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Abstract: In recent years, the prevalence of coronary artery disease (CAD) has become one of the
leading causes of death around the world. Accurate stenosis detection of coronary arteries is crucial
for timely treatment. Cardiologists use visual estimations when reading coronary angiography
images to diagnose stenosis. As a result, they face various challenges which include high workloads,
long processing times and human error. Computer-aided segmentation and classification of coronary
arteries, as to whether stenosis is present or not, significantly reduces the workload of cardiologists
and human errors caused by manual processes. Moreover, deep learning techniques have been
shown to aid medical experts in diagnosing diseases using biomedical imaging. Thus, this study
proposes the use of automatic segmentation of coronary arteries using U-Net, ResUNet-a, UNet++,
models and classification using DenseNet201, EfficientNet-B0, Mobilenet-v2, ResNet101 and Xception
models. In the case of segmentation, the comparative analysis of the three models has shown that
U-Net achieved the highest score with a 0.8467 Dice score and 0.7454 Jaccard Index in comparison
with UNet++ and ResUnet-a. Evaluation of the classification model’s performances has shown that
DenseNet201 performed better than other pretrained models with 0.9000 accuracy, 0.9833 specificity,
0.9556 PPV, 0.7746 Cohen’s Kappa and 0.9694 Area Under the Curve (AUC).

Keywords: coronary artery disease (CAD); coronary arteries; angiography; U-Net; pretrained models

1. Introduction

Coronary Artery Disease (CAD) is one of the most common forms of cardiovascular
disease affecting the human population globally. CAD is the leading cause of death in both
developed and developing countries [1]. About 30% of all deaths worldwide are due to
cardiovascular disease. The disease is also considered one of the most frequent causes of
death in Europe on an annual basis [2].

The coronary arteries supply blood to the heart muscles. This is an important function
for the heart muscle and thus for the body. The Left Main Coronary Artery (LMCA) and the
Right Coronary Artery (RCA) are the primary types of coronary arteries. The LMCA carries
blood to the left part of the heart, whereas the RCA is mainly responsible for carrying blood
to the right side of the heart. LMCA is composed of two major branches. The Left Anterior
Descending artery (LAD) is one of the major branches of the LMCA that transports blood
to the left anterior side of the heart. Another branch of the LMCA is the Circumflex Artery
(Cx) which surrounds the heart muscle (myocardium). Through this artery, the outside and
the back part of the heart are supplied with blood [3,4].
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Most heart diseases are caused by atherosclerosis, which causes the arteries to narrow
or be blocked due to the build-up of plaque. CAD occurs when plaque (fatty deposits)
builds up, narrowing (stenosis) the passageway and interfering with the heart’s supply of
blood, oxygen, and other vital nutrients. Plaque build-up can block the coronary arteries
and prevent nutrients and oxygen from reaching the heart muscle, which can lead to
myocardial infraction (heart attacks) and sometimes death. When plaque is deposited on
the wall of a coronary artery, the lumen of that artery is affected. Therefore, it is noteworthy
that the diagnosis of stenosis can be made by measuring the lumen diameter with an
angiography imaging system [2,4]. The differences between normal and blocked arteries
are illustrated in Figure 1.
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1.1. Diagnosis and Treatment of CAD

Early diagnosis of CAD significantly reduces mortality and morbidity rates [5]. In
fact, for decades, CAD has been diagnosed and treated using interventional radiology
procedures or surgical operations [6].

One of these procedures is Invasive Coronary Angiography (ICA) uses a catheter,
and X-ray imaging and remains the “gold standard” for the diagnosis of coronary artery
stenosis [7,8]. The primary function of the catheters used in this imaging technique is to
monitor blood pressure in real-time. Blockage (occlusion) or stenosis in human arteries
can be detected with the help of X-rays in which a contrast material is injected through the
catheter [2]. ICA provides the cardiologist with information about the severity of luminal
stenosis and is also used to diagnose atherosclerotic disease. For example, angiography can
reveal calcifications, plaque ruptures severe lesions and luminal thrombosis [4].

