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Abstract: Interstitial lung diseases (ILDs) comprise a rather heterogeneous group of diseases vary-

ing in pathophysiology, presentation, epidemiology, diagnosis, treatment and prognosis. Even 

though they have been recognized for several years, there are still areas of research debate. In the 

majority of ILDs, imaging modalities and especially high-resolution Computed Tomography (CT) 

scans have been the cornerstone in patient diagnostic approach and follow-up. The intricate nature 

of ILDs and the accompanying data have led to an increasing adoption of artificial intelligence (AI) 

techniques, primarily on imaging data but also in genetic data, spirometry and lung diffusion, 

among others. In this literature review, we describe the most prominent applications of AI in ILDs 

presented approximately within the last five years. We roughly stratify these studies in three cate-

gories, namely: (i) screening, (ii) diagnosis and classification, (iii) prognosis. 
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1. Introduction 

Interstitial lung diseases (ILDs), also known as diffuse parenchymal lung diseases, is 

an umbrella term encompassing more than 300 conditions. The term interstitial refers to 

the tissue surrounding the air sacs (alveoli) in the lung, bounded by the capillary endo-

thelium and the alveolar epithelium. Most ILDs are often characterized by inflammation 

and/or fibrosis causing progressive decline in lung function and impaired gas exchange; 

consequently, patients complain of shortness of breath, cough, fatigue and weight loss. 

The most common causes of ILDs include exposure to environmental toxins, viral infec-

tions and autoimmune conditions, while many are idiopathic. 

The diagnosis of ILDs is often challenging due to the diversity of symptoms and the 

fact that they can mimic symptoms of other respiratory disorders. A thorough medical 

evaluation, including pulmonary function tests, consecutive imaging studies, bronchos-

copy and even biopsy, is often necessary to make a definitive diagnosis. Even after suc-

cessful diagnosis, most of these exams are regularly collected and reviewed by the treating 

physician. As for epidemiology, ILDs range from ultra rare to relatively common. Overall, 

they collectively affect a considerable number of patients, posing a significant disease bur-

den. 

In terms of classification, there is no unanimous nomenclature; some categorizations 

distinguish ILDs of known cause from those of unknown etiology. Another common clas-

sification identifies the following categories: idiopathic, autoimmune-related, exposure-

related (including iatrogenic), interstitial lung diseases with cysts or airspace filling, sar-

coidosis and orphan diseases [1]; this classification is shown in Figure 1. Due to their scar-

city and heterogeneity, it is difficult to gain expertise; therefore, in several clinical settings, 

diagnosis remains elusive for a considerable amount of time. Specifically, a recent study 
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has reported that the median time from symptom onset to diagnosis is 7 months, often 

accompanied by at least one misdiagnosis [2]. Moreover, some of these conditions, due to 

their etiology, pathophysiology or presentation, may require close collaboration with 

other medical specialties, e.g., rheumatologists. Even after successful diagnosis, choosing 

the best treatment for each patient is also debatable, as well as assessing and quantifying 

progression or response to treatment. 

 

Figure 1. Classification of ILDs. 

Artificial intelligence (AI) is a relatively old term which has been attracting signifi-

cant attention during the last few years. AI refers to the technologies that enable machines 

to perform advanced human-like functions, such as learning, analyzing, seeing, etc., and 

gain experience as more data become available. AI is a broad field encompassing many 

different disciplines such as computer science, statistics, software engineering and many 

others. Machine learning (ML) is a subfield of AI where statistical models are trained to 

“learn” patterns from complex data in order to perform a specific task. Figure 2 shows a 

flowchart of the learning process. 

https://paperpile.com/c/Cf7jBT/lHbZw
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Figure 2. Flowchart of the learning process. 

Moreover, another branch of AI that is currently in the spotlight is called deep learn-

ing (DL); DL features a complex multi-layer architecture resembling the distributed ap-

proach to problem solving that is carried out by the neurons of the human brain (Figure 

3). Thanks to its implementation, DL can analyze huge amounts of complex data and has 

produced some noteworthy applications across several industries, e.g., self-driving cars, 

language translation, virtual assistants, etc. 

 

Figure 3. Hierarchy of artificial intelligence, machine learning and deep learning algorithms. 

