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Abstract: In modern clinical practice, digital pathology has an essential role, being a technological
necessity for the activity in the pathological anatomy laboratories. The development of information
technology has majorly facilitated the management of digital images and their sharing for clinical use;
the methods to analyze digital histopathological images, based on artificial intelligence techniques
and specific models, quantify the required information with significantly higher consistency and
precision compared to that provided by optical microscopy. In parallel, the unprecedented advances
in machine learning facilitate, through the synergy of artificial intelligence and digital pathology,
the possibility of diagnosis based on image analysis, previously limited only to certain specialties.
Therefore, the integration of digital images into the study of pathology, combined with advanced
algorithms and computer-assisted diagnostic techniques, extends the boundaries of the pathologist’s
vision beyond the microscopic image and allows the specialist to use and integrate his knowledge
and experience adequately. We conducted a search in PubMed on the topic of digital pathology
and its applications, to quantify the current state of knowledge. We found that computer-aided
image analysis has a superior potential to identify, extract and quantify features in more detail
compared to the human pathologist’s evaluating possibilities; it performs tasks that exceed its
manual capacity, and can produce new diagnostic algorithms and prediction models applicable in
translational research that are able to identify new characteristics of diseases based on changes at the
cellular and molecular level.

Keywords: artificial intelligence; digital pathology; predictive modeling

1. Introduction

In modern clinical practice, digital pathology has an essential role, being a technologi-
cal necessity for the activity in the pathological anatomy laboratories [1]; it allows us to
improve diagnostic accuracy, to reduce evaluation time and to create more efficient work-
flows, given that from year to year these services are facing an increasing workload in terms
of the demand for analysis, the complexity of the investigations requested and response
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times being more and more reduced. In the UK, the demand for anatomopathological
analysis grows yearly by 4.5%, and in 2020 the average response time varied between
2 weeks (50% of patients) and 4 weeks (95% of patients) [2]. Digital applications can change
diagnosis methods, bringing benefits through the integrated diagnostic approach, with
direct effects of improving patient care and safety and indirect effects of optimizing staff
performance and reducing costs [3].

The development of information technology (IT) has majorly facilitated the man-
agement of digital images and their sharing for clinical use [4,5], and the methods to
analyze digital histopathological images, based on artificial intelligence techniques and
specific models, quantify the required information with significantly higher consistency
and precision compared to that provided by optical microscopy [6].

In parallel, the unprecedented advances in machine learning facilitate, through the synergy
of artificial intelligence and digital pathology, the possibility of diagnosis based on image
analysis, previously limited only to certain specialties—radiology, cardiology, etc. [1,7]—and
provide tools to identify tumors and to evaluate biomarkers with high efficiency, integrated into
extensible and flexible software platforms [8–10].

Therefore, the integration of digital images into the study of pathology, combined with
advanced algorithms and computer-assisted diagnostic techniques, extends the boundaries
of the pathologist’s vision beyond the microscopic image and allows the specialist to use
and integrate his knowledge and experience adequately [1,11].

Digital pathology is defined as utilizing a computer to visualize histopathological
images in Whole-Slide Imaging (WSI) format, obtained by the high-resolution scanning of
tissue samples, as well as to store and to analyze the images and their associated meta-data
for diagnostic purposes through general techniques of “pattern recognition”, particularly
through “deep learning” techniques. A related concept, more and more popular, is that of
“computational pathology”, which regards the computerized analysis of large imagistic
data volumes (“big-data”) and meta-data, acquired through multiple sources, in order to
extract relevant biological and clinical features and to identify patterns, thus allowing us to
establish diagnosis and provide accurate forecasts [12].

2. Data Sources and Literature Search Strategy

We conducted a search in PubMed on the topic of digital pathology and its applications
to quantify the current state of knowledge. In the first stage, our goal was to identify all
the articles published in the field; therefore, we used in the search the keywords “digital
pathology”, “computational pathology” and “digital microscopy”, in the article’s title or
summary; the search provided 2475 results, published between 1984 and 2022. Of these,
before 2000, 37 articles were published, i.e., 1.5% of the total, with the rest of the papers
being published after 2000 (respectively, 2438—98.5% of the total). During the last 5 years
(2017–2022), 1678 articles have been published, which represents almost two-thirds of the
total published papers (67.8%)—clearly, at present, this research direction has an accelerated
dynamic, and many researcher teams around the world report significant results. Among
the published papers, 281 articles were reviews, systematic reviews or meta-analyses
and were not further included. A synthesis of the search results by different keywords
located only in the title or summary (to obtain the most relevant results) is presented below
(Table 1).
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Table 1. Synthesis of search results by different keywords.

