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Abstract: Adaptive optics provides improved resolution in ophthalmic imaging when retinal mi-
crostructures need to be identified, counted, and mapped. In general, multiple images are averaged
to improve the signal-to-noise ratio or analyzed for temporal dynamics. Image registration by cross-
correlation is straightforward for small patches; however, larger images require more sophisticated
registration techniques. Strip-based registration has been used successfully for photoreceptor mosaic
alignment in small patches; however, if the deformations along strips are not simple displacements,
averaging can degrade the final image. We have applied a non-rigid registration technique that im-
proves the quality of processed images for mapping cones over large image patches. In this approach,
correction of local deformations compensates for local image stretching, compressing, bending, and
twisting due to a number of causes. The main result of this procedure is improved definition of
retinal microstructures that can be better identified and segmented. Derived metrics such as cone
density, wall-to-lumen ratio, and quantification of structural modification of blood vessel walls have
diagnostic value in many retinal diseases, including diabetic retinopathy and age-related macular
degeneration, and their improved evaluations may facilitate early diagnostics of retinal diseases.

Keywords: adaptive optics; retinal disease; scanning laser ophthalmoscopy

1. Introduction

Adaptive optics (AO) has been applied to ophthalmologic imaging to enhance the
resolution for in vivo imaging at the cellular level [1–4]. The building blocks of retinal
microstructures such as cone and rod photoreceptors, retinal pigment epithelial (RPE) cells,
blood cells, and microvasculature need to be accurately identified, counted, segmented,
and mapped for diagnostic purposes. In general, multiple images are acquired at the
same location and are registered. The registered image stacks can then be averaged to
improve the signal-to-noise (SNR) ratio or analyzed to reveal temporal dynamics. For small
patches of the order of half a degree, image registration is relatively easy using simple
cross-correlations. However, as the image size increases to 1–2◦ in flying-spot scanning
laser ophthalmoscopy (SLO) [5,6] and even more to 3.5 × 5◦, as in line-scanning retinal
imagers [7], more sophisticated image registration techniques are needed to remove image
distortions and motion artifacts. Hardware image stabilization [8–13] has been developed
and proved to be sufficiently good that simple software routines that could align and blend
the recorded images. Concomitantly, a software version, strip-based registration [14–16] has
been developed, based on the assumption that deformations along the strip are relatively
negligible due to the high speed of scanning with resonant scanners while torsional motion
is neglected altogether. Yet, the living eye is not a rigid sphere, and imaged fields are neither
flat nor insensitive to changing optical/geometrical perspectives that accompany motion;
rather, the eye is a fluid-filled organ subjected to physical (and thus optical) distortions, as
it is periodically pumped with blood and intermittently pulled by muscles. It is reasonable
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to expect microns of deformations in all directions over 0.5–1.5 mm field sizes, not only
orthogonal to or along the strip. If the deformation from one end of the strip to the other
is comparable to the cone size, strip-based registration will blur out the cones instead of
providing the hoped for improvement in image analysis [17]. To correct for similar types of
local deformations, non-rigid registration methods have been successfully used in medical
imaging [18–23]. In retinal imaging in particular, non-rigid registration techniques have
been used to improve visualization of retinal capillaries using speckle-variance optical
coherence tomography (OCTA) [24] or AO scanning laser ophthalmoscopy [25]. We propose
here the use of a non-rigid registration method to register stacks of high-resolution retinal
images to improve the quality of the final average image. Our procedure illustrated here
on cone images can be applied for images of other retinal microstructures as well.