Advances in processing power and its wide availability in everyday devices such as 

home computers and smartphones have contributed significantly towards this direction. 

In addition, during the last few years, numerous machine learning and even deep learning 

software tools have been developed that require minimal or no coding skills to perform a 
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certain task. All these advances go hand in hand with the production and storage of huge 

amounts of complex data from nearly every field of science and elsewhere. The most sig-

nificant factor in the advent of ML and DL algorithms is the achievement of superior per-

formance compared with traditional methods or algorithms. The ability to interpret or 

explain the output of some ML algorithms that have been traditionally considered “black-

boxes” has certainly contributed towards wider acceptance of such algorithms. 

This issue is specifically true for the utilization of ML algorithms in healthcare appli-

cations. Until recently, the lack of reasoning in medical decisions from ML algorithms has 

led to considerable skepticism that is being gradually alleviated. Moreover, it has become 

almost unanimously apparent that AI does not substitute medical personnel, but rather 

works in a decision-support manner, thus facilitating trivial tasks so that doctors can focus 

more freely and effectively on the patient. As a result, some impressive examples have 

been reported in the healthcare industry as well, especially with regard to computer vision 

tasks, at which DL algorithms are profoundly adept. Such examples include skin lesions 

[3], endoscopic images [4], histopathologic images [5] and radiology images. The latter 

type of data, especially CT scans, constitutes an integral part in the pursuit of ILDs. DL 

has revolutionized the way medical images are analyzed and interpreted and has been 

used in a wide range of medical imaging applications, including segmentation, registra-

tion, classification, object detection as well as many others. An exemplary architecture of 

a deep neural network is shown in Figure 4. 

 

Figure 4. Provisional architecture of a deep neural network. 

Besides imaging data, ILDs produce other sources of biomarkers that need to be an-

alyzed in conjunction with the findings from the imaging modalities that are integral in 

the pursuit of ILDs. Recently, there is active interest in biomarkers coming from genomic, 

proteomic and transcriptomic investigations. Further considering the evolution and vari-

ability of the aforementioned data over time, we provide some perspective regarding the 

complexity of data pertaining to ILDs. 

It is evident that ILDs are an ideal candidate for encompassing AI algorithms. In the 

current literature review, we describe the most prominent and recent applications of AI 

algorithms in ILD research. The majority is focused on the analysis of imaging modalities; 

nevertheless, other biomarkers, e.g., volatile organic compounds, gene expression, etc., 

are also being exploited in all aspects of ILD research: from screening to diagnosis and 

overall prognosis as well as treatment, aiming for more personalized and effective strate-

gies [6]. 

https://paperpile.com/c/Cf7jBT/9NdWS
https://paperpile.com/c/Cf7jBT/S78YN
https://paperpile.com/c/Cf7jBT/xg0Fg
https://paperpile.com/c/Cf7jBT/aDwKB
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2. Artificial Intelligence in ILDs 

2.1. Overview and Rationale 

ILDs constitute a complex and heterogeneous set of entities; each entity is often ac-

companied with large amounts of multiscale and multiparametric data (chest X-rays, CT 

scans, spirometries, oscillometries, etc.) varying from entity to entity, across patients of 

the same entity as well as over time. This inherent complexity, coupled with the rarity of 

some of these diseases, calls for advanced computational models, such as the ones from 

the field of AI. In the sections that follow, we first present some notable data repositories 

pertaining to ILDs, and then we discuss a selection of the most recent, innovative and 

remarkable applications of AI in ILD research. 

2.2. Data Repositories 

A critical issue for the exploration of ILDs, especially with AI algorithms, is the pro-

duction of high-quality data that are well characterized and annotated. Same as in all 

healthcare-related repositories, anonymization and data privacy issues are of utmost im-

portance and should be considered thoroughly, even in small-scale private datasets. Be-

low, we briefly mention some data repositories that can and have been used in ILD re-

search. Each dataset contains different types of data for variable ILD conditions and has 

been deployed by several authors and research groups with varying permutations de-

pending on the scope of the study. 

• OSIC data repository: launched by the Open Source Imaging Consortium, the OSIC 

repository contains approximately 1500 anonymized high-resolution CT scans along-

side with clinical data for a wide range of interstitial lung diseases, primarily IPF [7]. 