Subject (Keywords) 2017 2018 2019 2020 2021 2022 Total

general topics/techniques

computer-assisted diagnosis/
computer-assisted interpretation 2 3 3 2 10

image analysis software/
digital image analysis/

computerized image analysis
8 15 16 21 30 9 99

Whole-Slide Imaging/WSI 43 57 82 96 129 22 429

applications in clinical diagnosis

color variation/
color normalization/
stain normalization/

spectral normalization

3 1 6 9 11 6 36

segmentation 16 9 38 39 67 12 181

counting 4 5 7 8 12 2 38

region of interest 2 3 1 2 6 1 15

profiling 2 5 5 12 14 3 41

feature extraction 1 5 1 7 11 1 26

genomic/proteomic/phenotype 5 8 9 7 14 5 48

biomarker 15 12 5 29 47 7 115

standardization 5 2 7 7 8 2 31

quantitative image analysis 1 2 4 4 4 15

morphometry 2 1 2 3 1 9

other applications

information system 2 3 3 3 5 2 18

education 9 11 13 21 29 3 86

training 21 19 49 62 99 22 272

quality control 2 5 5 4 8 3 27

IT methods—machine learning 32 66 151 265 439 110 1063

artificial intelligence 1 13 35 72 132 34 287

machine learning 12 18 40 75 106 27 278

deep learning 14 28 59 98 165 43 407

convolutional neural network 5 7 17 20 36 6 91

IT methods—statistical approaches 10 14 13 23 25 7 92

component analysis 1 1 1 3

clustering 1 4 5 8 6 2 26

mixed model 1 1

similarity measures 8 9 8 14 18 5 62

We found that the number of articles discussing applications integrated in information
systems and dedicated to image analysis is quite low (28—1.7%). This was also true for
articles discussing image analysis software, without the specific functions of information
systems (99—5.9%)—such applications are less complex than the information systems and are
therefore easier to develop, which explains the more frequent concerns about them. The using
of modern WSI technology in histopathology is very popular in the scientific environment—a
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quarter of the articles published in the last 5 years (429—25.6%) are dedicated to this topic,
with its applications and possible improvements. Among the applications of digital pathol-
ogy in clinical diagnosis, the most frequent research is directed towards segmentation tech-
niques (181 articles—10.8%) and, respectively, biomarker evaluation (115 articles—6.9%).
There are also numerous articles discussing the applications of digital pathology in educa-
tion and training (358—21.3%), with those dealing with quality control being less common
(27—1.6%). Regarding the informatics methods used in digital pathology, a great share is
represented by machine learning techniques (1063 articles—63.3%) and, within it, by deep
learning (407 articles—24.3%); statistical approaches, which also represent a viable solu-
tion, are less popular (92 articles—5.5%); they are usually only involved in assessing the
performance degree of the processing algorithms, calculated through similarity measures
(62 articles—3.7%).

3. Whole-Slide Imaging

The WSI technique provides benefits through the increased amount of visual infor-
mation made available for the anatomo-pathologist, which is otherwise impossible to
extract and interpret. Through this technique, firstly described by Wetzel and Gilbertson
in 1999, the entire tissue specimen is converted into digital format through scanning. The
procedure begins with a global scan of the entire specimen at low resolution, after which
the obtained image is divided into small sections (called “patches”) that are scanned at
maximal resolution. For each patch, several scans are performed, progressively increasing
the resolution and the magnitude, and the resulting images are stored in a pyramidal
structure—the low-resolution ones being placed at the top, and the high-resolution ones
being placed towards the base and possibly archived [13]. The global image also contains
identifiers: patient’s name, barcodes, preparation details, etc.

The technique therefore provides a package of high-resolution images (at least 100 k ×
100 k), in color, without anatomical orientation, which can be visualized at different magnitude
scales (×4, ×10, ×20) and from different angles (because each section has a well-defined
thickness and, depending on the focus plane, will generate different images)—in a way somehow
similar to the navigation in Google Maps [4]. Modern scanners are additionally equipped with
optical systems for autofocus and focal plane selection, allowing for the accurate recording
of 3D tissular morphology, similar to digital images. Such systems use several focus points
located in different focal planes, adapted to the sections’ thickness, allowing the tissues’ clear
representation—this is equally a difficulty, since some areas of the analyzed sample may remain
out of focus. The solution is to automatically identify such regions and to add additional focus
points by hand [14,15].

This technique has to deal with a significant difficulty: when slicing the tissue sample
and extracting images, the spatial relationship between the serial sections, in thickness
(the third dimension), is destroyed; this relation is necessary for the in-depth investigation
of specific tissue areas, identified as regions of interest (ROI). It is therefore necessary to
re-align the images to be investigated on the third axis of coordinates, by translation and
rotation, in order to reconstruct in depth the 2D target region of interest into the shape of a
3D volume of interest—this process is called “image registration”.

Another difficulty is that the available software applications do not provide specific
visualization and computational tools for WSI histopathological images and very large 2D
imagery data [10].

The next step is the 3D WSI imagery [16], which allows scanners to cross objects,
surfaces or even areas of the human body, obtaining in-depth images sequences (z-stack) to
be converted into a 3D digital representation of the object, which is much more relevant for
tissues visualization and clinical diagnosis. Nowadays, 3D reconstructions are performed
using serial sections in the tissue sample, made with robotic microtomes at thicknesses
between 4 and 6 µm; each section is prepared on glass slides in the classical manner and
is colored with routine procedures as consistently and coherently as possible, after which
the images are scanned, recorded, segmented, interpolated, and rendered in volume. This
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workflow puts pressure on researchers to develop more effective intelligent techniques
for detecting, segmenting, analyzing, and searching 3D packages of WSI images. The
computational complexity issue will exacerbate when the multi-spectral imaging techniques
become widely available; it will be possible to investigate multiple tissue biomarkers
because each tissue specimen will be represented on several wavelengths, in order to more
accurately characterize the chromatic properties of the colors and markers documented by
hundreds of images.

Current studies show that the quality of the images obtained through WSI scanning
significantly influences the physician’s performance and the diagnosis accuracy [14,15,17].

3.1. Standard Steps in the Automatic Analysis of Histopathological Images [7]
3.1.1. Pre-Processing

The source images are digital images acquired through the WSI technique, with a high
resolution and large size (100,000 × 100,000 pixels); they are sampled in order to extract
small-size patches (between 256 × 256 and 960 × 960 pixels) that are processed individually
for features extraction and classification, in order to detect the regions of interest. A major
problem at this stage is the correct identification of regions of interest, since the patches
extracted from the source image are individually analyzed and classified, thus facilitating
the appearance of false-positive cases. One possible solution is to make the decision based
on the local average, so that a region on the specimen is classified as a region of interest
only if multiple other regions of interest were identified already in its neighborhood; the
disadvantage of this approach, however, is that it facilitates the occurrence of false-negative
cases, since the small regions of interest tend to be omitted (e.g., isolated tumor cells).

3.1.2. Processing through Machine Learning Algorithms

(Supervised, unsupervised, semi-supervised or multiple instance learning) to interpret
the extracted features. Supervised learning algorithms aim to calculate a function that
assigns new input images to the correct category (e.g., “cancer”) using old, annotated
images on which the function was trained; examples of working methods are support
vector machines, random forest, or convolutional neural networks. Unsupervised learning
algorithms aim to calculate a function that describes the internal structures and regions of
similarities in new input images, using techniques such as dimensions reduction through
principal components analysis, clustering (k-means), anomaly detection, etc., without using
reference images for this purpose.

The other two categories of algorithms are derived from the former and combine their
methods.

