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Abstract: Renal cell carcinoma (RCC) is characterized by its diverse histopathological features,
which pose possible challenges to accurate diagnosis and prognosis. A comprehensive literature
review was conducted to explore recent advancements in the field of artificial intelligence (AI) in
RCC pathology. The aim of this paper is to assess whether these advancements hold promise in
improving the precision, efficiency, and objectivity of histopathological analysis for RCC, while
also reducing costs and interobserver variability and potentially alleviating the labor and time
burden experienced by pathologists. The reviewed AI-powered approaches demonstrate effective
identification and classification abilities regarding several histopathological features associated with
RCC, facilitating accurate diagnosis, grading, and prognosis prediction and enabling precise and
reliable assessments. Nevertheless, implementing AI in renal cell carcinoma generates challenges
concerning standardization, generalizability, benchmarking performance, and integration of data
into clinical workflows. Developing methodologies that enable pathologists to interpret AI decisions
accurately is imperative. Moreover, establishing more robust and standardized validation workflows
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is crucial to instill confidence in AI-powered systems’ outcomes. These efforts are vital for advancing
current state-of-the-art practices and enhancing patient care in the future.

Keywords: artificial intelligence; pathology; renal cell carcinoma; kidney cancer

1. Introduction

Renal cell carcinoma (RCC) is among the top 10 most common cancers in both men and
women. The incidence of RCC has gradually risen in recent years, resulting in increased
time-, effort-, and cost-related demands on healthcare systems [1]. Adequate RCC diagnosis
and treatment planning relies on adequate clinical data, imaging, histology, and molecular
profiling [2,3].

Histological analysis, which is supported by genetic and cytogenetic analysis, is crucial
for RCC diagnosis, as well as subtyping and defining features with high prognostic and
therapeutic impact [4,5]. These features include tumor grade, RCC subtype, lymphovas-
cular invasion, tumor necrosis, sarcomatoid dedifferentiation, etc. [6–8]. RCC histological
diagnosis and classification, in particular, can be a daunting task, as it encompasses a broad
spectrum of histopathological entities, which have recently been subject to changes [9,10].

Over the years, the daily clinical practice of treating patients with RCC has changed
from using paper charts, analog radiographs, and light microscopes to using more modern
counterparts, such as electronic health records and digitalized radiology and virtual pathol-
ogy. This shift has generated an enormous amount of digital data, which can be utilized in
data-characterization algorithms or artificial intelligence (AI) [11,12].

The use of AI in radiology, which is also known as radiomics, has shown excellent
diagnostic accuracy for detecting RCC and can even provide information regarding RCC
subtyping, nuclear grade prediction, gene mutations, and gene expression-based molecular
signatures [13]. In line with AI in radiology, efforts to use AI in RCC histopathology have
been undertaken in recent years. This relatively new field, which is called pathomics or
computational pathology, can be used to improve efficiency, accessibility, cost-effectiveness,
and time consumption, as well as enhance accuracy and reproducibility with lower sub-
jectivity [11,14–17]. In addition, Whole Slide Imaging (WSI) technology allows machine
learning in pathology by providing an enormous amount of high-quality information for
training and testing AI models to identify specific features and patterns that can be complex
for even the human eye to discern [12,18,19]. Ultimately, AI aims to assist pathologists in
making more accurate and consistent diagnoses in shorter periods of time and is a valuable
implement to undercover the above-cited information [20,21].

In this literature review, we aim to provide an overview of the current evidence
regarding the use of computational pathology in histopathology in RCC. Our review aims
to evaluate the potential prospects for implementing this emerging technology in everyday
practice by comparing and analyzing its advantages and possible drawbacks, as well as
bottlenecks that may hinder its development. Furthermore, we explore how this intriguing
new technology can aid pathologists in making their work less time consuming, more
standardized, and cost effective

2. Evidence Acquisition

We conducted a narrative review of the literature concerning all possible applications
of AI in the histo-pathological analysis of RCC specimens.

The Medline database was screened, and literature research was restricted to articles
published in English between 1 January 2017, and 1 January 2023, since most of the relevant
literature in this field was published in this timeframe.

We used a structured search strategy (Supplementary Material), obtaining 98 results
that were reviewed, and references to the retrieved articles were hand-searched to identify
additional reports that met the scope of this review.
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Original studies and case series were selected for inclusion, while reviews, editorials,
and letters to editors were excluded. Finally, references to the retrieved articles were
hand-searched to identify additional reports that met the scope of this review.

The titles and abstracts of all papers included were independently assessed against the
inclusion and exclusion criteria using Rayyan (Rayyan Systems, Cambridge, MA, USA).

3. Basics of Artificial Intelligence and Its Application in Histopathology

Machine learning (ML) is a subfield of AI that uses algorithms that enable computers
to learn from digital images of tissue samples. In histo-pathology, it can be used for
many tasks, such as digital analysis of images of tissue samples, identification of different
structures or cell types, and classification or segmentation of different regions in the tissue
sample [22]. The capabilities of ML increased with the development of deep learning (DL),
with a section of ML now focused on creating a virtual neural network with multiple layers
inspired by the ways through which biological neurons communicate [23]. DL models are
well-suited for feature extraction and learning from data because they can automatically
identify complex patterns and relationships within large and diverse datasets, such as those
used in cancer diagnostics (Definition in Box 1).

Choosing the best algorithm for AI applications in histo-pathology is still challenging.
There are three primary types of learning: supervised learning, which uses labeled data
for training; unsupervised learning, which finds patterns without labels; and weakly
supervised learning, which strikes a medium ground through use of partially labeled data.

In histo-pathological practice, there are numerous time-consuming and repetitive
tasks, such analysis of high-volume biopsy tissue samples from breast, prostate, colon,
and cervix due to screening programs, as well as finding a large quantity of resected
lymphnodes during routine surgical procedures. AI has the potential to flag suspicious
regions for inspection and may eventually enable autonomous case assessment.

In addition, AI can help pathologists to complete classification tasks, like highlighting
regions of prostate cancer using different colors to represent different Gleason grades [24,25].