The repository contains treatment information, as well as follow-up data and mortal-

ity. It was built by a collaboration of experts in the fields of pulmonology, radiology 

and AI, aiming primarily to facilitate the role of the latter in patient care and precision 

medicine. A subset of the OSIC data repository containing information regarding 

pulmonary fibrosis progression has become available from Kaggle, for researchers to 

develop tools and algorithms aiming to predict lung function decline. The subset re-

pository contains 200 cases with approximately 1–2 years of follow-up. 

• ILD Database from medGIFT [8]: a publicly available multimedia collection of ILD 

cases built from the University Hospitals of Geneva. The database contains high-res-

olution CT scans with annotated regions of pathological lung areas coupled with 

clinical parameters from patients with pathologically proven diagnoses of ILDs. 

Overall, the library contains data from 128 patients affected with 1 of the 13 ILD dis-

eases. 

• ILDgenDB [9]: an integrated genetic knowledge resource for interstitial lung dis-

eases, which, as the name implies, contains genetic data about several ILDs. This re-

source contains literature-curated disease candidate genes enriched with regulatory 

elements, as well as single nucleotide polymorphisms (SNPs) that have been associ-

ated with specific ILDs. For this propose, ILDgenDB is enriched with information 

from multiple popular genetic resources such as GAD (Genetic Association Data-

base), OMIM (Online Mendelian Inheritance in Man) and GeneCards. The objective 

of this resource is to pinpoint potential genetic targets related to the pathogenesis, 

diagnosis, monitoring and treatment of ILDs. 

• ILDGDB [10]: a similarly oriented repository as ILDgenDB, utilizing genomic, tran-

scriptomic, proteomic and drug information for interstitial lung diseases.  

ILDGDB incorporates 2018 entries for 20 ILDs and over 600 genes; its purpose is to 

decipher gene mechanisms that take place in ILDs. 

There are also repositories, especially for genomic data, that can be exploited for ILD 

research. Gene Expression Omnibus (GEO) is a very popular, public repository which ac-

commodates thousands of gene expression datasets. There is a dataset containing gene 

expression from lung tissue with pulmonary sarcoidosis as well as from healthy lung 

https://paperpile.com/c/Cf7jBT/PTxkp
https://paperpile.com/c/Cf7jBT/fID6n
https://paperpile.com/c/Cf7jBT/91K7a
https://paperpile.com/c/Cf7jBT/EVMx2
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tissue (GSE16538). GEO also contains expression profiling of lung tissues from patients 

with idiopathic pulmonary fibrosis (GSE2052). Another similar repository is BioGPS, 

which features gene expression signatures from numerous diseases and conditions. In 

terms of ILDs, BioGPS contains two relevant gene sets: one for IPF (E-GEOD-24206) and 

another one for ILDs in general (E-GEOD-21369). The former was derived from 23 sam-

ples, while the latter was derived from 29; both contain data from healthy controls. 

3. AI Applications in ILD Research 

Applications of AI in ILD research can be roughly summarized in the following 

broad categories: (i) screening, (ii) diagnosis and classification, (iii) prognosis. The first 

category contains articles that aim to identify interstitial abnormalities before they become 

clinically meaningful and detectable. They focus primarily on interstitial lung abnormali-

ties (ILAs) and exploit AI algorithms for their early identification, with the majority using 

CT scans as input. The second category, which is the most populated one, contains algo-

rithms that diagnose ILDs mostly from imaging modalities, and some of them further aim 

to differentiate among various entities. The vast majority of studies in the last category 

(i.e., prognosis) deal with fibrosis and aim to assess its progression over time and subse-

quent prognosis. A summarizing table (Table 1) for the included studies has been added 

at the end of this section. 

Table 1. Summary of the studies included in the current review article. 