3.2. The Deep-Learning Algorithms

A particular category of algorithms with very good results in image analysis is deep-
learning algorithms, which are trained using multi-layered neural networks and very
large data volumes. The data are entered into an input layer of the network and are se-
quentially and hierarchically processed in an increasingly complex manner on each layer
of the network, then optimized and organized in the way the human brain works. The
deep multi-layered neural networks designed specifically for image analysis are convolu-
tional (ConvNet/CNN—Convolutional Neural Networks); they contain a kernel/filter to
convolve an image and to extract useful features necessary to differentiate it [12].

The systems that perform such operations (PRIA—Pattern Recognition Image Analy-
sis) generally use a common workflow to identify and quantify the regions of interest on
digital histopathological images; the users must provide first representative images for each
tissue category, to be taken as references; during the training stage, the application identifies
the unique spatial and spectral features that characterize the pixels in each reference image,
and in the working stage new images are analyzed according to these landmarks in order
to identify, through segmentation, the relevant pixels. The main manufacturers of such
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applications are Aperio Technologies—GENie, Cambridge Research and Instrumentation,
Definiens and Visiopharm.

The performances of such algorithms depend on the quality, and especially on the size,
of the imagistic database used for training; at present, however, such databases are not very
detailed, since the annotation of anatomopathological images with the features relevant for
diagnosis is carried out only by the specialist physician and almost always globally at the
clinical case level— instead, the machine learning algorithms need images annotated at the
patch and even at the pixel level, with all the possible features to follow, which represents a
huge human workload. There are several public databases with high-resolution, annotated
WSI images that can be used for training (The Cancer Genome Atlas—TCGA, which contains
over 10,000 WSI images of different types of cancer, Genotype-Tissue Expression—GTEx,
which contains over 20,000 WSI images with different types of tissue, the Medical Image
Computing and Computer-Assisted Intervention Society—MICCAI, specialized in brain
tumors), but resources of this type are still insufficient. An interesting practice in medical
imaging is to organize open competitions for pathologists and automatic analysis tools,
on public databases, for testing the level of competence and efficacy; the list of all such
competitions is available on the Grand Challenge website (https://grand-challenge.org/
challenges/ accessed on 25 May 2023).

4. Current Applications of Digital Pathology
4.1. Clinical Diagnosis

Digital histopathological images are useful to establish diagnosis by tissue examination
after performant scanning with special methods like Whole-Slide Imaging (WSI) [18–20].
Current research has identified a percentage of concordance of between 89 and 99% be-
tween this diagnostic method and the traditional methods, which use slides and optical or
electronic microscopy [21,22], so that nowadays there are pathological anatomy laborato-
ries that have given up completely (e.g., General Pathology Laboratory—Kalmar County
Hospital, Sweden) or partially (e.g., Ohio State University) at using classical investigation
on slides [23,24].

Automatic Image Analysis Includes

CAD (Computer-Assisted Diagnosis) systems are more accurate and consistent than
classical visual interpretation, already being successfully used to identify the regions of
interest on the investigated specimen, as well as other details: specific staining (estrogen or
progesterone receptors, HER2/neu evaluation in breast cancer, Ki67 evaluation in carcinoid
tumors), tumor staging, mitosis presence, vascular invasion presence and quantification, etc.

The success of these methods depends on the quality of image standardization, carried
out during their acquisition, although other problems can arise and influence the decision
process [19,25]. The WSI technique facilitated the development of these methods—otherwise,
the pathologist could not process the entire image due to the very large amount of visual in-
formation; instead, he would select one or more regions of interest and establish the diagnosis
by analyzing only these regions. When the entire image is available through WSI, the regions
of interest can be automatically selected through image processing methods.

CBIR (Content-Based Image Retrieval) systems aim to identify images that are similar
to a target image, or that correspond to certain selection criteria. They are especially useful
to diagnose rare cases since they provide relevant histopathological images, which can be
used as a reference. The search can be conducted both by supervised and unsupervised
methods—the supervised methods are more accurate, because they require specifying
some features possessed by the searched image and selecting the results by calculating a
similarity measure. The working speed of such systems, which use very large imagery
databases, is optimized through the techniques features reduction (PCA), quick search
(kd-tree, hashing) or deep-learning (e.g., SMILY—Similar Medical Image Like Yours) [26].

Automatic Image Analysis Is Successfully Used in Solving a Wide Range of Problems
Faced by the Anatomist-Pathologist, among Which We Can Mention

https://grand-challenge.org/challenges/
https://grand-challenge.org/challenges/


Diagnostics 2023, 13, 2379 7 of 21

Image standardization by eliminating the color variations. Immunohistochemical
staining is a common procedure necessary for detecting the biological features of different
types of tumors, to make prognoses of evolution and to select the appropriate therapy in
oncologic patients [27–29].

Color variations occur frequently in digital histopathological images due to objective
reasons: the use of coloring agents from different batches or manufacturers, variations in the
thickness of tissue sections, different technical peculiarities of scanning devices, or different
protocols for histological specimens staining [7,12,30]. Their existence raises major difficul-
ties in the correct interpretation of images, both for the anatomo-pathologist as well as for
the computerized systems for decision assistance, so it is necessary to reduce or eliminate
such variations using color normalization techniques. The range of available techniques is
wide, and many studies have been conducted to compare their quality performance or to
propose new methods [31–38]. A general classification of color normalization techniques
groups them into three major categories [19]: global normalization, normalization after
color separation through supervised learning, and normalization after color separation
through unsupervised learning.

Global normalization is based on image histogram equalization and contrast modifi-
cation, which, however, can produce artifacts on the resulting image because the contrast
is artificially altered; a better method is to modify the color intensity in the source image
by fitting it into an average variation range set as benchmark, while the overall image
contrast and the variations in intensity are preserved [39]. The color separation through
supervised learning is achieved through deconvolution methods, and the color separation
through unsupervised learning is achieved through statistical or mathematical methods
(independent component analysis (ICA), non-negative matrix factorization (NMF), etc.).