In addition, ICA is a decision-making aid for revascularization treatments such as
stent placement and coronary artery bypass surgery [9].

1.2. Challenges

Cardiologists view frames in angiographic videos with their naked eyes during an-
giography procedures in order to evaluate various problems affecting blood vessels, such
as stenosis, plaque and blockage. Based on their experience, cardiologists can diagnose
the stenosis of coronary arteries and decide medical treatment options for CAD (i.e., stent
placement). However, this direct method, which requires more accuracy, objectivity, and
consistency, is heavily influenced by human factors [6].

On the other hand, automated segmentation of the cardiovascular system has been
reported to reduce the error rate in the diagnosis of stenosis. In fact, an image segmentation
method has already been proposed to extract blood vessels from images so that cardiologists
can quickly diagnose plaque and stenosis.

Recently, with the development of Deep Learning (DL), various Convolutional Neural
Network (CNN) architectures have been proposed and used for image segmentation [10].
CNNs are also typically used for feature extraction, image recognition, image formation,
and image-based rendering. These capabilities are essential elements of the technological
processes of clinical data acquisition and processing. In addition, image enhancement,



Diagnostics 2023, 13, 2274 3 of 24

image classification, and visual extraction techniques, including pattern classification,
have also become very popular. The accuracy and robustness of image enhancement can
also be measured using DL techniques [11]. The primary goal of using DL networks in
medical image analysis is to classify images into different classes or categories (such as
positive or negative, abnormal or normal, etc.). This involves analyzing the input images
and classifying the output in order to determine whether or not a particular disease is
present [12].

1.3. Contribution

The main research question of this study revolves around how segmentation and
classification models can help increase stenosis classification performance and thus relieve
the workload of cardiologists in Northern Cyprus hospitals. Consequently, the objective of
this study is tailored toward applying these models to the classification of patient images.

It is essential to mention that in this study, no artificial data were generated by data
augmentation. On the contrary, all images used were clinical images and none were synthe-
sized. Instead of developing a network from scratch, which requires a substantial amount
of data, pretrained models (based on transfer learning) are used only for classification tasks,
where learned parameters are transferred to solve a problem in another task. [13].

It is noteworthy to emphasize that the system proposed in this study is intended to aid
cardiologists in conducting an automated and accuracy-increased diagnosis of stenosis. In
the healthcare field, it is vital to minimize diagnostic errors. For this reason, decision accu-
racy can be significantly improved in the case that the experience and instinct of the doctors
are complemented with novel automated technologies, such as Artificial Intelligence (AI).
An automated diagnosis system can provide a second (additional) opinion/verification.
It should be noted that using such systems on their own can result in misdiagnosis in
problematic/rare cases since they do not have human-like instincts [6,11].

Thus, this study suggests automated diagnosis technologies be used in conjunction
with health professionals.

In this study, based on the U-Net model and its variants (ResUNet-a and UNet++),
we applied the DL approach to segment the major coronary arteries, including the RCA,
LMCA, LAD, and Cx. Finally, five different pretrained models are used to automatically
classify angiographic images with or without stenosis of the major coronary arteries. The
study’s main contributions are highlighted below:

• The application of UNet, Unet++ and ResUNet-a for the automatic segmentation of
coronary angiograms.

• Comparison of model’s performances for both segmentation and classification tasks.
• One of the major contributions of this study is the application of DL-based transferred

learning using several pretrained models (EfficientNet-B0, DenseNet201, Mobilenet-v2,
ResNet101 and Xception) for the classification of coronary angiograms.

• Comparison between the performance of models trained on the coronary artery small
datasets can aid cardiologists in the selection of the best-performing model and also
aid them in making appropriate decision-making.