Author(s) Scope Dataset Type of Data Performance 

Bermejo-Peláez et al. [11] Screening 208 CT scans Imaging Sensitivity: 91.41% 

Agarwala et al. [12] Screening 168 CT scans Imaging Success rate: 85.3% 

Kim et al. [13] Screening 336 participants Imaging Accuracy: 90.5% 

Nishikiori et al. [14] Screening 1159 chest X-rays Imaging AUC = 0.979 

Onishchenko et al. [15] Screening 2,983,215 participants Electronic Health Records AUC > 0.840 

Axelsson et al. [16] Screening >10,000 patients Proteins - 

Pawar and Talbar [17] 
Diagnosis & 

classification 
108 CT scans Imaging Accuracy: 89.39% 

Huang et al. [18] 
Diagnosis & 

classification 
108 CT scans Imaging F1-score > 0.96 

Chloe et al. [19] 
Diagnosis & 

classification 
300 patients Imaging Accuracy: 60.9% 

Koo et al. [20] 
Diagnosis & 

classification 
1085 patients Imaging AUC > 0.900 

Furukawa et al. [21] 
Diagnosis & 

classification 
1068 patients Imaging Accuracy: 83.6% 

Christe et al. [22] 
Diagnosis & 

classification 
105 patients Imaging Accuracy: 81% 

Bratt et al. [23] 
Diagnosis & 

classification 
1239 patients Imaging AUC = 0.870 
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Yang et al. [24] 
Diagnosis & 

classification 
1760 chest X-rays Imaging Accuracy: 92.46% 

Horimasu et al. [25] 
Diagnosis & 

classification 
60 patients Auscultation Accuracy: 75% 

Plantier et al. [26] 
Diagnosis & 

classification 
150 patients 

Volatile Organic 

Compounds 
Accuracy: 77.5% 

Zhang et al. [27] 
Diagnosis & 

classification 
300 patients Gene Expression - 

Li et al. [28] 
Diagnosis & 

classification 
600 patients Gene Expression AUC=0.856 

Kim et al. [29] Prognosis 192 patients Imaging - 

Handa et al., [30] Prognosis 465 patients Imaging - 

Budzikowski et al. [31] Prognosis 169 patients Imaging and Genomic - 

Liang et al. [32] Prognosis 116 patients Imaging AUC=0.870 

Aoki et al., [33] Prognosis 104 patients Imaging - 

Bowman et al. [34] Prognosis 589 patients Proteomic Sensitivity: 90% 

Mayr et al. [35] Prognosis 124 patients Proteomic Accuracy: 83% 

3.1. Screening 

The most common approach in this category involves the analysis of imaging modal-

ities for the identification of ILAs. Bermejo-Peláez et al. [11] analyze 208 CT scans, broken 

down to 37,424 radiographic tissue samples, and utilize an ensemble of deep convolu-

tional neural networks. Their aim is to identify radiographic patterns that precede the de-

velopment of ILDs and classify them into eight different parenchymal feature classes, 

namely: normal parenchyma, five interstitial patterns (ground-glass, reticular, nodular, 

linear scar, subpleural line) and two emphysematous patterns (centrilobular and parasep-

tal). The authors report very good performance with an average sensitivity of 91.41% and 

average specificity of 98.18%. Agarwala et al. [12] employ 168 CT scans, coming both from 

a public database and a private one, and use a convolutional neural network (CNN) to 

identify three radiographic patterns (i.e., consolidation, emphysema and fibrosis), yield-

ing acceptable performance, Similarly, Kim et al. [13] aim to identify ILAs in routine CT 

scans, exhibiting 90.5% overall accuracy. Since CT scans, and especially HRCTs (high-res-

olution CT scans) are not readily available in all facilities, Nishikiori et al. [14] propose a 

deep-learning-based algorithm which assigns scores to chest X-rays, representing the 

probability of fibrosing interstitial lung diseases. The performance of the algorithm was 

further validated with CT scans and its detection capability was not inferior to that of 

doctors (including pulmonologists and radiologists). 

A methodologically different approach was proposed by Onishchenko et al. [15], 

who systematically searched electronic health records for comorbidity patterns that were 

potentially associated with the development of IPF. Interestingly, the proposed non-inva-

sive methodology can predict IPF from 1 to 4 years prior to definite diagnosis, with Area 

under the ROC Curve (AUC) > 0.84. The proposed algorithm can be applied in large co-

horts, even in primary care, enabling early diagnosis with potentially better outcomes. 