Nuclear segmentation is used for the morphometric identification of nuclei in various
anatomical regions and the segmentation of other histological structures [40]. It is one of the
most-studied problems of artificial intelligence [41]; it aims to obtain the final nuclear shapes
and to separate the nuclei in touch, in order to achieve the individual segmentation of the
nuclei in the image. It is the basis of a new histological specialization, namely quantitative
histomorphometry, whose objective is to achieve the concrete spatial description of the
entire tumor morphology and invasive elements (nuclei orientation, texture, architectural
shape) based on standard images obtained by H&E coloration (hematoxylin and eosin) [42].

Frequently, pathologists are interested in identifying a nuclei subset from a particular
anatomical region (e.g., tumor nuclei in lamina propria in T1 bladder cancer [43]; the ratio
between Ki67-positive tumor nuclei and total tumor nuclei in neuroendocrine tumors
of the breast or pancreas [44,45]; and centroblasts; presence in the follicles in follicular
lymphoma, etc.). There is therefore a growing interest in developing algorithms that can
identify with great precision a subset of cells in a particular anatomical region [46,47], with
many methods being proposed in this regard in recent years.

Xu et al., in 2011, proposed an algorithm based on GAC models (Geodesic Active
Contours) [48], which uses mean shift clustering and normalized cuts strategies to identify
general histological structures; the algorithm begins from a color sample, usually small—a
few pixels on the object of interest—to identify all the objects on the image that match the
original color sample, generating an initial outline for the GAC mode. Then, it uses an
edge-detection function on the GAC model based on a local structure tensor-based color
gradient, obtained by calculating the local min/max variations contributed from each color
channel. The method has been successfully used in the segmentation of glandular regions
in prostate biopsies.

Subsequently, deep-learning algorithms were proposed to generate a probabilistic
map of regions with and without nuclei from the investigated image, created on the basis
of previous knowledge. Song and collaborators, in 2015, used a multiscale convolutional
network to generate this map [49]. Xing and collaborators, in 2016, proposed a region
increasing based on the topological analysis of the probabilistic map, in order to segment
the individual nuclei [50,51]. Unfortunately, such methods require learning algorithm
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re-training in order to process new images and are not reproducible on images coming from
organs other than those on which the initial training was performed. A possible solution is
to train the algorithms for nuclei segmentation on images from different organs.

Kumar and collaborators [40] developed a database of 30 WSI images of tissue samples
from multiple organs, taken from 18 hospitals and included in The Cancer Genome Atlas,
using different slide preparation protocols; over 21,000 nuclei were manually annotated
and used to train the deep-learning algorithm; the nuclei segmentation was formulated
as a problem of identifying three classes, with the nuclei edges being the third class in
generating the probability map. Mahmood and colleagues [52–54] adapted a generative
model to achieve nuclei segmentation on images from four different organs and generated
synthetic images that were combined with real ones to train a convolutional neural network
for nuclear segmentation.

Zarella et al., 2017, proposed a fast algorithm for nuclei identification and segmentation
based on the analysis of color, shape (surface, proportions, circularity) and grouping, to
demarcate the individual nuclei and to segregate those overlapped. It was adapted specially to
process high-resolution histological images prepared through H&E staining [16]. Li et al., 2018,
developed a multistage deep-learning algorithm for mitosis detection in breast biopsies,
prepared through H&E staining [55].

Cell counts: The manual interpretation of histological images involves extremely
laborious tasks, such as cell counting. These quantitative assessments are not exhaustive, as
they consider only particular regions from biopsies (so-called “hotspots”—points of interest)
and specific anatomical regions [56]. Computer-aided diagnosis offers increased efficiency,
precise quantification, and advanced functions for histopathological image analysis and
interpretation, decreasing pathologist workload as well as observation inter-variability and
intra-variability. Most current research in the analysis of digitized histological specimens
automated refers to deep-learning [57].

The deep-learning techniques combined with WSI mimic human visual acuity and
perform the exhaustive analysis of the entire tissue specimen; due to the high volume of
processed information and the algorithms complexity, however, research tends to focus
on narrower objectives that require the analysis of smaller images areas, such as mitosis
detection, anatomical region identification or tumor process identification [1,58,59].

Many valuable results were reported; a few examples are:

- Detection of ductal carcinoma in situ on H&E-stained WSI biopsies [60].
- Detection of tumor regions in neuroendocrine pancreatic tumors [43].
- Development of a new adaptive sampling method for WSI based on the Monte-Carlo

technique [61].
- Developing a new method for region-of-interest selection in breast cancer that mini-

mizes the data transfer [28].
- The TissueMark™ platform (Philips Pathology, The Philips Centre, Guildford, Surrey,

UK) is used for the automatic annotation of tumor outlines and the evaluation of
tumor cell percentage—this provides better results than the manual evaluation [62].

Tissue identification and classification: It is performed for diagnosis purposes, since
there are pathologies (e.g., cancer) that entail alterations in tissue architecture and nuclear
morphology. Therefore, there has been a need to develop algorithms for automatic tissue
classification and disease grading, which can be applied as diagnostic tests to assess the
disease’s aggressiveness degree. This can be used to predict the evolution and customize
treatment, through precision medicine [42]. Specific features are tracked and quantified,
then classified into two categories:

a. Handcrafted characteristics: They are described by measurable attributes of the
image, whose interpretation is known. They are of two types: general attributes, which can
be evaluated regardless of the tissue’s nature and the investigated pathology (e.g., the nuclei
shape and size, the tissues texture and architecture), and domain-dependent attributes,
which are specific to a particular organ or pathology. The investigation techniques include
wavelet processing, which is used to characterize textures, and graph-based approaches
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(e.g., Voronoi and Delaunay tessellations, minimum spanning trees, cell cluster graphs), for
spatial characterization.

b. Unsupervised features: These refer to less intuitive image attributes that have been
identified as significant through the automatic processing of certain training image libraries
using machine learning. They are useful for the automatic modeling and differentiation of
pathological processes, but they are more difficult to interpret and justify for the pathologist.
Parent–child-type relations are assigned between the morphological elements of interest, on the
basis of which automatic classifiers using machine learning techniques are created—their usage
consists of quick querying and manipulation through embedded commands or scripts [63].

