam needed 2 h and 28 min to complete the processing. The RMS prop also performed
well, with a Dice coefficient of 0.8905, a Jaccard coefficient of 0.8605, and a loss of 0.1377.
However, it took a little longer to digest than Adam. SGD and Ada Delta, on the other
hand, achieved a worse Dice and Jaccard coefficient performance and more significant
loss than the other optimizers. SGD had a Dice coefficient of 0.7531 and a Jaccard value of
0.7253, with a loss of 0.3571, whereas Ada Delta had a Dice coefficient of 0.7472, a Jaccard
coefficient of 0.7204, and a loss of 0.3692. In conclusion, the results indicate that Adam is
the most effective optimizer for segmenting GI organs in the GI tract.
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5.6. Best Optimizer—Adam

The Adam optimizer is a common choice for training deep neural networks for se-
mantic segmentation problems. Adam stands for “Adaptive Moment Estimation”, being
an adaptation of the stochastic gradient descent (SGD) optimizer that employs adaptive
learning rates for each weight parameter in the network [33]. Adam operates in semantic
segmentation by modifying the learning rate for each weight parameter based on its first
and second moments. This adaptive learning rate modification leads to faster convergence
and better optimization performance than classic gradient-descent-based optimizers. Adam
can also handle sparse gradients, which is helpful for segmentation jobs in which many
pixels have no labels. The optimizer’s hyperparameters, such as learning rate and momen-
tum, may be modified to optimize segmentation performance on a given dataset. Adam
is a popular choice for semantic segmentation problems because of its quick convergence,
variable learning rate modification, and capacity to handle sparse gradients. Figure 11
shows the plots of the Adam optimizer. Figure 11a shows the validation Dice coefficient,
Figure 11b shows the validation Jaccard coefficient, and Figure 11c shows the model loss
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plot. The Adam optimizer outperformed other optimizers, such as AdaDelta, RMSprop,
and SGD.
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5.7. Visualization of Results for the Best Optimized Model

Figure 12 depicts the results of the model in the form of images. Figure 12 includes
the input image, ground truth mask, and the predicted segmented image. Here, yellow
represents the large bowel, green is for the small bowel, and red is for the stomach. The
similarity between the ground truth mask and the segmented image shows how much the
proposed method can accurately segment the input image. It can be seen in the images that
the segmented images are very similar to the ground truth mask of the input image. Thus,
the proposed model can segment MRI scans of the gastrointestinal tract to assist radiation
therapy to speed up the treatment.
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6. State-of-the-Art Comparison of UW Madison GI Tract Dataset

Table 1 summarizes several approaches and their associated outcomes for the segmenta-
tion of GI tract organs using the UW Madison GI tract dataset. The references and years of
publication are provided, and the procedures utilized and the findings obtained are mentioned
in Table 1. In 2022, the SIA UNet method received a Dice score of 0.78. The CNN Transformer
obtained a somewhat higher Dice score of 0.79 and an IoU score of 0.72. The combination of
UNet and Mask RCNN yielded a Dice score of 0.51. Furthermore, Unet, when used on 2.5D
data, produced a Dice score of 0.36% and an IoU score of 0.12%. An ensemble of multiple
architectures performed well, with a Dice score of 0.88. Finally, the proposed model, a hybrid
EfficientNet B0 combined with an FPN, received the highest Dice score of 0.8975 and an IoU
score of 0.8832. Table 1 reveals that the proposed model outperformed the state-of-the-art
techniques for the UW Madison GI tract dataset in segmenting GI tract organs.

Table 1. State-of-the-art comparison.

Ref/Year Techniques Dice IoU/Jaccard

[17]/2022 SIA UNet 0.78 -

[18]/2022 CNN Transformer 0.79 0.72

[19]/2022 UNet and Mask RCNN 0.51 -

[20]/2022 UNet on 2.5D 0.36 0.12

[21]/2022 Ensemble of Different Architectures 0.88 -

[37]/2022 UNet 0.8854 0.8819

Proposed Model EfficientNetB0 and FPN 0.8975 0.8832

7. Conclusions

The gastrointestinal tract (GI) is a critical mechanism in the human body that aids nutrition,
digestion, and absorption. It breaks down food into smaller molecules that the body can absorb
and utilize. There has been a significant increase in GI malignancies among men and women
in recent years. Radiation therapy is usually considered the most common treatment for GI
cancer. The therapy includes applying high-energy X-rays to target malignant cells while
avoiding healthy organs in the GI system. Therefore, it is essential to develop an automated
method for accurately segmenting GI tract organs to speed up medical therapy. Medical
diagnosis in GI tract organ segmentation has various advantages. Accurate segmentation of
GI organs enables accurate illness detection and localization, assisting in early diagnosis and
tailored therapy planning. This research proposes a hybrid encoder–decoder-based model for
semantic segmentation of the GI tract. In the proposed hybrid model, EfficientNet B0 is used
as a bottom-up encoder architecture for downsampling to capture contextual information by
extracting meaningful and discriminative features from input images.

In contrast, the Feature Pyramid Network (FPN) is a top-down decoder architecture used
for upsampling to recover spatial information. The proposed model achieved Dice coefficient
and Jaccard index values of 0.8975 and 0.8832, respectively. This research aimed to find the
most feasible combination of these components for segmentation optimization. In this study,
the best-performing model used EfficientNet B0 as the encoder, FPN as the decoder, and Adam
as the optimizer. This strategy is likely to improve cancer therapy efficacy and timeliness.
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