2. Materials and Methods
2.1. The Imaging System and Procedure

The multimodal AO retinal imager (MAORI) used here has been described previ-
ously [5,13]. It included both AO-corrected SLO and optical coherence tomography (OCT)
imaging channels that shared a common galvanometer for vertical (slow) scanning and
acquiring perfectly registered images simultaneously. MAORI uses broadband (40–60 nm)
superluminescent diodes (SLD) for SLO (at 760 nm) and OCT (at 850 nm). It has been
designed for a 7.5 mm beam diameter at the eye pupil that provides ~2.5 µm lateral res-
olution in a normal human eye in both AO-SLO and AO-OCT images. The SLO images
(1000 × 1024 pixels) discussed in this paper were acquired at 28 Hz frame rate. Square
SLO images with a size adjustable from 0.5 to 3 degrees (in high-resolution mode) can be
positioned anywhere within the field of view of the instrument (fixation target) covering
~33 degrees. Additional features of MAORI include an auxiliary LSO imager for global
orientation, two pupil configurations for a variety of subject species (including humans,
large primates, and small animals), pupil camera, high-speed GPU processing of OCT and
WS images, and a LCD-based fixation target. MAORI is a powerful research and clinical
platform for high resolution imaging of cells and fine structure in the retina.

2.2. Human Subjects and Imaging Procedure

The multimodal AO retinal imager was tested at Boston Children’s Hospital. A
human subject protocol was approved by Boston Children’s Hospital IRB prior to imaging,
and all subjects gave informed consent to be imaged. Some of the subjects with small
pupils were dilated to enhance the AO correction. The imaging sessions followed a set
protocol, including several scans with varied sizes and at different eccentricities. The
data analyzed in this paper were obtained from three normal volunteers, A—23-year-
old female; B—38-year-old male; and C—19-year-old female, and are shown here for
illustration purposes only.

2.3. Deformations

Images were acquired at 28 frames per second. The fast scan for the SLO images
was generated with a resonant scanner (14.5 kHz). Either a nonlinear pixel clock or
post-processing in software [26–28] was needed to properly dewarp the image. Software
dewarping assumed that the resonant scanner followed a sinusoidal law of motion that
was properly calibrated and was well known with respect to the image. Any error here
would result in varying pixel spacing occurring laterally across the image, and when a
certain structure of the retina showed up in different parts of different frames it looked
like it changed size. In addition, motion artifacts responsible for image deformations
included fast eye saccades that generated intra-frame distortions. Electronic noise and
optical distortions also affected the image. Jitter in the line trigger when acquiring the
SLO image and noise or non-linearity in the slow scan in addition to errors in dewarping
generated small local distortions that needed to be eliminated when averaging multiple
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frames that were acquired tens of milliseconds to several seconds apart. Simple, rigid
overlap would add blur to the average image.

Blood flow in capillaries above the photoreceptor layer distorted the image of the cones.
In general, capillaries filled with red blood cells cast shadows that hide cones underneath,
whereas, occasionally, white blood cells act as moving magnifying glasses, causing the
cones underneath to become visible. These events also create local distortions wherein the
apparent distance between cones on opposite sides of the capillary changes; the reverse
effect, where cones are mostly visible, and a moving shadow transiently hides cones, is
also occasionally observed. Figure 1 shows two consecutive frames from an image stack
distorted differently by a blood cell flowing through a capillary. The right side of Figure 1
shows the overlap of the two patterns of cones circled in the two frames. Clear motion in
different directions can be observed; this is also illustrated in frames 3–5 of Video S1.
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Figure 1. Two consecutive frames in an image stack (See Video S1) with a few cones encircled. The
two cone patterns are overlapped on the right side (left image—blue, right image—red), illustrating
different displacements. Volunteer A. Image size—120 µm; eccentricity—0.16 mm nasal.

2.4. Preliminary Steps of Image Processing

Assuming that the dewarping was performed either in hardware or as a pre-processing
software step, the first step in post-processing was to analyze the images to automatically
select the best images and to eliminate the most distorted frames (due to blinks, saccades,
intra-frame eye motion). All images were filtered to improve their contrasts and remove
background intensity variations. A Discrete Fourier Transform (DFT) filtering procedure
was used, in which a disk mask was applied to keep the ring associated with the photore-
ceptors. The DC was removed as well by filtering out the center peak of the DFT. All the
steps of image processing are illustrated in the Figure 2 flowchart.