Cell/morphological profiling: This is a relatively new field based on image analysis,
which aims to quantify phenotypic differences between different cell populations and to
identify chemical and genetic changes in biological systems [64]. Cell populations are
described by hundreds of morphological features, which are measured comparatively in
the control sample and the active sample and treated with various chemical and biological
perturbagens in order to identify similarities, matches or anti-correlations between different
treatment conditions. Thus, it becomes possible to identify disease-specific phenotypes,
gene and allele functions, and the targets or mechanisms of action of drugs.

The workflow in cellular profiling consists of eight stages:

(1) Image analysis: specific measurements (features) are extracted from digital images to
describe each cell’s status in terms of shape, color, texture, microenvironment, and
context; as many features as possible are recorded in order to maximize the chances
of detecting changes under the action of external factors;

(2) Image quality control: this is carried out with statistical methods in order to elim-
inate the images or areas affected by artifacts: blurring, saturated pixels, atypical
cells/outliers;

(3) Preprocessing of extracted features: elimination of absent values, correction of plateau
and batch effects, normalization;

(4) Size reduction: irrelevant features are eliminated, and the similar ones are joined in
order to reduce redundancies, through statistical methods: calculation of correlations
in compliance with the principle of “minimum redundancy–maximum relevance”,
linear transformations, PCA (principal components analysis), factorial analysis and
discrimination analysis;

(5) Aggregation of individual data through vector representations at the population
level, which summarize its typical features. Statistical methods are also used—simple
aggregation by calculating the average, median or KS profile, or sub-population
identification by clustering and classification;

(6) Similarities between profiles measured based on distances and the concentration effect
quantification—such an effect occurs in the case of chemical perturbagens, tested at
different concentrations;

(7) Sample quality evaluation;
(8) Downstream analysis, to interpret and validate the patterns identified in the morpho-

logical profiles, by hierarchical classification, visualization (data projections—PCA,
Isomap, tSNE t-distributed stochastic neighbor embedding) and data/methods shar-
ing in the scientific community. Examples of software developed for cell profiling
are: CellProfiler and EBImage (open source), Columbus and MetaXpress (commercial
solutions), Cytominer (package of function in R for morphological profiling) or Python
and MatLab (for processing with specific algorithms).

Investigations to discover new clinico-pathological correlations: Over time, many
important discoveries in medicine have been made by anatomo-pathologists through
the microscopic investigation of specimens; for example, H. pylori was discovered by
investigating the gastric mucosa in patients with gastritis, as well as tumor staging, with
major implications for designing treatment plans and making accurate prognoses about the
patient’s evolution. Currently, due to advances in medical imaging generally and in digital
pathology particularly (WSI techniques), a large amount of imagistic data is available to
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researchers, but they are practically impossible to investigate manually through visual
inspection. The only solution is their automated processing through machine learning, in
order to detect new clinical–pathological correlations.

A particular case is represented by genomic technologies, applied at the DNA level,
transcriptomics, and proteomics, which facilitate the in-depth analysis of malignancy de-
gree and the identification of new subclassifications, allowing us to forecast more precisely
the disease’s evolution and the response to treatment.

It has been established that the changes at the molecular level in genetic expression are
correlated with structural and vascular phenotype changes, identified through imagistic
investigations; that is, we are dealing with a fusion between radiology and pathological
anatomy, materialized through the spatial alignment of radiological in vivo images with
histological ex vivo images, in order to map the area of pathology extension between
the two types of investigation and to identify radiological markers correlated with the
histo-morphometric tissular changes. This allows us to better characterize the disease (ra-
diogenomic studies) and possibly to highlight new protein–genomic associations and create
improved molecular classifications. The difficulty of this approach lies in the precision
required to align the two types of investigations and to establish the spatial correspon-
dence between them; a possible solution is the 3D reconstruction of histological specimens
based on 2D digital images, which will correlate with the 3D reconstructions of similar
radiological images [42].

Computerized processing combined with image registration is a relatively new ap-
proach that allows:

- The study of different biomarker behavior inside the same cell [65,66];
- A better understanding of the tumor microenvironment—the types of cells that border

each other, their heterogeneity and number, evaluated through statistical methods.
This allows us to identify the tissue composition and the phenotypic signature (in
colorectal cancer) [67];

- The evaluation of evolution forecast based on histopathological images combined with
genomic biomarkers (in glioma, pulmonary adenocarcinoma, or liver cancer) [68–70];

- The evaluation of evolution forecast and sensitivity to chemotherapy treatment in
breast cancer through the combined study of genetic expression, copy number alter-
ation and histopathological images (FusionGP) [71];

- The anticipation of somatic mutations;
- The discovery of new genetic combinations responsible for certain pathologies (e.g., au-

toimmune thyroiditis) [72], etc.

Another example is the localization and quantification of immune cell infiltrates. The
T cell amount and location are the basis of the Immunoscore™ technique (Laboratory of
Integrative Cancer Immunology INSERM, Paris, France) in colorectal adenocarcinoma: the
patients with a low density of CD3+ and CD8+ T cells in the tumor center and invasive
borders have an increased risk of disease relapse [73], so this is a useful marker in deciding
the treatment plan.

Proteomics data provide molecular features with diagnostic value, which accurately
describe certain biological processes in cancer, and recent studies have shown a clear
correlation between them and the interpretation of histopathological images. The analysis
of proteomic data was performed using a random forest classifier to discriminate between
the control group and cancer cases, and the imagistic data were processed with a deep-
learning algorithm based on convolutional neural networks [74].