Moreover, combining segmentation, detection, and classification techniques makes it
possible to objectively quantify established biomarkers utilized in clinical practice. Specific
instances are the evaluation of tumor-infiltrating lymphocytes [26] and the quantification
of programmed death-ligand 1 (PD-L1)-positive cells [27], which can even be predicted
directly via slides [28].

Therefore, AI can be utilized for tasks such as tumor detection and classification,
including subtyping, image segmentation, tumor grading, and predictive/prognostic
modeling, within the field of histopathology.

Box 1. Definitions.

Machine learning:
Machine learning is a specific branch of artificial intelligence,
based on algorithms that enable computer systems to learn,
make predictions, and decisions based on data, without the
need for explicit programming instructions to do so.

Whole-slide images:
Digital representations of entire microscope slides created by
scanning glass slides with high-resolution scanners.

Deep learning:
A subfield of machine learning where algorithms are trained for
a task or set of tasks by subjecting a multi-layered artificial
neural network to a training data. It eliminates the need for
manual feature engineering by allowing the networks to learn
directly from raw input data during the training process. The
acquired algorithm is subsequently utilized for tasks such as
classification, detection, or segmentation. The term "deep" refers
to the use of artificial neural networks comprising numerous
layers, thus referred to as deep neural networks.

Convolutional neural network:
In deep learning, a class of artificial nural network consisting of
convolutional of a sequence of convolutional layers to process
an input data and produce an output. Each layer implements
the convolution operation between the input data and a set of
filters. These filter values are learned automatically during
training, allowing the network to extract relevant features from
the data in an end-to-end fashion (learning the optimal value of
all parameters of the
model simultaneously rather than sequentially)
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Box 1. Cont.

Digital pathology:
The process of digitizing the conventional diagnostic approach.
It is accomplished through the utilization of whole-slide
scanners and computer screens

Pathomics:
The analysis by computational algorithms of digital pathology
data, to extract meaningful features. These features are then
used to build models for diagnostics, prognostics, and
therapeutics purposes

Computational pathology:
Computational analysis of digital images acquired by scanning
pathology slides

Image segmentation:
The process of dividing a digital pathology image into distinct
regions or objects of interest (for example nuclei or tumor
region) to enable analysis and extraction of specific features.

4. Artificial Intelligence Aided Diagnosis of RCC Subtypes

Although several advances have been made in RCC diagnostics in the last decade,
especially in imaging techniques, histo-pathological diagnosis based on a pathologist’s skill
and experience remains the standard clinical practice used to distinguish RCC from normal
renal tissue at the microscopic level [13,29–31].

However, RCCs can have complicated characteristics that make the diagnosis difficult,
laborious, and time consuming, even for experienced pathologists. These issues are known
to lead to a moderate inter-reader agreement for the RCC subtype [32–34]. In addition,
several studies demonstrated that computational pathology could be a solution to more
uniform specimen readings and reduce intra- and inter-observer variability [35–37].

4.1. RCC Diagnosis and Subtyping in Biopsy Specimens

RCC varies in its biological behavior, ranging from indolent to aggressive tumors.
Currently, no reliable predictive models that distinguish between different clinical types
are available for use in the pre-operative setting, creating concerns about under- and over-
treatment, especially in small renal masses (SRMs), which now represent up to 50% of renal
lesions [38–42]. Therefore, this issue can lead to overdiagnosis and overtreatment. To date,
there are no highly reliable biomarkers or imaging methods that can correctly differentiate
between benign and malignant lesions [43–45] As a result, there has been a growing trend
of using renal mass biopsy (RMB) to address this challenge over the past decade [46–48].

However, RMBs have some limitations as they are non-diagnostic in approximately
10–15% of the cases and remain intrinsically invasive [49]. The main reason for the high
percentage of non-diagnostic results is inadequate sampling of tumors [50]. Another crucial
issue in RMB is a fair degree of interobserver variability [51], a concern that is also found in
breast, prostate, and melanoma biopsies [52–54].

To tackle these problems, Fenstermaker et al. developed a DL-based algorithm for RCC
diagnosis, grading, and subtype assessment [55]. Their method reached a high accuracy
level when using only a 100 square micrometers (µm2) patch, making it a potentially
valuable tool in RMB analysis. In addition, although their method was trained on whole-
mount surgical specimens, a computational method trained and tested on small tissue
samples may reduce the need for repeat biopsies by decreasing insufficient tissue sampling
and reducing interobserver variability.

However, this study focused on identifying the three main subtypes of RCC without
considering benign tumors or oncocytomas. A significant proportion of small renal masses
(SRMs) are benign, with oncocytoma being the most frequent benign contrast-enhancing
renal mass found. A well-known problem faced by pathologists is differentiating onco-
cytomas from chromophobe RCC [56–58]. Zhu et al. reported favorable results in RCC
subtyping in surgical resection and RMB specimens, as well as promising results in oncocy-
toma diagnosis in RMB [59]. The group trained and tested a model on an internal dataset
of renal resections. In addition, they tested this model on 79 RCC biopsy slides, 24 of which
were diagnosed as renal oncocytoma, and an external dataset, achieving good performance,
as shown in Table 1.
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4.2. RCC Diagnosis and Subtyping in Surgical Resection Specimens

Despite the recent increased use of RMB and enormous advances in diagnostic ac-
curacy [60,61], approximately 73% of surveyed urologists would not perform a RMB for
various reasons [62]. Currently, the standard of treatment for non-metastatic RCC is surgical
resection, carried out via either a radical or partial nephrectomy; this technique was also
used in some selected cases of metastatic RCC [63,64]. However, examining and analyzing
the complex histological patterns of RCC surgical resection specimens under a microscope
can be challenging and time consuming for pathologists for many reasons. For instance,
nephrectomy specimens exhibit substantial heterogeneity, exemplifying the wide variation
observed within RCC surgical resection samples [65]. Moreover, variability among different
observers, and even within the same observer, has been reported [33].