The next step was to find the best frame in the data set, a reference frame, which
would serve as a template to which all the other frames would be aligned to. This was
performed based mostly on the width of the cross-correlations of pairs of images. Similar
images typically had high and sharp cross-correlation peaks, whereas dissimilar images
had low and broad cross-correlation peaks. A cross-correlation of 2D images was a 2D
image. The peak of the cross-correlation indicated the best overlap of the two images and
had a more or less conical shape. In that sense, we calculated W as the diameter of the
circular section through the peak going down from the apex (maximum) to 90% of the apex
height. The peak location provided the x/y shifts of one image with respect to the other
one. W used here as a measure of the sharpness of the cross-correlation peak was relatively
insensitive to intensity variations between frames and was mostly related to the similarities
of the structures contained in the overlapping regions of the two frames. W was calculated
for all pair combinations in an image stack, and the mean value was obtained for each
image, given all correlations between that specific image and all the other images in the set.
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The image with the lowest mean was selected as the reference frame since it had the best
similarity with the most frames in the dataset.
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Another problem that affected the image quality was the focus variations across a
dataset. As AO is a dynamic process, and the eye accommodation might not always be
paralyzed during imaging, the image sharpness varies among images in a dataset acquired
in a clinic. Automatic selection of the sharpest images to be averaged was desirable, and,
certainly, the template for alignment should be among the sharpest images in the stack.
Brenner gradient (BG) [29,30] was used here as a figure of merit to select the sharpest
images and to ensure that the reference frame selected based on W is among the sharpest
images in the set. The threshold (thr_w) for W was set as the mean plus one standard
deviation (std_w) for the W values obtained by cross-correlating the reference frame with
the entire stack, and the frames with W > thr_w were considered distorted. Additionally,
frames with BGs smaller than 75% of the reference frame’s BG were considered too blurred.
The combination of distorted and blurred constituted the invalid frames to be eliminated
from the alignment and average process.

The purpose up to here was to eliminate the most distorted frames and Keep the most
similar Images to be aligned and averaged. One caveat was that the threshold criteria
described above would sometimes eliminate more images than needed. For example, for
a stable eye with few motion artifacts, most images were quite similar, and the standard
deviations were quite narrow. Therefore, images with small distortions would be eliminated
since their metrics fell less than one std away from the mean of the set. We preferred to
err on the side of eliminating more images than needed to ensure that the algorithm
worked unassisted on a large range of real patient data and not only on the best fixators.
In any event, the best quality image sequences needed relatively few images to produce
high-quality averages.

2.5. Non-Rigid Registration

The images in a stack that needed to be registered were generally acquired several
tens of milliseconds to several seconds apart. As intra-frame distortions were evident, it
was reasonable to expect inter-frame distortions as well. Strip-based registration could not
account for deformations of the type illustrated schematically in the top of Figure 3. Stretch,
contraction, or gradient along the strip; rotation and bend of the strip; and combinations of
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these deformations could occur. To compensate for these local deformations, we applied a
non-rigid image registration technique [31] that improved the quality of the processed im-
ages for mapping cones. By using local grid deformations, non-rigid registration accounted
for stretching and compressing in different directions in different parts of the image from
frame to frame. The method was based on polynomial expansion to approximate the
local signal, in which the coefficients were obtained through a weighted least square fit
performed iteratively. The deformation field was accumulated at each iteration, and an
example is shown in Video S2. The difference between the reference frame and a new
image is shown in the right panel of Video S2, illustrating the cone displacement as black
and white patterns, like shadows whose orientations indicated the directions of relative
motion. Perfect overlap of a pixel between frames shows as gray. As the new image is
subtracted from the reference frame, the black spots illustrate the positions of cones in the
new image moving towards the white spots that illustrate the positions of the cones in
the reference frame. The accumulated displacements over all iterations for three pairs of
images are illustrated as quiver/velocity plots (MATLAB) in the bottom panel of Figure 3.
These examples clearly demonstrate the need for local correction of the deformations that
occur between a reference image and the subsequent images.
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Figure 3. (Top)—examples of possible deformations of strips (top-to-bottom): stretching, com-
pression, gradient, rotation, and bending; (bottom)—examples of local displacement for non-rigid
registration of pairs of frames clearly illustrating individual deformation types.