Another interesting approach was presented by Axelsson et al. [16], who aimed to 

identify proteins in circulating blood that are associated with ILAs. More than 4700 

https://paperpile.com/c/Cf7jBT/Q6rs7
https://paperpile.com/c/Cf7jBT/Tb76U
https://paperpile.com/c/Cf7jBT/cQQ5a
https://paperpile.com/c/Cf7jBT/YgNGi
https://paperpile.com/c/Cf7jBT/ySC2G
https://paperpile.com/c/Cf7jBT/MidSC
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protein analytes from two major databases with more than 10,000 patients combined were 

searched for potential association with the incidence and progression of ILAs. The ex-

tracted protein markers were subsequently coupled with machine learning algorithms in 

order to identify interstitial lung disease early and predict its progression. 

3.2. Diagnosis and Classification 

Some of the first articles to engage AI in ILD research comprise this category, which 

is also the most populated one. The majority utilize machine learning algorithms, and pri-

marily deep-learning-based ones, in order to analyze CT scans and identify regions per-

taining to interstitial lung diseases [17,18]. Pawar and Talbar [17] propose a two-stage ap-

proach: the first is for segmenting HRCT images and the second is for classifying seg-

mented images into six ILD classes (normal, emphysema, fibrosis, ground glass, mi-

cronodules and consolidation). The proposed classifier yielded an overall accuracy of 

89.39%. Huang et al. [18] employ a dataset consisting of 108 annotated HRCT images and 

classified regions in five ILD-relevant classes (healthy, ground glass, emphysema, mi-

cronodules and fibrosis) with an F1-score of more than 0.96. 

Besides region classification, some studies go further to provide a specific diagnosis 

[19,20]. Chloe et al. [19] developed a content-based image retrieval algorithm in order to 

aid the diagnosis of ILDs. The algorithm was evaluated on images from approximately 

300 patients belonging to four categories and yielded overall accuracy of 60.9%. The four 

categories were: usual interstitial pneumonia (UIP), nonspecific interstitial pneumonia 

(NSIP), cryptogenic organizing pneumonia, and chronic hypersensitivity pneumonitis. In 

a methodologically different approach but for the same purpose Koo et al. [20] achieved 

a slightly better performance. 

Among ILDs, IPF attracts considerable interest since it is relatively frequent and also 

bears quite unfavorable prognosis. For this purpose various approaches have been pre-

sented in the literature [21–23]. In a similar manner with the previous approaches, these 

articles describe AI based approaches for segmenting and classifying images, with special 

focus on IPF related patterns. All three studies utilized deep learning algorithms and were 

developed with 1068, 105 and 1239 patients, reporting overall accuracy 83.6%, 81%, while 

the latter one [23] reported an AUC = 0.87. Yang et al. [24] focused on another popular ILD 

entity, i.e., pneumoconiosis, and analyzed 1760 chest X-rays with a deep learning algo-

rithm in order to discriminate between patients with pneumoconiosis and normal ones. 

The best performing algorithm resulted in 92.46% accuracy, which is significantly higher 

compared to other machine learning algorithms (e.g., support vector machines, artificial 

neural networks, random forests, k-nearest neighbors) used in the same study. 

A totally different approach was presented by Horimasu et al. [25], who developed 

a machine learning algorithm in order to discriminate fine crackles from other ausculta-

tory sounds and subsequently associate them with respective regions of pulmonary fibro-

sis. In total, 60 patients underwent chest X-ray and HRCT, and respiratory findings were 

recorded in six positions. Fine crackles were mostly associated with honeycombing and 

traction bronchiectasis; another interesting finding was that the identification of fine 

crackles indicated a higher sensitivity compared to a chest-X-ray-based determination of 

the presence or absence of ILDs. 

In a recently published pilot study, Plantier et al. [26] analyzed the exhaled air from 

three patient categories, namely, patients diagnosed with IPF, patients with ILD second-

ary to connective tissue diseases (CTDs) and healthy controls. The aim of the study was 

to identify volatile organic compound patterns in exhaled air to non-invasively discrimi-

nate IPF- and CTD-related ILDs. The study employed approximately 150 patients and re-

sulted in classification accuracy of 77.5%, sensitivity of 76.5% and specificity of 78.4%. 