Biomarker Evaluation for Diagnostic Purposes: Currently, pathological evaluation by
traditional methods is not enough to sustain large-scale tissular biomarker studies based
on a high-precision, reproducible and objective analysis, correlated also with the clinical
aspects [75,76]. Digital pathology provides new diagnostic facilities and research opportunities
based on the development of analysis techniques specific to large images—“big data” [77],
which “incorporate” fundamental prognostic data into their content [78].
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Accurate quantitative models of the disease are produced (on mathematical bases),
that allow us to predict the aggressiveness degree correlated with the patient’s diagno-
sis [42]. Built-in cell segmentation algorithms and WSI techniques allow us to measure
the cell morphology and the biomarker expression and can assist in cell-type classification
according to certain features, providing a comprehensive phenotypic description of each
cell within the tissue sample. A quantitative cellular map of the entire tissue specimen is
obtained, which can be further selected, interrogated, or filtered, allowing us to discover
morphological subtleties that are not immediately visible in the case of classical evaluation.
All these results can be obtained regularly in only a few minutes, without it being necessary
to use specialized hardware devices. Many results in this direction, obtained through
mathematical or statistical approaches, are reported in the scientific literature; some of the
most recent examples are:

Prognosis of clinical-pathological subtypes in breast cancer by Fisher discrimination
analysis of ER, PR, HER-2, and Ki-67 expression and radiomic features extracted from DW
(diffusion-weighted) images obtained through MRI (radiomics is the process of converting
digital medical images into sets of multi-dimensional data, and is involved in diagnosis,
cancer detection, disease grading and prognosis/response to treatment evaluation) [79];

Evaluation of hormone receptor response in breast cancer through an ER and PR
expression investigation and automated quantification; a reactivity score is assigned based
on WSI image staining and surface analysis using the Allred Scoring method. The reported
correlation coefficients between the automated evaluation and the one carried out by
human experts are 0.881—overall, and 0.922 for the ER sections and 0.840 for the PR
sections, respectively, when taken separately [80];

Evaluation of the treatment response and the survival forecast in breast cancer by
calculating the RCB index (Residual Cancer Burden) using a DCNN system (Deep Convolu-
tional Neuronal Network). The RCB index is calculated using six parameters: the primary
tumor bed area (length and width), the overall cancer cellularity, the percentage of in situ
cancer, the number of positive lymph nodes, and the diameter of the largest metastasis.
The reported correlation coefficient between the automated evaluation and the one carried
out by human experts is 0.82, while the correlation between the evaluations of two human
experts is 0.89 [81].

Among the parameters used to calculate the RCB index, the most important is the
cancer cellularity estimation, defined as the proportion of cancer within the residual tumor
bed; its manual calculation is laborious, requires experience and is affected by a high degree
of inter-assessor variability. Pei et al. proposed in 2019 an automatic procedure to calculate
this index, based on deep feature representation, tree boosting, and support vector machine
(SVM), avoiding nuclei segmentation and classification. The correlation coefficient reported
by the authors between their method and the evaluation made by the human expert was
0.94 [20].

Evaluation of dystrophin production as surrogate marker for treatment efficacy in
Duchenne muscular dystrophy, based on the staining intensity and the percentage of
biomarker-positive muscle fibers in tissue cryosections, using the MuscleMap algorithm
(Flagship Biosciences, Westminster, Colorado) [31].

Improvement of practices in immuno-oncology and immuno-profiling: The detailed
investigation of the tumor microenvironment, identification and quantification of the im-
mune cell population, as well as their spatial location and the expression of immunological
markers, are compulsory when characterizing a patient’s clinical evolution and choosing
the optimal, individualized treatment scheme. In this regard, digital pathology provides
valuable precision tools: automatic evaluation (digital scoring) of the immune control
points inhibitors expression (e.g., PD-L1), spatial analysis of tumor immune cell infiltration,
and the multi-layered analysis of biomarkers in interdependence. This is possible through
image registration and virtual multi-staining or the integration of digital information about
ICI (Immune Cell Infiltration) with molecular data, for a better configuration of the cancer
immunogram and individualized prognosis regarding the response to immunotherapy [82].



Diagnostics 2023, 13, 2379 12 of 21

Reports standardization and new features addition: These are necessary to eliminate
the inherent degree of subjectivity that characterizes the assessment carried out by the
pathologist. A concrete example is the interpretation of ER (Oestrogen Receptor), PR
(Progesterone Receptor) and HER-2 (Human Epidermal Growth Factor Receptor 2) staining
standardization, in breast cancer [83,84]. Currently, the FDA (USA—Food and Drug
Administration) and CE IVD (Europe—In Vitro Diagnostics) approve a relatively small
number of applications for the automatic evaluation of pathological features, such as the
expressions of ER, PR, HER-2 and Ki-67 in breast cancer, and they have similar results to
those obtained by a human evaluator [63,84].

Integration of histopathological analyses with other clinical data: For a precision
diagnosis, the analysis of histopathological images should be correlated with the patient’s
other clinical data (demographic data, medical history, laboratory test results, medical
reports, etc.). These data are often available as unstructured and non-standard reports,
from which the relevant information must be extracted through natural language processing
techniques. Such techniques can also be implemented using deep-learning algorithms,
which allow for filtering information from disparate sources and highlighting the subtle
connections between them. This is helpful for the pathologist to take the best clinical
decision.

Among the main producers of digital pathology solutions, we can mention Siemens
(Syngo Carbon and Concentriq Dx3 software—an integrated system for imaging data manage-
ment), Zeiss (In Vivo Pathology Suite Convivo—a solution for digital image consultation with
real-time feedback on tissue microstructure), Roche Diagnostics (uPath Enterprise software,
with dedicated applications to identify Ki-67-positive stained tumor cell nuclei, PD-L1-positive
and -negative tumor cells, HER2 gene status, ER- and PR-positive and -negative tumor cells
and others), Philips (IntelliSite Pathology Solution—integrated platform for assistance of
all stages in the pathology process), Sectra (Sectra Digital Pathology Solution—a system for
primary diagnostics in pathology), Proscia (Concentriq Digital Pathology Platform—a flexible
architecture which also integrates AI applications, like Automated QC—for performing qual-
ity control on images of H&E stained slides and DermAI—for classifying of dermatopathology
slides), 3DHISTECH (solutions for diagnostics, research and education: Pannoramic Pathology
Diagnostic System, PathoNet, ESchool), and Bosch (AI-powered Digital Pathology Solution).
The list is open and constantly updated.

4.2. Education and Training

AI applications combined with WSI are useful in training programs because they
provide on request quality standardized digital images available for sharing that are easy
to handle (crop, pan, zoom) and to annotate in real time [4,6]. There are also training
applications that provide automatic assistance and direct visual feedback on the carried-out
evaluations, contributing therefore to workflow standardization in evaluating the usual and
atypical features of anatomic-pathological images, and to the concordance level increasing
between investigators.