Good results were obtained by Tabibu et al. in terms of distinguishing between ccRCC
and chRCC and normal tissue using two pre-trained convolutional neural networks (CNN)
and replacing the final layers with two output layers, which were fine-tuned using RCC
data [66]. Moreover, for subtype classification, the group introduced a so-called directed
acyclic graph support vector machine (DAG-SVM) on top of the deep network, obtaining
good accuracy in this task. Unlike Tabibu et al.’s model, Chen et al. developed a DL
algorithm to detect RCC that was externally validated on an independent dataset [67]. To
accomplish this task, they used LASSO (least absolute shrinkage and selection operator),
which is a method used in ML to select from a more extensive set of features, i.e., the most
important in predicting outcomes. Through LASSO analysis, they identified various image
features based on the “The Cancer Genome Atlas” (TCGA) cohort to distinguish between
ccRCC and normal renal parenchyma, as well as ccRCC and pRCC and chRCC, obtaining
high accuracy in test and external validation cohorts.

Also, Marostica et al. created a pipeline using transfer learning to identify cancerous re-
gions from slide images and classify the three major subtypes, obtaining good performance
in both the test set and two external independent datasets (Table 3) [68].

RCC classification is a challenging task not only due to the complexity of the procedure
itself, but also because the classification system is subject to periodic updates [69,70].
For example, only in recent years has clear cell papillary renal cell carcinoma (ccpRCC)
been recognized as a specific entity [4]. This subtype of RCC histologically resembles
both ccRCC and pRCC, and it has clear cell changes. However, ccpRCC has distinct
immuno-histochemical and genetic profiles compared to ccRCC and pRCC [71]. It also
carries a favorable prognosis relative to the latter carcinoma; therefore, the World Health
Organization recently changed its denomination to a clear cell papillary renal cell tumor [72].
Abdeltawab et al. developed a computational model that could distinguish between ccRCC
and ccpRCC, obtaining an accuracy of 91% in identifying ccpRCC using the institution files
and 90% in diagnosing ccRCC using an external dataset [73].

The abovementioned studies were mainly supervised and highly defined for RCC
approaches, making them time consuming to conduct. However, the capability to apply
knowledge gained from previous experiences to novel situations is a vital skill among
human beings. For example, pathologists can use lessons learned outside of their specific
subspecialty because several cancer types exhibit common hallmarks of malignancy, as
demonstrated by Faust et al., who tested whether a previously trained AI system developed
to recognize brain tumor features could be applied to clusters and analyze RCC specimens
in an unsupervised fashion [74]. The results showed that grouping cancer regions from
non-neoplastic tissue elements matched expert annotations in multiple randomly selected
cases. This result, hypothetically, represents a way to demonstrate that unsupervised
ML-based methods, which were built for the diagnosis of other cancers, can also be used to
diagnose RCC, reducing development and work time.
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Table 1. Overview of studies of AI models for diagnosis and subtyping.

Group Aim Number of Patients Training Process Accuracy on the
Test Set

External Validation
(N of Patients)

Accuracy on the
External

Validation Cohort
Algorithm

Fenstermaker
et al. [55]

(1) RCC diagnosis,
(2) subtyping,
(3) grading

(1) 15 ccRCC;
(2) 15 pRCC;
(3) 12 chRCC.

No significant error
decrease in 25 epochs in
training was recorded.
Next, a validation dataset
was used. Training was
halted when the
performance on the
validation set ceased
to improve.

(1) 99.1%;
(2) 97.5%;
(3) 98.4%

N.A. N.A.

CNN: 6 different
convolutional layers,
2 layers of 32 filters,
2 layers of 64 filters,
and 2 layers of
128 filters.

Zhu et al. [59] RCC subtyping

(1) 486 SR (30 NT,
27 RO, 38 chRCC,
310 ccRCC, 81 pRCC);
(2) 79 RMB (24 RO,
34 ccRCC, 21 pRCC).

The models were trained
for 40 epochs. The trained
model assigned a
confidence score for each
patch. Finally, a
comparison of the trained
models was completed.

(1) 97% on SRS,
(2) 97% on RMB

0 RO
109 ChRCC
505 ccRCC
294 pRCC:

95% accuracy
(only SRs)

DNN: we tested four
versions of ResNet:
ResNet-18, ResNet-34,
ResNet-50, and
ResNet-101. ResNet-18
was selected for the
highest average
F1-score on the
developement
set (0.96)

Chen et al. [67]

(1) RCC diagnosis,
(2) subtyping,
(3) survival
prediction

(1) and (2) 362 NT,
362 ccRCC, 128
pRCC, 84 chRCC;
(3) 283 ccRCC.

LASSO was used to
identify RCC-related
digital pathological factors
and their coefficients in the
training cohort.
LASSO–Cox regression
was used to identify
survival-related digital
pathological factors and
their coefficients in the
training cohort.

(1) 94.5% vs. NT
(2) 97% vs. pRCC
and chRCC
(3) 88.8%, 90.0%,
89.6% in 1–3–5 y DFS

(1) and (2) 150 NP,
150 ccRCC,
52 pRCC, and
84 chRCC;
(3) 120ccRCC.

(1) 87.6% vs. NP;
(2) 81.4% vs. pRCC
and chRCC;
(3) 72.0%, 80.9%,
85.9% in 1-, 3-, or
5-year DFS.

Segmentation and
feature extraction
pipeline via
CellProfiler:
(1) and (2) LASSO;
(2) LASSO–Cox
regression analysis
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Table 1. Cont.

Group Aim Number of Patients Training Process Accuracy on the
Test Set

External Validation
(N of Patients)

Accuracy on the
External

Validation Cohort
Algorithm

Tabibu et al.
[66]

(1) RCC diagnosis;
(2) subtyping,

(1) 509 NT;
(2) 1027 ccRCC;
(3) 303 pRCC;
(4) 254 chRCC.

Training was terminated
when validation accuracy
stabilized for 4–5 epochs.
Data augmentation
included random patches,
vertical flip, rotation, and
noise addition. Weighted
resampling was used to
address class imbalance.
Training parameters
remained unchanged.

(1) 93.9% ccRCC

vs. NP
87.34% chRCC vs.
NP
(2) 92.16% subtyping

N.A. N.A.

CNN (Resnet 18 and
34 architecture based);
DAG-SVM on top of
CNN for subtyping.

Abdeltawab
et al. [73] RCC subtyping (1) 27 ccRCC;

(2) 14 ccpRCC.