Figure 4 shows two examples of the deformation field (left) and the difference image
between the reference frame and the new frame for rigid (center—DR) vs. non-rigid (right—DNR)
registration. The associated media (Videos S3 and S4) illustrated a large range of local
deformations, some of which could have been corrected with a strip-based registration
algorithm. However, many frames included deformation types (as illustrated in Figure 3)
that required non-rigid registration. The center image (difference between the reference
frame and a new image) shows cone displacements in different directions, whereas the
cones are better aligned, and the difference image is much more uniform, in the right
image (difference between the reference frame and non-rigid deformed new image). For
the rigid registration (center), simple 2D cross-correlation was used to determine the lateral
shift between the images, whereas the non-rigid registration was applied in the overlap
region following the rigid alignment of the new image. In both examples in Figure 4,
these images illustrate the improvement in uniformity across the whole frame provided by
non-rigid registration.
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Figure 4. Two examples of the motion field (left), difference image between two registered frames
using rigid (center) and non-rigid (right) registration (See Videos S3 and S4). Volunteer B.

The non-rigid registration might fail in some parts of the image. Sometimes, the DR
image shows a black spot (new frame) in between two white spots (reference frame), mainly
at the edge of the overlap region. The algorithm gets confused as to which direction to move
the black spot and fails to properly register the new frame. In addition, the registration
fails if the local displacement is too large. In these regions where registration fails, the
image difference (DNR) has large values, whereas the image difference has small values in
regions where the registration is good. These differences can be estimated either with a
local standard deviation filter or a simple rectification filter defined as a local mean of the
absolute value of the difference image (A = abs(DNR)). The second option is significantly
faster in MATLAB than the first one. One can set a threshold for how good the registration
is as mean(A) + std(A) and filter out the regions that do not register well (the examples
in Figure 4 are shown without such filtering). The expectation is that each region of the
reference frame will have enough frames that will average well to provide the image
quality improvement.

3. Results

Figure 5 shows the result of non-rigid registration of 32 frames selected from a stack
of 64 frames, as described above, capturing a 1.5 × 1.5◦ field. The image with the best
overall W in the stack was selected as the reference frame (Figure 5A). All other images
were registered to this frame. Figure 5B shows the filtered reference frame. Figure 5C is the
average image obtained using rigid registration only, and Figure 5D is the average image
after non-rigid registration. Compared to the reference frame, rigid registration produces
a blurred image, whereas non-rigid registration generates an image with significantly
improved cone definition.
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Figure 5. Reference frame (A), filtered image (B), and average image for a stack of 32 frames (out
of 64) using rigid registration (C) and non-rigid registration (D). Volunteer C. Image size—442 µm,
eccentricity—0.22 mm nasal/inferior. Regions 1 to 4 shown magnified in Figure 6.

Figure 6 shows a magnified version of the four areas delineated in Figure 5 by the
four white squares. The center column of Figure 6 shows the rigid registered average,
the right column is the non-rigid registered average, whereas the left column shows the
corresponding area in the reference frame (areas 1 to 4 shown top to bottom). Cones that
are not visible in the reference frame are nicely defined and can be easily counted and
mapped in the non-rigid average image.