The WSI technique is often used in virtual conferences, seminars and workshops,
presentations, discussion groups and case studies [6]. Synthetic images, digitally generated,
are also used for dynamic training in real time; the pathologists can efficiently improve
their skills and have the opportunity to better understand the difficulties they may face [1].

Nowadays, different categories of online resources are available for public access,
assisting the pathologist in his activity, although the demand for such resources is much
higher and varied than the supply:

- Libraries for digital image management, e.g., OpenSlide [85], Bio-Formats [86], NEP-
TUNE, CureGN [87]. The DPR (Digital Pathology Repository) concept is being used
more and more frequently—this is a new and inexpensive way to organize resources,
for the long-term storage of high-resolution WSI histological images, in Web-hosted
imaging libraries, available online, without geographical boundaries and with signifi-
cant time savings [87];
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- Software to crop WSI images, to extract patches and to analyze them, e.g., SlideToolKit [88],
ImmunoRatio [89], Visiopharm [63];

- Open-source image analysis tools: ImageJ Image Process and Analysis in Java [90,91],
NIH Image [74], Fiji [92], Icy [93], CellProfiler [94], QuPath Open-Source Software for
Quantitative Pathology [10];

- Web platforms for data management and collaborative analysis, e.g., Cytomine [95].

Each of these tools provides a valuable contribution, but pathologists still need spe-
cific tools to assist their work, e.g., forecast modules allowing them to develop new digital
pathology algorithms [88]. Thus, researchers without access to expensive solutions continue
to carry out the laborious manual evaluation of digitized images, with limited reproducibil-
ity [96], or use automated tools with restricted functions (for image sampling, cropping
and elements of interest extracting or specific quantitative analysis).

Some of the existing software provide pre-established, easy-to-use algorithms for
routine analysis in pathology, but they also offer the possibility to implement “building
blocks” in order to create new, interconnected and customized modules [10,97]. It is
thus possible for the researcher teams to create and to add their own image processing
algorithms that, combined in an efficient manner with the existing tools—albeit limited
(MATLAB, etc.)—can facilitate the development of new automated classification and/or
forecast models [10].

4.3. Quality Assurance

Digital images stored in laboratory information systems or in Intranet local networks
facilitate quality assurance and monitoring, diagnostic error prevention and risk reduction
for patients, through teleconsultation, the surveillance of inter- and intra-observer variance,
proficiency tests and more effective methods for image archiving [1].

Histopathology is a medical specialization incorporating activities that cannot be
carried out remotely by their nature, e.g., surgical and cytological specimen handling
and preparing. Instead, tele-pathology applications combined with the WSI technique
provide the optimal framework for remote investigation and diagnosis, without requiring
the physical transport of slides and without geographical restrictions. In addition, collabo-
ration between specialists, access to a “second opinion” and interdisciplinary studies are
facilitated, with direct effects on the quality of the medical act.

A study carried out during the COVID-19 pandemic demonstrated the usefulness and
addressability of tele-pathology applications, which proved to be a viable solution under
the urge to keep physical distance; about 75% of the interviewed specialists claimed that
they used tele-pathology platforms in daily work, for quick diagnosis and cases sorting,
and 66.7% claimed to use them to request a second opinion. The study also revealed a
25% increase in the use of digital tools for diagnosis and documentation, allowing time
savings [98]. Consequently, the FDA has approved the use of tele-pathology systems for
screening, primary diagnosis, second opinion and training; such systems can be imple-
mented statically (the images are recorded, stored and then transmitted to be viewed and
analyzed remotely), but also dynamically (live video images are transmitted and viewed
remotely in real time) and even robotized dynamically (the investigator remotely con-
trols the microscope to retrieve images)—such practices are used in cytology and surgical
pathology [87].

Anatomo-pathologists can easily improve their competence level by being permanently
informed about the new results in the field and the most advanced diagnostic tools.

Artificial intelligence tools can be implemented as auxiliary tools in the Computer-
Aided/Computer-Augmented Diagnosis workflow, as prospective or retrospective control
tools for diagnostic accuracy and to prevent the human errors. They are being used more
and more frequently together with the classical slides, and the dynamics of achievements will
imprint a paradigm shift in both microscopic and clinical morphological research [99,100].
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5. Advantages Brought by Digital Pathology

Some of the main benefits of integrating digital pathology into the current medical
practice are the following [2]:

5.1. Reducing the Risks for Patients

The use of digital pathology-integrated systems based on the electronic transmission
of images to the pathologist reduces the risk of wrong labeling or mixing of specimens
by a percentage between 13 and 99%. The estimated incidence of such errors in classical
pathology laboratories is about 1%. Additionally, the risk of losing tissue samples or slides,
which do not degrade or deteriorate over time, is also significantly reduced.

5.2. Workflow Optimization

Digital systems provide flexibility in allocating cases to physicians, according to the
overall workload in the laboratory. In addition, the physicians will have the freedom to
choose the cases they are going to take over for analysis and to request colleagues’ collabo-
ration when a second opinion is needed. Clinical cases can be easily traced throughout the
laboratory; they can be retrieved immediately if necessary and archived efficiently, and the
efficiency in diagnosis can thus be improved by up to 13%. It also becomes easier and faster
to perform measurements and annotations on images, and the time required for transfer-
ring slides from the ward where they are prepared to the analyst and back is eliminated.
The urgent cases, which require priority in the diagnostic process, can be quickly identified
and labelled as such. Information systems also facilitate inter-departmental collaboration
between histopathology and nuclear medicine services when it is necessary to transfer
images for mixed analysis.

5.3. Improving the Quality of the Working Environment

Digital systems allow us to implement a more flexible work schedule, eliminating the
need for the pathologist to physically go to the laboratory where the slides are located,
thus giving him more freedom in organizing his time. Training programs become easier
to attend and more valuable in content, since they facilitate the access to rare, unusual, or
instructive clinical cases; the teacher can also communicate faster, with several students
simultaneously, and receive instant feedback from them. The use of advanced IT tools
makes the field more attractive for young people, with histopathology being perceived as a
modern, innovative, and dynamic specialization.