Each image was divided
into overlapping patches
of different sizes for
feature recognition at
different sizes. Multiple
CNNs outperformed a
single CNN for learning
features at different scales.
Patch overlap of 50% for
learning from
diverse viewpoints.

91% in ccpRCC 10 ccRCC. 90% in ccRCC

Three CNNs were used
for small, medium, and
large patch sizes. The
CNNs shared the same
architecture: a series of
convolutional layers
intervened by
max-pooling layers,
followed by two fully
connected layers.
Finally, there was a
soft-max layer

ccRCC = clear cell renal cell carcinoma, ccpRCC = clear cell papillary renal cell carcinoma, chRCC = chromophobe renal cell carcinoma, CNN = convolutional neural network,
DAG-SVM = directed acyclic graph–support vector machine, DFS = disease-free-survival, DNN = deep neural network, LASSO = least absolute shrinkage and selection operator,
N.A. = not applicable, NT = normal tissue, pRCC = papillary renal cell carcinoma, ResNet = residual neural network, RMB = renal mass biopsy, SR = surgical resection.
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5. Pathomics in Disease Prognosis

The prognosis for RCC depends on several factors, including anatomical and clinical
factors, while histological and molecular factors play important prognostic roles in both
non-metastatic disease and mRCC [75].

5.1. Cancer Grading

Tumor grading is considered to be one of the most critical factors in prognosis predic-
tion, as the 5-year survival rate for patients with low-grade RCC is around 90%, while in
high-grade RCC, the survival rate is about 12% [75–77].

Although largely replaced by the WHO/ISUP grading classification method, the
Fuhrman grading system still acts as an independent factor in determining a higher risk
of recurrence and a lower chance of survival [78–82]. The Fuhrman grading system pre-
dominantly focuses on the morphology of the nucleus (size and shape) and the existence of
prominent nucleoli, though inter- and intra-observer variability is a serious issue [33,37,83].
Yeh et al. trained a support vector machine (SVM) classifier that performed effectively in
identifying, size-estimating, and calculating spatial distribution, as well as distinguishing
between low and high grades on ccRCC specimens [84]. However, it could not differentiate
between specific grades (e.g., III and IV), and no analyses of patients’ likelihood of survival
were presented.

Unlike the Fuhrman grading system, the WHO/ISUP system relies solely on nucleolar
prominence for grade 1–3 tumors, allowing lower inter-observer variation [85]. Therefore,
Holdbrook et al. developed a model that detected prominent nucleoli and quantified
nuclear pleomorphic patterns by concatenating features (i.e., combining different features
(or variables) into a single input representation for the model) extracted from prominent
nucleoli and classifying them as either high- or low-grade features [86]. The model also
showed excellent grade classification accuracy and prognosis prediction by comparing
these results to a multigene score.

The aforementioned computational systems have many unique features, like image
processing, feature extraction, classification method, and predicting two-tiered grades (which
demonstrated effective performance in cancer-specific-survival (CSS) prediction). [87]. Tian
et al. used 395 ccRCC cases from the TCGA dataset reviewed by a pathologist and stratified via
the two-tiered system: low- or high-grade features [88]. Of these features, 277 had concordance
between the TCGA and the pathologist’s assigned grade and were used to train the model
by extracting different histomic features for each patch. They used LASSO regression to
select the features most associated with different grades, obtaining a model that predicted
two-tiered ccRCC grading in good agreement with manual grades. It also showed a significant
association between the predicted grade and overall survival, even when adjusting for age and
gender. Furthermore, the model’s predicted grade was superior in terms of overall survival
prediction to TCGA and pathologist grade in discordant cases. This study was different from
those of Yeh et al. [84], who only evaluated one feature (i.e., maximum nuclei size) to predict
the two-tiered grade, and Holdbrook et al. [86], who used up to four concatenate feature
vectors to calculate F-scores before classifying features into low or high grade. The features
used in the model of Holdbrook et al. [86] are unspecified.

In addition, Tian et al. and Holdbrook et al. showed that the predicted grade had
prognostic value, whereas Yeh et al. did not report any association between their grade
and prognosis.

Tian et al.’s study used a conventional image analysis technique for nuclei segmenta-
tion. However, DL-based techniques for nuclei segmentation might be viable solutions, as
shown by the methods of Yeh et al. and Song et al., to this task [84,89]. The results of the
studies mentioned above are summarized in Table 2.
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Table 2. Overview of studies on AI models for RCC grading.

Group Aim Number of
Patients Training Process/Methodologies Accuracy on the

Test Set

External
Validation (N

of Patients)

Accuracy on the
External

Validation Cohort
Algorithm

Yeh et al. [84] RCC grading 39 ccRCC

Pixels from the nuclei were
manually selected to further train
a SVM classifier to
recognize nuclei.
A person with no special training
in pathology engaged in training
the classifier with an
interactive interface.

AUC: 0.97 N.A N.A.

WSI analysis with an automatic stain
recognition algorithm. An SVM classifier
was trained to recognize nuclei. Sizes of
the recognized nuclei were estimated,
and the spatial distribution of nuclear
size was calculated using
Kernel regression.

Holdbrook et al. [86]
(1) RCC grading;
(2) survival
prediction.

59 ccRCC

A cascade detector of prominent
nucleoli (constructed by stacking
20 classifiers sequentially) was
trained with WSI images to extract
image patches for subsequent
analysis. This pipeline used two
nucleoli detectors to extract
prominent nucleoli image patches.

(1) F-score:
0.78–0.83 grade
prediction;
(2) High degree of
correlation
(R = 0.59) with a
multigene score.

N.A. N.A.

An automated image classification
pipeline was used to detect and analyze
prominent nucleoli in WSIs and classify
them as either low or high grade. The
pipeline employed ML and image pixel
intensity-based feature extraction
methods for nuclear analysis. Multiple
classification systems were used for
patch classification (SVM, logistic
regression and AdaBoost).

Tian et al. [88]
(1) RCC grading,
(2) survival
prediction

395 ccRCC

Seven ML classification methods
were used to categorize grades
based on nuclei histomics features
were evaluated. Among these
methods, LASSO regression
demonstrated the highest
performance with a built-in
feature selection capability.
LASSO regression and its optimal
hyper parameter selected the final
list of histomics features most
associated with grade.