Zhang et al. [27] utilized a machine learning algorithm aiming to identify biomarkers 

from gene expression profiles that differentiate chronic hypersensitivity pneumonitis 

(CHP) from other ILDs. Based on the analysis of approximately 300 patients, the authors 

reported 674 CHP biomarkers with an ultimate aim to facilitate precise gene therapy for 

https://paperpile.com/c/Cf7jBT/VM05E+YTtXo
https://paperpile.com/c/Cf7jBT/VM05E
https://paperpile.com/c/Cf7jBT/YTtXo
https://paperpile.com/c/Cf7jBT/HkBFi+PZDTa
https://paperpile.com/c/Cf7jBT/HkBFi
https://paperpile.com/c/Cf7jBT/PZDTa
https://paperpile.com/c/Cf7jBT/zDn4g+HPlbZ+Z9vtW
https://paperpile.com/c/Cf7jBT/Z9vtW
https://paperpile.com/c/Cf7jBT/2pJIt
https://paperpile.com/c/Cf7jBT/j9LpH
https://paperpile.com/c/Cf7jBT/x28aT
https://paperpile.com/c/Cf7jBT/Yw8we
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CHP. In a similar approach that was recently published, Li et al. [28] identified a six-gene 

subset whose expression was significantly different in patients with IPF compared to 

healthy controls. A random forest algorithm was used upon a set of more than 600 pa-

tients, yielding an AUC of 0.856. 

3.3. Prognosis 

From another perspective, there is the use of AI and deep learning for the prognosis 

of the disease, either for the progression of ILD or the possibility of malignancy develop-

ment or coexistence. Different tools were created mostly based on quantitative imaging 

from HRCT, and some quantitative interstitial scores have also been developed. Kim et al. 

[29] propose that the use of imaging features of quantitative lung fibrosis scores in patients 

with IPF in the early stages can predict the progressive fibrosis status later on. The ability 

to apply this in precisely informed and timely management decisions after treatment is 

progress. AI could be used in testing new safe and effective therapies and to elucidate the 

effects of therapies in patients with biologically heterogeneous disease in the timing of 

progression. New software such as the artificial-intelligence-based quantitative CT image 

analysis software (AIQCT) of Handa et al. quantified parenchymal lesions and airway 

volumes; they suggest that lung volume on HRCT imaging of the chest may provide ad-

ditional prognostic information on the gender–age–lung physiology stage of IPF [30]. 

Since patients with idiopathic pulmonary fibrosis are at a higher risk of developing 

lung cancer, radiomics could be an early prognostic indicator. Budzikowski et al. correlate 

image features with patients’ genetic mutations [31]. It is stated that these imaging fea-

tures may serve as prognostic indicators combining radiomic features and genetic muta-

tions. That also provides an understanding of the interaction between imaging phenotype 

and patient genotype on the progression and, furthermore, the treatment of IPF. Addi-

tionally, regarding the risk of malignancy development or coexistence, in a recent study 

of Liang et al., it is mentioned that whole-lung CT texture analysis is a promising tool for 

the lung cancer risk stratification of IPF patients [32]. Moreover, Aoki et al., [33] using 

deep-learning-based analysis and measured consolidation with fibrosis, found that it was 

independently associated with poor survival. They also found that the lesion extent meas-

ured using deep-learning-based analysis showed a negative correlation with pulmonary 

function test results and prognosis. 

Another domain that AI is applied to is the investigation of the proteomic signature 

of ILD. The exact correspondence of cell state changes in diseased organs to peripheral 

protein signatures currently remains unknown. Certain plasma biomarkers in patients 

with progressive fibrosing ILD have been identified, and consistent associations across 

ILD subtypes have been reported. In a recent research study [34], a proteomic signature 

comprising 12 biomarkers was derived via machine learning, suggesting that approxi-

mately 10% of patients with a low-risk proteomic signature would experience ILD pro-

gression in the year after blood draw. Finally, Mayr et al. [35], using cross-modal analysis 

and machine learning, identified the cellular source of biomarkers. They demonstrated 

that information transfer between modalities predicts disease status. So, they also suggest 

the feasibility of clinical cell state monitoring through the longitudinal sampling of body 

fluid proteomes. 