5.4. Improving the Quality of Services

This is the direct consequence of simplifying information transfer and review, espe-
cially when a second opinion is requested. Access to the images archive is substantially
simplified, as is the simultaneous analysis of several images for their synchronized eval-
uation, the accurate investigation of features with diagnostic value, and the regions of
interest annotation, which can be used later for audit. The implementation of quality and
extensive imaging databases stimulates classical medical research and the development of
new algorithms for fast diagnosis or realistic forecasts.

There are studies that have proposed the organization of digital pathology services
as remote services [101] and have investigated the effectiveness of such an approach,
reporting notable results: an average digital image transfer speed of 20 Mbps; an amount
of low-quality images for which rescanning was necessary of 1%; a 99% concordance
between the diagnosis established by classical and digital microscopy; a decreased time
required by the digital image evaluation, correlated with a higher percentage of cases for
which the diagnosis was transmitted in less than 3 days; a total concordance between the
physicians’ opinions when the images were reviewed by a second specialist; and a high
level of satisfaction for all the categories of professionals involved in the project.

It is also recommended to integrate digital pathology services into the laboratory
information systems already implemented in the pathological anatomy department [102],
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in order to optimally streamline the information circuit and to facilitate the storage in
common, centralized databases.

6. Limits in Digital Pathology

Many techniques of automated processing, and particularly the deep-learning-based
systems, are disputed because they do not explain how they reach the final results. This
must be clearly argued from a clinical and forensic point of view. Therefore, the current
research is oriented towards providing a degree of transparency to automated processing
algorithms, in order to make it easier to interpret and argue their conclusions. Some pathol-
ogists are cautious in adopting the new technologies, considering that such techniques
limit their control over their own work, which becomes public and is thus more exposed
to deterioration, loss, and anonymous criticism [87]. There are cases when the whole
WSI technique is regarded as disruptive. Staining standardization procedures are not yet
extensively used in practice as there still are important differences between laboratories for
most immunohistochemical staining procedures, especially for those where the intensity is
essential in evaluation (e.g., Ki-67); this makes collaborative projects difficult. The speci-
mens’ full processing and the extraction of all available data require significantly increased
computing power and storage space, also increasing the risk of erroneous information due
to possible artifacts. Additionally, statistical processing errors (multiple testing or subjective
interpretations) must also be avoided, so the automated analysis of digital images must
only be carried out rigorously by specialists competent in the field with complete and
adequate scientific documentation, while regarding all quality standards [82].

Legally, the new GDPR regulation adopted in the EU stipulates that “the data subject
shall have the right not to be subject to a decision based solely on automated processing”,
with significant medical implications added to the financial and economic implications of
the automated processing instruments using for anatomopathological diagnosis.

The best solution is combining the specialist physician’s expertise with the automatic
processing tools in order to transform the traditional qualitative assessments into more
accurate, consistent and useful quantitative analyses, whether semi-automated (with the
partial intervention of the human operator), or automated [81,103]. This is because tradi-
tional methods are affected by some degree of imprecision, e.g., the concordance coefficients
between the results offered by different pathologists on the same tissue specimen may vary
from 0.86 to 0.95 [21]. Automated analysis and predictive modeling algorithms allow us
to identify and characterize tissular regions of interest, individual cells, or structures and
to classify them based on relevant features (biomarkers levels of expression, morphome-
tric parameters, localization) [63,104,105]. Meanwhile, the physician retains the task of
summarizing and correlating the obtained results, in order to adopt the best decision for
the patient.

This interdisciplinary specialization, which combines histopathology with computer
tools, is currently in full development. Computer-aided analysis, detection and diagnostic
tools for high-resolution digital histological image processing are still in the process of
implementation and optimization [48,106].

7. The Future in Digital Pathology

In our opinion, the future in digital pathology belongs to AI tools. The scientific
literature offers more and more articles in this direction of research, revealing the fact
that AI technology represents a recommended solution in this particular field for multiple
reasons. The most significant one is that high-quality tissue slides contain a large amount
of information (up to 10 gigapixels), which is far too much to be fully processed by human
specialists but is suitable for automated tools [107,108]. Such tools are not intended to
replace the human experts, but only to assist them in their work and to improve their skills
and expertise. In this regard, very interesting results are presented by Berbis et al. [109],
who conducted a forecasting study about the role of AI in pathology within the next decade.
They interviewed 39 experts in the field from the whole world (USA, Europe, Canada,
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Japan and New Zealand); all experts agreed that AI will improve diagnostic accuracy
and standardization, particularly the detection of rare events (such as tumor metastases)
and tumor grading, making histopathologic analyses more quantitative. Furthermore,
they predicted that specific AI applications will be routinely used by 2030, while the tasks
routinely performed by pathology technicians will be significantly modified, with the basic
tasks being performed automatically. Regardless, advanced analysis and forecasting will
still be performed by human experts. There are still significant issues to be solved (technical,
regulatory, and financial) before reaching the full potential of AI for the pathology field.
An emerging approach, which seems to have a large potential, is represented by Interactive
Machine Learning; this approach eliminates the concept of the “black box”, is specific
for most AI algorithms and empowers human experts. The pathologist interacts with
the machine during the diagnosis process and is able to control and guide it in feature
extraction [110]. There are no doubts that we are facing a very vivid research field, and the
future will offer spectacular surprises.

8. Conclusions

In digital pathology, computer-aided image analysis provides superior accuracy, repro-
ducibility, and standardization in research based on microscopic morphology, compared to
classical histological examination, since the amount of information contained in the cell ex-
ceeds what can be observed by the human specialist alone. Computer-aided image analysis
has a superior potential to identify, extract, and quantify features in more detail compared
to the human pathologist’s evaluating possibilities; it performs tasks that exceed its manual
capacity, and can produce new diagnostic algorithms and prediction models applicable in
translational research. Thus, it is able to identify new characteristics of diseases based on
changes at the cellular and molecular level. Despite the reluctance of regulatory agencies
so far to approve the using of scanned images for primary diagnosis, computer-assisted
analysis and digital pathology will become basic tools in making clinical decisions in the
near future.
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