(1) 84.6% sensitivity
and 81.3%
specificity grade
prediction;
(2) predicted grade
associated with
overall survival
(HR: 2.05;
95% CI 1.21–3.47).

N.A. N.A.

Nuclear segmentation occurred, and
72 features were extracted. Features
associated with grade were identified via
a LASSO model using data from cases
with concordancet between TCGA and
Pathologist 1. Discordant cases were
additionally reviewed by Pathologist 2.
Prognostic efficacy of the predicted
grades was evaluated using a Cox
proportional hazard model in an
extended test set created by combining
the test set and discordant cases.

AUC = area under curve, ccRCC = clear cell renal cell carcinoma, CI = confidence interval, HR = hazard ratio, DNN = deep neural network, LASSO = least absolute shrinkage and
selection operator, N.A. = not applicable, SVM = support vector machine.
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5.2. Molecular-Morphological Connections and AI-Based Therapy Response Prediction

Recent developments in predicting RCC survival suggest that molecular differences
within subtypes affect prognosis, as well as potentially predictive molecular biomarkers and
marker signatures, even though there is no definitive evidence to date supporting the routine
clinical use of biomarkers for treatment selection in metastatic RCC (mRCC) [90–95].

As the finding of predictive biomarkers still represents an unmet clinical need, AI can
be used to explore connections between molecular biomarkers and morphological features
on histopathology images, thus overcoming traditional biomarker analysis limitations,
such as the high cost (both financially and in terms of time), limited sample size, and lack
of standardization [96–99].

Among the many possible genetic aberrations in RCC, one crucial type of mutation
are copy number alterations (CNAs), which are associated with an RCC’s development,
treatment response, and prognosis [100,101]. Marostica et al. used transfer learning to
develop CNAs and somatic mutation image-based prediction models. They demonstrated
that CNAs in several genes, including KRAS, EGFR, and VHL, could affect quantitative
histopathology patterns [68]. Furthermore, the group leveraged a framework to predict
ccRCC tumor mutational burden, which is a potential yet controversial biomarker for
immune checkpoint blockade response [102], and obtained good performances on this task.
It is important to note that this approach was weakly supervised and did not need a slide-
level label with detailed region or pixel-level segmentation, making it readily applicable
for clinical use.

Although immunotherapy has changed the field of mRCC over the last years, TKI
monotherapy still plays an essential role in treating patients who are unable to receive
or tolerate checkpoint inhibitors as a later-line therapy [75,103]. Go et al. developed an
ML-based method to identify which mRCC patients will respond to VEGFR-TKI treatment
by analyzing clinical, pathology, and molecular data from 101 patients [104]. Specimens of
the primarily resected tissue were collected and retrospectively divided into clinical and
non-clinical benefit groups. The authors developed a predictive classifier and obtained a
prediction accuracy of 0.87.

As stated, gene expression signatures are commonly used as predictive biomarkers.
Endothelial cells and vascular architecture are known to play roles in the biological behavior
of the tumor [105]. Ing et al. used ML to analyze tumor vasculature to gather prognostic
insights [106]. They used ccRCC cases from the TCGA database to train their algorithm
and discovered that nine vascular features correlated with clinical outcomes. They found
that four of these features had more significant variation in individuals with poor outcomes
than favorable outcomes, linking variation in vascular structure to worse results. Ing et al.
identified 14 genes that correlated strongly with these features and built 2 ML-based models
with satisfactory prediction outcomes comparable to those of traditional gene signatures.
Further efforts are needed to develop models using morphologic and genomic biomarkers
to improve patients’ prognosis and treatment options.

Another active area of RCC research is the field of epigenetics [107–111]. Zheng et al.
investigated possible interactions between histopathologic features and epigenetic changes
in RCC [112]. Using morphometric features extracted from histopathological images, they
employed ML models to accurately forecast differential methylation values for specific genes
or gene clusters. Furthermore, prospective studies are needed to predict the mechanisms un-
derlying cancer progression using predicted genes [113]. The results of the studies mentioned
above are summarized in Table 3.
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Table 3. Studies aimed to uncover molecular-morphological connections and/or AI-based therapy response prediction.

Group Aim Number of Patients Training
Process/Methodologies

Accuracy on the
Test Set

External
Validation (N

of Patients)

Accuracy on the
External

Validation Cohort
Algorithm

Marostica et al. [68]

(1) RCC diagnosis;
(2) RCC subtyping;
(3) CNAs identification;
(4) RCC survival
prediction;
(5) Tumor mutation
burden prediction.

(1) and (2): 537
ccRCC, 288 pRCC,
and 103 chRCC;
(3) 528 ccRCC, 288
pRCC, and 66 chRCC;
(4) 269 stage I ccRCC;
(5) 302 ccRCC.

(1) Weak supervision
approach used for
malignant region
identification;
(2) Same transfer
learning approach
trained for 15 epochs;
(3) Independent models
for ccRCC, pRCC, and
chRCC were developed;
(4) 10-fold
cross-validation was
employed. Upsampling
of uncensored data
points was performed
in each fold’s training
set to enhance the
model training process.

(1)AUC: 0.990 ccRCC,
1.00 pRCC, 0.9998
chRCC;
(2) AUC: 0.953
(3) ccRCC KRAS CNA:
AUC = 0.724, pRCC
somatic mutations:
AUC: 0.419–0.684;
(4) Short vs. long-term
survivors log-rank test
P = 0.02, n = 269;
(5) Spearman’s
correlation
coefficient: 0.419

(1) and
(2) 841 ccRCC, 41
pRCC, and
31 chRCC.

(1) 0.964–0.985
ccRCC;
(2) 0.782–0.993

(1) Three DCNN architectures
(VGG-16, Inception-v3, and ResNet-50)
were compared for each task.
(2) Same transfer learning approach as
above was used. The hyperparameters
of DCNNs were optimized via Talos.
(3) Two transfer learning approaches
were used: gene-specific binary
classification and multi-task
classification for all genes for CNAs.
DCNNs were used for associations
between genetic mutations and
WSI images.
(4) DCNN models used image patches
as inputs, predicting binary values for
each patient. Grad-CAM was
generated to identify the regions of
greatest importance for
survival prediction.