4. Discussion 

AI algorithms are data driven; therefore, the reported outcomes are largely depend-

ent on the quality and quantity of the input data. In this sense, if the data used to train the 

algorithms are biased, the outcomes will be biased as well. For example, movie recom-

mendation services assess one’s taste and propose mostly similar movies, thus ignoring a 

great deal of genres and essentially leading to bias. Projecting this kind of bias onto search 

engine results or newsfeeds points to further ethical issues. In the case of ILD research, 

where the entities are relatively rare, it is important to obtain large amounts of high-qual-

ity data, where all entities are represented adequately, in order to avoid such bias. 

https://paperpile.com/c/Cf7jBT/oXOH1
https://paperpile.com/c/Cf7jBT/9uomw
https://paperpile.com/c/Cf7jBT/dmYg4
https://paperpile.com/c/Cf7jBT/1Acl2
https://paperpile.com/c/Cf7jBT/ENENb
https://paperpile.com/c/Cf7jBT/kYcz8
https://paperpile.com/c/Cf7jBT/eJQ9n
https://paperpile.com/c/Cf7jBT/1kDQU
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Another significant challenge in the utilization of AI algorithms in healthcare is the 

difficulty of capturing and representing contextual information. For example, the process 

of taking medical history is difficult to model in an automated manner; this issue becomes 

even more evident in complex cases where different aspects of the condition emerge pro-

gressively as more exams are performed and results become available. 

Imaging modalities and especially high-resolution CT scans coupled with lung func-

tion testing constitute the pillars for ILD diagnosis and progression monitoring, and the 

respiratory physician (or ILD specialist) must be well trained in both. Radiomics is an 

interesting and forthcoming field in interstitial lung diseases. Within the field of medical 

imaging, radiomics refers to the methodologies for extracting minable data from medical 

images, which is crucial in the field of the current review article. Despite advances in im-

aging modalities, the extracted features are susceptible to variation across scanner hard-

ware and acquisition protocols. For this purpose, there is active discussion in the literature 

in terms of harmonization solutions aimed at minimizing this variation; these solutions 

are roughly divided into two categories: image domain and feature domain [36]. The for-

mer category includes methods applied on the whole image prior to feature extraction 

(e.g., standardization of image acquisition, data augmentation, etc.). The latter category 

(i.e., feature domain), utilizes methods applied during or after feature extraction, aiming 

to harmonize the extracted radiomic features. In the overall data harmonization process, 

the impact of deep learning should also be highlighted, since its algorithms are able to 

ingest large amounts of raw unstructured data and essentially automate the feature ex-

traction process [37], 

Many studies employ different imaging modalities in ILDs, mostly HRCT, but some 

employ chest X-rays, and others, the combination of both. The utilization of chest X-rays 

either alone or in a complementary manner with other sources of data (e.g., auscultation) 

denotes a very interesting prospect, since CT scans are not readily available in all 

healthcare facilities. On the other hand, chest X-rays are available in almost all facilities, 

very quickly with minimal cost and negligible radiation. Radiomics can also be combined 

with other biomarkers such as plasma proteins and can be used to identify early lung 

malignancy among ILD patients. Additionally, the use of VOCs or gene expression pro-

files needs to be further investigated and standardized due to the complexity of radiomics. 

From an algorithmic point of view, primarily deep learning algorithms are em-

ployed, especially in most recent articles. Since the majority of studies in the field of ILDs 

utilize imaging data, deep learning algorithms are a very appealing choice. Deep learning 

algorithms have been extensively used in several fields with very promising results; es-

pecially in the case of image analysis, they have proven particularly effective with minor 

interference from field experts. A long-standing issue affecting the acceptance of AI algo-

rithms in healthcare is the explainability of the reported results. For this purpose in earlier 

years, primarily decision-tree-based algorithms were employed, where the results were 

relatively easily comprehensible. Even though the complex architecture of deep learning 

algorithms makes explainability quite elusive, there have been tremendous efforts to pro-

vide some reasoning for the reported outcomes. Nevertheless, the impressive perfor-

mance of deep learning algorithms has contributed to their acceptance, despite lack of 

explainability. 