The cone mosaic is much more distinguishable; the cones are rounder, easier to identify
and count, and even foveal cones become identifiable. A cone-counting algorithm has a
much better chance to identify and count these cones compared to analyzing individual
images. However, it should be noted here that non-rigid registration does not improve
errors in the AO corrections. Dewarping artifacts are still visible in the left column of
Figure 6.
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Figure 6. Reference frame (left), average image using rigid registration (center), and non-rigid
registration (right) for the four regions delineated in Figure 5 (1 to 4 from top to bottom). Image
size—88 µm. Eccentricity 0.12 mm, 0.27 mm, 0.29 mm, and 0.49 mm for 1 to 4, respectively.

The averaging results for the data shown in Figure 4 are illustrated in Figure 7. The
top line (B1) in Figure 7 corresponds to the top data in Figure 4, whereas the center line
(B2) in Figure 7 illustrates the results for the bottom data in Figure 4. The bottom line (C)
in Figure 7 is from a different scan for the same volunteer analyzed in Figures 5 and 6.
The left column in Figure 7 shows the reference frame, the center column is the rigid
registration average, and the right column is the non-rigid registration average image. The
definition of the cones is clearly improved, and cones that are not visible in the reference
frame become visible and nicely defined in the final non-rigid registration average image.
The rigid registration average exhibits significant blurring. Clearly, different scans are



Diagnostics 2023, 13, 2285 9 of 13

affected differently by motion artifacts, and the final rigid registration average exhibits
different levels of blurriness. Subjectively, in the center column of Figure 7, the top image
shows less degradation as compared to the center image, whereas the bottom image is
definitely unusable. However, in all cases, non-rigid registration undoubtedly provides
clear improvement in cone definition and mosaic illustration.
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Figure 7. Examples of the reference frame (left column), rigid (center column), and non-rigid (right
column) registration average. Volunteer B (B1 top, B2 center) and C (bottom). Image size: B1 and B2—
293 µm, C—442 µm. Eccentricity: B1—0.15 mm temporal/superior, B2—1.4 mm temporal/superior,
C—0.22 mm temporal/inferior.

4. Discussion

Stable eyes with relatively few small distortions in the acquired images are ideal;
however, the reality in the clinic is different. Real data exhibit blinks, saccades, drifts, losses
of fixation, focus changes, intensity variations among or within frames, or combinations
of these effects. Repeating the scan is not always an option and does not always solve
the problem; therefore, attempts need to be made to extract useful information from the
available data. One of the most challenging tasks is to automatically identify and remove
distorted frames.

There are many reasons for the complex deformations discussed here. A spectrum
of eye motions from saccades to drifts and fixation losses contribute to both intra-frame
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and inter-frame distortions. There are also opto-mechanical influences due to the non-
rigid construction of the eye, periodically pumped with blood in pressurized vessels and
pulled by a set of powerful muscles that can induce dynamics in the globe and local
distortions in the photoreceptor layer. Electronic noise, trigger noise, and galvanometer
instabilities add local deformations in the recorded images. The images of the cone mosaic
become distorted and need to be corrected to achieve optimal registration. The algorithm
described here was designed to work automatically and unassisted on a large set of patient
data. Distorted frames are automatically removed from the data set, using parameters
(thresholds) calculated based on the dataset using means and standard deviations. A
reference frame is selected automatically based on its similarity to the other frames and
the image’s sharpness; all other frames are registered to it. Rigid registration through
cross-correlation provides the initial alignment of the main features. Non-rigid registration
then corrects the local deformations of the images to provide proper registration of the
microscopic features like cone photoreceptors or capillaries. The final blending of the
registered stack of images shows clear improvement over rigid registration, also correcting
for a large range of distortions not accounted for in strip-based registration algorithms.
Cones not visible in individual images or blurred with rigid registration become clearly
visible with non-rigid registration and have a better chance to be counted and mapped by
automatic cone-counting algorithms.