Go et al. [104]
RCC VEGFR-TKI
response classifier;
survival prediction.

101 m-ccRCC

ML approaches were
applied to establish a
predictive classifying
model for VEGFR-TKI
response. A
10-fold-cross-validated
SVM method and
decision tree analysis
were used for modeling

Apparent accuracy of
the model: 87.5%;
C-index = 0.7001 for
PFS; C-index of
0.6552 for OS

N.A. N.A.

Features that showed the statistical
differences between the good and
bad-response groups were selected,
and the most appropriate cut-off for
each feature was calculated.
Secondary feature selection was
performed using SVM to develop the
most efficient model, i.e., the model
showing the highest accuracy with the
least number of features
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Table 3. Cont.

Group Aim Number of Patients Training
Process/Methodologies

Accuracy on the
Test Set

External
Validation (N

of Patients)

Accuracy on the
External

Validation Cohort
Algorithm

Ing et al. [106]

(1) RCC vascular
phenotypes;
(2) survival prediction;
(3) identification of
prognostic gene
signature;
(4) prediction models.

(1), (2), and
(3): 64 ccRCC;
(4) 301 ccRCC.

A stochastic backwards
feature selection
method with 1500
iterations was applied
to identify the subset of
VF with the highest
predictive power. Two
GLMNET models were
trained: one model was
trained on VF-risk
groups, and the other
model was trained
using a 24-month
disease-free status as
the ground truth for a
validation cohort.

(1) AUC = 0.79;
(2) log-rank
p = 0.019, HR = 2.4;
(3) Wilcoxon rank-sum
test p < 0.0511;
(4) C-Index: Stage = 0.7,
Stage + 14VF = 0.74,
Stage + 14GT = 0.74.

N.A. N.A.

Quantitative analysis of tumor
vasculature and developement of a
gene signature. The algorithms trained
in this framework classified with SVM
and random forest classifiers,
i.e., endothelial cells, and generated a
VAM within a WSI. By quantifying the
VAMs, nine VFs were identified,
which showed a predictive value for
DFS in a discovery cohort. Correlation
analysis showed that a 14-gene
expression signature related to the 9VF
was discovered.
The two GLMNET were developed
based on these 14 genes, separating
independent cohorts into groups with
good or poor DFS, which were
assessed via Kaplan–Meier plots.

Zheng et al. [112] RCC methylation
profile

326 RCC
(also tested
on glioma)

In total, 30 sets of
training/testing data
were generated. Binary
classifiers were fitted on
the training set, and the
best parameters were
selected using 5-fold
cross-validation.
Logistic regression with
LASSO regularization,
random forest, SVM,
Adaboost, Naive Bayes,
and a two-layer FCNN
were used with
optimized parameters.

Average AUC and F1
score higher than 0.6 N.A. N.A.

To demonstrate that DNA methylation
can be predicted based on
morphometric features, different
classical ML models were tested.
Binary classifiers for each task were
evaluated using accuracy, precision,
recall, F1-score, ROC curve, AUC
score, and precision–recall curves.
Scores from 30 training/testing data
sets were averaged per task. For
logistic regression, feature importance
analysis was conducted to rank the
influence of morphometric features on
the prediction task.

AUC = area under curve, ccRCC = clear cell renal cell carcinoma, chRCC = chromophobe renal cell carcinoma, CNA = copy number alteration, DCNN = deep convolutional neural
network, DFS = disease-free survival, FCNN = fully connected neural network, GLMNET = elastic-net regularized generalized linear models, Grad-CAM = gradient-weighted class
activation mapping, LASSO = least absolute shrinkage and selection operator, ML = machine learning, N.A. = not applicable, OS = overall survival, PFS = progression-free survival,
pRCC = papillary renal cell carcinoma, ROC = receiver operating characteristic, SVM = support vector machine, VAM = vascular area mask, VEGFR-TKI = vascular endothelial growth
factor receptor–tyrosine kinase inhibitor, VF = vascular features.
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5.3. Prognosis Prediction Models Based on Computational Pathology

In the past, several models were developed and externally validated for the prediction
of the prognosis of RCC patients. These models, which are currently used for both localized
and metastatic RCC, are mainly based on clinicopathological data, both for localized and
mRCC cases [114–117]. Currently, the prognostic models of localized ccRCC mainly include
the Leibovich score [116] and the UISS score [117]. The latter score is primarily based on
clinicopathological data, making the pathologist’s subjective experience a limitation of
their performances [118,119]. All mentioned models incorporate clinical parameters within
their framework; however, models based exclusively on pathological data have been
validated [120], Regarding mRCC, risk groups assigned via the Memorial Sloan Kettering
Cancer Center (MSKCC) and the International Metastatic Renal Cell Carcinoma Database
Consortium (IMDC) may differ in up to 23% of cases [75]. Although these models have
shown reasonably good performance in the past, there is still room for improvement [121].
AI multimodal approaches applied to medical issues can raise accuracy by up to 27.7%
compared to a single modality [122]. Specifically, integrating an ML-based algorithm that
predicts RCC survival from histopathology to other known prognosis modalities improved
prediction accuracy in multiple studies [123,124].

Cheng et al. was the first study to combine features from the gene data and histopatho-
logic data for ccRCC prognosis [125], thus generating a risk index strongly correlated with
survival and outperforming predictions based on separate consideration of morphologic
features or eigengenes. The predicted risk could also stratify early-stage patients (stage I
and II), whereas no significant difference in survival outcomes when using stage alone was
recorded. In Cheng et al.’s study, microenvironment and radiologic imaging information
were not integrated into the prognostic model. At the same time, the latter feature proved
to be the single modality with the best predictive performance in a computational method
presented by Ning et al. This method combined features extracted from CT, histopathologi-
cal images, and clinical and genomic data [126]. However, Ning et al.’s method also had
limitations, such as a small sample size and a lack of external validation. Another algorithm
used by Chen et al. was trained on ccRCC images from the TCGA cohort and validated on
Shangai General Hospital images to identify substantial survival-related digital pathologi-
cal factors and combine them with clinico-pathological factors (age, stage, and grade) [67].
The integration nomogram developed in that study showed good ability in predicting
1- 3- and 5-year DFS (Table 1). The study also defined the cut-off value for high- and
low-risk scores as the median score for each cohort. Therefore, external validation using
a larger cohort or a prospective study would be necessary to confirm the novel computa-
tional recognition model’s validity and determine the optimal cut-off value for high- and
low-risk scores.