Almost all articles mentioned in this review used deep learning algorithms, as we 

have focused on studies published within the last 3–4 years, i.e., from 2019–2023. In these, 

relatively few datasets are used, and many authors validate algorithms on private da-

tasets. The results reported from the majority of the studies included in the current review 

article seem very promising; especially in studies utilizing imaging modalities, rigorous 

validation has been performed, oftentimes using large databases, e.g., the OSIC data re-

pository and medGIFT. Nevertheless, translation of these radiological analyses into clini-

cal practice progresses slowly due to several challenges pertaining to workflow standard-

ization and reproducibility. 

https://paperpile.com/c/Cf7jBT/CQe2
https://paperpile.com/c/Cf7jBT/URCj
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 Within the current review article, there is a notable lack of AI approaches focusing 

on the treatment of ILDs. There are, however, plenty of articles assessing the severity and 

prognosis of ILDs, especially IPF, indirectly guiding the subsequent therapeutic plan. Re-

cent advances in the AI field, coupled with an increasing understanding of ILD bi-

omarkers, are expected to facilitate the shift towards precision medicine in ILDs, with per-

sonalized, AI-directed treatments [6,38]. Moreover, a novel drug target for IPF was re-

cently discovered via a generative AI platform, yet this prospect remains to be further 

explored [39]. 

As more and more AI applications in healthcare and ILD research in particular be-

come available with promising results, their deployment in clinical practice needs to be 

orchestrated. This issue calls for administrative and regulatory compliance. To this end, 

the US Food and Drug Administration (FDA) has been increasingly issuing approval for 

such AI tools during the last few years. Another important issue regarding utilization in 

clinical practice is to obtain reimbursement from insurance companies for AI tools. 

During the COVID-19 pandemic, a boost in automatic analysis of CT scans was 

noted. It should be mentioned that COVID-19 has accelerated the utilization of both health 

informatics and AI. Due to the easy transmission of the virus, telehealth devices for remote 

monitoring were widely employed. Moreover, the characteristic patterns depicted in CT 

scans yielded several AI algorithms for the detection and quantification of lung damage 

in COVID patients. The overwhelming difficulty of evaluating patients in person, espe-

cially for respiratory conditions, has catalyzed the development of novel means to evalu-

ate, diagnose and monitor such patients. Among others, fibrosis following COVID infec-

tion was a new topic of research, but also, many incidental findings such as ILAs were 

discovered with this extensive use of CT for COVID patients. There are many recent stud-

ies about the management of and research on interstitial lung abnormalities and their role 

in ILDs. These findings are included in new datasets processed using AI in order to max-

imize the significance of the results. Due to many entities, almost all studies focus on ra-

diologic patterns (emphysema, etc.), and if they delve into diagnosis, most of them involve 

IPF and scarcely mention chronic hypersensitivity pneumonitis. To the best of our 

knowledge, intriguingly, there were no recent articles regarding cryptogenic organizing 

pneumonia (COP), which could be a field for further research. There is a group of articles 

analyzing ILDs related to autoimmune diseases that are not included in this review. 

As mentioned earlier, due to the nature of ILDs, there are relatively few ILD special-

ists, often leading to considerable delay in reaching an expert and thus obtaining a defin-

itive diagnosis. There is a need to create helpful tools and provide knowledge through AI 

and advanced AI decision support systems worldwide. During the COVID era, large da-

tabases were developed especially for imaging, and there has been significant progress in 

AI pertaining to radiology. Respiratory medicine follows the broad use of AI in medicine, 

depicting the need for accurate, correct and quick solutions. 

Future Directions 

The use of AI and especially deep learning in the analysis of imaging modalities in 

interstitial lung diseases has been on the rise during the last few years and is far from 

being saturated. Imaging biomarkers are being identified and correlated with disease out-

comes, but also, advanced AI techniques are being utilized with increased generalization 

capability. Another important factor affecting the acceptance of AI techniques in ILD re-

search, and medicine in general, is the explainability of the reported outcomes, which is 

gradually becoming available for many algorithms. Nevertheless, the complex nature of 

ILDs’ pathobiology, which encompasses both environmental and genetic interactions, 

makes the utilization of AI algorithms ideal for this elusive purpose. Another interesting 

prospect for the use of AI in ILD research is the exploration and characterization of ILAs, 

which are recently in the spotlight. Overall, same as in several medical fields, the imple-

mentation of AI techniques in clinical practice is underway, aiming for maximal patient 

benefit. 

https://paperpile.com/c/Cf7jBT/aDwKB+3Sak
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