The process runs unsupervised on any number of scans acquired in the clinic on a
wide range of healthy or diseased eyes. Some of the thresholds (the 90% peak height for
W, or 75% for BG) were set empirically based on the algorithm’s performance on a large
number of clinically relevant scans, whereas other thresholds were set based on means and
standard deviations within the processed stack’s images. The automatic selection of the
most similar images, elimination of the most distorted ones, as well as automatic selection
of the reference frame enable efficient processing of multiple scans for a complete analysis
of an imaging session. An additional routine has been developed that allows an expert
grader to manually select the desired frames. This feature is valuable if the subject switched
fixation between two relatively stable fixation positions during the acquisition of an image
stack, and the algorithm selected one reference frame for the location with the most similar
frames. The other location might also have valuable retinal information, and the grader
has the option to manually select and average those frames.

The images shown here illustrated non-rigid registration improvements in photore-
ceptor imaging. Equally important, the method has been applied to offset aperture/split
detection images [32] that visualized capillary networks and the cellular details of blood
vessel walls. Improved definition of cellular details provided by non-rigid registration
enabled segmentation of these structures and quantification of characteristic geometrical
parameters. The lumen diameters and the wall thicknesses of blood vessels could be
evaluated, and local malformations such as thinning or thickening of the vessel wall could
be measured and monitored longitudinally. Local wall thinning could be an indication
of potential wall rupture with damaging effects on vision. The wall-to-lumen ratio has
diagnostic value for diseases that have vascular consequences and has been investigated
for a long time in retinal imaging, however, without the cellular resolution afforded by AO.

The automatic co-registration of the SLO and OCT images provides an additional ad-
vantage for image registration: the two images are orthogonal to each other and, therefore,
3D registration could be possible for the SLO and OCT images, a feature that is missing in
AO-SLO- or AO-OCT-only imagers. To obtain 3D OCT rasters, the image pair SLO/OCT
was scanned laterally (perpendicular to the B-scan), and there was significant overlap
between consecutive SLO images. Alignment of the SLO images could the necessary
correction for proper en face placement of the OCT images, whereas the axial alignment
of the OCT images could offer the correction for axial motion that could be used for the
analysis of the SLO stack. While the SLO alignment was not used here for OCT correction,
and the OCT information was not used for SLO alignment in this paper, the simultaneous
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acquisition of the OCT and SLO images represents a unique feature of MAORI that may
enable cross-modal 3D registration.

5. Conclusions

Simple cross-correlation provides the necessary shift for rigid registration of high-
resolution retinal images. However, that is not sufficient for averaging the images shown
here. Images were aligned and averaged using rigid registration, and the result was a
blurred image. In the past, we have used strip-based registration [7] to improve the final
average image, as compared to simple full-frame rigid registration. However, we soon
came to realize that strip-based registration did not work satisfactorily over a wide range
of real patient data for the reasons explained in this paper. Therefore, a new type of cor-
rection for high-resolution retinal images based on non-rigid registration that accounted
for local distortions in the recorded images was introduced here. Distortions included
local image stretching, compressing, bending, and twisting due to a number of causes.
The final average image showed significant improvement in the definition of cone pho-
toreceptors, as compared to individual images and rigid registration performed by simple
cross-correlation.

The non-rigid image registration procedure described here provided improved def-
inition of retinal microstructures that were visible in the high-resolution retinal images,
such as cones, rods, capillary networks, aneurysms, microglia, macrophages, hyalocytes,
mural cells, endothelial cells, perycites, ganglion cells, lipid deposits, scar tissues, exu-
dates, and thrombi. The average image obtained with a non-rigid registration of a stack of
images could be properly segmented to enable the quantification of geometrical character-
istics such as thickness, diameter, volume, or density that have diagnostic value in many
retinal diseases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/diagnostics13132285/s1, Video S1: Image stack; Video S2: Non-
rigid registration iterations; Video S3: Deformation field, rigid/nonrigid registration; Video S4:
Deformation field, rigid/nonrigid registration.
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