Another study by Schulz et al. reported on a multimodal deep learning model trained
on multiscale histopathological images, CT/MRI scans, and genomic data from whole
exome sequencing [127]. The model showed excellent performance in terms of 5-year
survival status prediction, as it outperformed other parameters (T-stage, N-stage, M-stage,
and grading). They also investigated the possibility of predicting the 5-year survival status
by obtaining a significant difference in the survival curves after dividing the cohorts into
low- and high-risk patients, even after evaluating only M0 or M + patients. However, this
study had the following limitations: it needed to compare other clinical tools that consider
factors such as performance status and calcium levels incorporated in the current, which
are widely used prognostic models; the external validation sample size was relatively small;
and further research is required to confirm the generalizability of the authors’ approach.

The above-mentioned and future models should be externally validated, used in
prospective cohorts, and compared to current prognostic models regarding discrimination,
calibration, and net benefit [75]. The results of the studies mentioned above are summarized
in Table 4.
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Table 4. Prognostic models.

Group Aim Number of
Patients Training Process/Methodologies Accuracy on the

Test Set

External
Validation (N

of Patients)

Accuracy on the
External

Validation
Cohort

Algorithm

Ning et al. [126] RCC prognosis
prediction 209 ccRCC

The training procedures employed
10-fold cross-validation. Survival
distributions of low- and high-risk
groups were estimated using the
Kaplan–Meier estimator and
compared via the log-rank test.
The performance of prognostic
prediction was assessed using the
C-index.

Mean
C-index = 0.832
(0.761–0.903)

N.A N.A.

Two CNNs with identical
structures were employed to
extract deep features from CT and
histopathological images.
Histological patches were
carefully reviewed by two
pathologists to confirm coverage
of tumor cells. Global pooling and
fully connected layers were
utilized at the end of the network
to integrate information from all
feature maps and make
predictions. The BFPS algorithm
was employed for
feature selection.

Cheng et al. [125] RCC prognosis
prediction 410 ccRCC

A two-level cross-validation
strategy was used to validate our
method. In the first level, a single
patient was chosen as the test set,
with the rest used as training sets.
The second level was a 10-fold
cross-validation performed in the
training set to select the best
regularization parameter. A
regularized Cox proportional
hazards model was built on the
training set using the selected
parameter and based on the
model; risk indices of all patients
were also calculated.

Log-rank test
p values < 0.05 N.A. N.A.

The unsupervised segmentation
method for cell nuclei and
features extraction was used.
lmQCM was used to perform gene
coexpression network analysis.
The LASSO-Cox model for
prognosis prediction calculated
the risk index for each patient
based on their cellular
morphologic features
and eigengenes
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Table 4. Cont.

Group Aim Number of
Patients Training Process/Methodologies Accuracy on the

Test Set

External
Validation (N

of Patients)

Accuracy on the
External

Validation
Cohort

Algorithm

Schulz et al. [127] RCC prognosis
prediction 248 ccRCC

Unimodal training was conducted.
This method was followed by
multimodal training, which used
the pre-trained weights from
unimodal training. Training lasted
for 200–400 epochs, and the best
model was selected based on the
convergence of training and
validation curves. The standard
Cox loss function was employed
for survival analysis, while the
cross-entropy loss function was
used for binary
classification tasks.

A mean C-index
of 0.7791 and a
mean accuracy
of 83.43%.
(prognosis
prediction)

18 ccRCC

Mean C-index
reached
0.799 ± 0.060
with a maximum
of 0.8662. The
accuracy
averaged at
79.17% ± 9.8%
with a maximum
of 94.44%.

CNN consisting of one individual
18-layer residual network (ResNet)
per image modality
(histopathology slides, CT scans,
MR scans) and a dense layer for
genomic data. The network
outputs were then combined
using an attention layer, which
assigned weights to each output
based on its relevance to the task
at hand. The combined outputs
were passed through a fully
connected network. Depending
on the specific case, either C-index
calculation or binary classification
for 5YSS was performed. The
5YSS category included patients
who either survived for longer
than 60 months or passed away
within five years of diagnosis.

5-YSS = 5-year survival status, BFPS = block filtering post-pruning search, ccRCC = clear cell renal cell carcinoma, CNN = convolutional neural network, LASSO = least absolute
shrinkage and selection operator, lmQCM = local maximum quasi-clique merging, ML = machine learning, N.A. = not applicable, SVM = support vector machine.
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6. Future Perspectives

According to currently available data, AI and ML in RCC pathology (‘pathomics’)
hold promise for the future, as they might help us to overcome several problems in classic
histopathology, such as intra- and inter-observer variability and time consumption. Cur-
rently, several AI methods can be reliable in RCC diagnosis and, on some occasions, appear
capable of predicting clinical outcomes in a few seconds. This capability could be of great
help for pathologists in times in which the incidence of RCC is still rising. However, this
exciting field is still relatively new and not without teething troubles, both in general and
specifically within the realm of RCC [128,129].

In this review, we reported on the excellent results achieved using AI in several tasks,
like staging and grading. Supervised learning methods efficiently perform these tasks
but cannot be visually authenticated. In simple terms, the machine generates an answer
(i.e., low or high grade or subtype) according to its learned algorithms, which humans
cannot survey. These algorithms are often referred to as black box algorithms [130]. This
problem makes them prone to doubt by the pathology community, as the pathologist must
have faith in the findings before approving and discussing a report in multidisciplinary
meetings [131]. One possible solution might be creating tools that bring transparency to
non-linear machine learning techniques. For instance, gradient-weighted class activation
mapping (grad-CAM) is a tool that can overlay images and heatmaps to improve visual-
ization of the cell type or region in which the informative features were expressed [132].
Another possible solution can be “searching and matching”, instead of “classifying” in
an unsupervised fashion, which the group of Faust et al. used for RCC diagnosis [74].
With unsupervised learning, computers can search and cluster images with matching
features in a dataset without labeling the data, which can be labor-intensive and potentially
biased [133]. This method more or less resembles the current workflow, as pathologists
often use atlases to compare images found in the specimen to judge if they match certain
previously described conditions. Alternatively, asking other experts for a second opinion
may be useful. However, this approach does not exclude the intervention of human experts
since a pathologist still needs to inspect and interpret the images visually.

Another possible drawback of computational pathology is the current lack of gener-
alization due to potentially biased inputs used in the training processes of models. For
example, using cross-validation, ML models are validated using a set different from the
training set, which can lead to biased evaluation if the input data are biased. Therefore, a rec-
ommended step before model training is to always check for any potential sample bias and
assess whether there may be any issues related to sample size [134,135], heterogeneity [136],
noise [137], and confounding factors [138].

Moreover, supposing the data are derived from one pathology laboratory, the algo-
rithm may only be able to account for some variations and artifacts arising from different
institutions. For example, the color distribution of WSIs varies across different pathology
laboratories due to the staining process.

Once the data are adequately processed, the model is trained using the training set,
and its performance is evaluated using the validation set. The so-called ‘overfitting’ can
occur when a model is so finely tuned to a particular dataset that it fails to generalize well
to new and unseen data. Overfitting is akin to memorizing answers to a test rather than
understanding the material. Once the training process is complete, the final performance of
the model is evaluated using the test set, which contains data that the model has not seen
before that moment. This final evaluation estimates the model’s performance using new
and unseen data [139]. But, if the model is overfitting, it can still perform well if the data
are derived from the same laboratory.

This approach leads to inter-center variability that impacts the accuracy of machine
learning algorithms used to automatically analyze WSIs. This issue affects state-of-the-art
CNN-based algorithms, which often exhibit reduced performance when applied to images
from a different center than that on which they were trained [22,23,140,141]. Therefore,
a global standard for tissue processing, staining, slide preparation in surgical pathology,
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and even digital acquisition would be greatly helpful [142]. Existing solutions to reduce
generalization error in this setting can be categorized into stain color augmentation and
stain color normalization, with ML-based methods that perform stain color normalization
using a neural network being proposed [143]. One of the most effective methods to mitigate
overfitting is external validation, which involves testing the method on a group of new
patients distinct from the initial set, thus assessing the model’s generalization ability [20].

The critical evidence for generalizability would be introducing external validation.
Any features selected based on idiosyncrasies in the original training data, such as technical
or sampling biases, would likely not function properly. As a result, adequate performance
while using a reasonably extensive external validation set is seen as evidence of a model’s
generalizability (Figures 1 and 2) [144].
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Figure 1. Pathway for the development of pathomics algorithms. After the sample is via by surgical
resection or biopsy, the WSI is created and derived patches utilized through a digital scanner to
train the algorithm to define diagnostic, prognostic, or predictive models. Supervised learning-based
algorithms could carry the “black box” issue (see Section 6).

Additionally, it is important to note that, as stated above, radiomics showed promising
results in different tasks, in particular in diagnosing and subtyping tasks. Many studies
used histopathology results as the reference standard to evaluate the radiomic model [145].
Over the past decade, computational pathology research experienced a shift in focus.
Initially, the aim of research was to replicate the diagnostic process already conducted by
pathologists. However, the most recent literature witnessed a move towards uncovering
and exploring “sub-visual” prognostic image cues derived from histopathological images.
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Radiomics involves the extraction of computational features that quantify tissue
heterogeneity at the macroscopic level by leveraging ML. In contrast, pathomics focuses
on providing quantitative information at the micro scale. The fusion of radiomics and
pathomics can offer, in the future, an opportunity to combine tumor heterogeneity at
both the macro and micro scales, potentially enhancing the integrated signature through
complementary insights [146].

To conclude, AI is a promising tool that remains under investigation in relation to the
diagnosis, grading, prognosis assessment, and treatment of kidney neoplasms. Results
of new AI algorithms are encouraging since they are either on par with or outperform
current state-of-the-art methods. However, most available technologies are currently
unavailable for widespread clinical use, and further evidence is needed regarding their
efficacy. Therefore, further advancements in this exciting field are eagerly awaited [23].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13132294/s1, Table S1: AI models datasets for diagnosis
and subtyping; Table S2: AI models datasets for grading; Table S3: AI methods datasets for prog-
nostic models; Table S4: AI models datasets for molecular morphologic connection and therapy
response predictions.
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Abbreviations

AI artificial intelligence
AUC area under curve
BFPS block filtering post-pruning search
ccpRCC clear cell papillary renal cell carcinoma
ccRCC clear cell renal cell carcinoma
chRCC chromophobe renal cell carcinoma
CNA copy number alteration
CNN convolutional neural network
CT computed tomography
DAG-SVM Directed Acyclic Graph Support Vector Machine
DCNN deep convoluted neural network
DFS disease free survival
DL deep learning
DNN deep neural network
EGFR Epidermal growth factor receptor
FCNN fully-connected neural network
grad-CAM gradient-weighted class activation mapping
IMDC International Metastatic Renal Cell Carcinoma Database Consortium
KRAS V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
LASSO Least Absolute Shrinkage and Selection Operator
lmQCM local maximum quasi-clique merging
ML machine learning
mRCC metastatic renal cell carcinoma
MRI magnetic resonance imaging
MSKCC Memorial Sloan Kettering Cancer Center
N.A. not applicable
NP normal parenchyma
NT normal tissue
OS overall survival
PFS Progression-free survival
pRCC papillary renal cell carcinoma
RCC renal cell carcinoma
ResNet residual neural network architecture
RMB renal mass biopsy
RO renal oncocytoma
SVM support vector machine
TCGA The Cancer Genome Atlas
TKI Tyrosine kinase inhibitors
UISS UCLA Integrated Staging System for renal cell carcinoma
VEGFR-TKI VEGF receptor-tyrosine kinase inhibitors
VHL Von-Hippel-Lindau tumor suppressor
WSI whole slide imaging
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