• Another contribution of this study is the use of raw/unaltered data that are obtained
from real patients by the cardiology department of Near East University Hospital,
instead of using a dataset curated from an online repository system. We have noticed
that a significant number of images available from online repository systems have been
altered (i.e., cropped, rotated, and enlarged) to aid the segmentation and classification
performance of coronary arteries. However, this is not the case in clinical applications.

• Performance evaluation of models based on accuracy, sensitivity, specificity, precision,
Dice Score (F1 Score), Jaccard Index and Matthews correlation coefficient (MCC),
negative predictive value (NPV), Cohen’s kappa, Area Under Curve (AUC) and
Receiver Operating Characteristic (ROC) curve.
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1.4. Related Work

This section briefly reviews previous methods relevant to our work, including con-
ventional medical image segmentation of coronary arteries, DL-based segmentation, and
image classification and diagnosis of coronary stenosis.

Various methods have been proposed for the automatic segmentation of blood vessels
based on traditional techniques. The following methods are commonly used in image
processing: Filtering, thresholding, tracking-based and region growing. To illustrate, typical
filtering methods utilize Gaussian and Gabor filters to extract information about edges
iteratively [14]. Moreover, in tracking-based segmentation methods, seed points are selected
at vessel edges, and then tracking is conducted under the guidance of constraints derived
from the image. Tracking-based methods often create deformable models to capture the
shape variations of coronary vessels in angiogram sequences [15].

In addition, Kerkeni et al. [16] presented a multiscale region-growing method for
coronary artery segmentation. In line with this, a region-growing rule was developed that
is known to uniquely integrate vessel and directional information into the region-growing
approach. An iterative multiscale search is then performed based on this criterion. It is
important to note that the points selected in each step serve as seed cells for the next step.

Although these traditional image segmentation methods have improved the segmen-
tation of vessel structures in image analysis, they could be less efficient in clinical practice
due to the high computational complexity of pixel-by-pixel analysis. DL techniques using
CNNs have recently gained more attention in medical imaging due to their promising
results in vessel segmentation [17–21].

There are various CNN architectures that have been proposed for image segmentation.
The most commonly used architectures are U-Net and SegNet models. SegNet is a DL
semantic segmentation model that was originally developed for modeling scene segmentors
and pixel-wise classification layers. It is an efficient architecture, especially for road and
building image segmentation [22,23].

Zhao et al. [24] proposed a semantic segmentation algorithm to extract coronary
arteries and classify them into LCA, LAD and other types of arterial segments based on the
Support vector machine (SVM) algorithm using 225 angiography images. The result of the
study achieved the mean accuracy of multi-class artery classification was 70.33% and the
mean intersection over union for semantic segmentation of arteries was 0.6868 [24].

The U-Net model is considered the most successful architecture for medical image seg-
mentation competitions [25]. The U-Net model is a CNN that enables efficient segmentation
of biomedical data. Despite its relatively simple architecture and high accuracy in binary
segmentation problems, it is also used in many other areas [26]. In addition, CNNs are
used to detect specific features and to distinguish elements in the image according to their
context in the original image. Several applications of these algorithms have shown promis-
ing results, including medical image processing, image enhancement, classification, and
segmentation. Among the most common approaches with regard to CNNs are pretrained
neural networks. This technique is conducted in order to increase the accuracy rate while
significantly reducing the training time, which also increases the effectiveness of the CNN.
The result of this process is what is known as transfer learning [11,27]. Among the known
CNN models, GoogleLeNet is becoming increasingly popular due to its efficiency in visual
object classification and recognition. The AlexNet model became the most popular after
winning the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) competition in
2012, and future networks are typically compared to its achievements [28].

Ever since, several models have been developed and tested using ImageNet datasets.
Some of the models that achieved high accuracy scores include VGGNet, Inception, ResNet,
DenseNet, etc. In comparison with traditional machine learning (ML) models, DL models
can automatically learn features and patterns, and classify different types of images with
higher generalization. DL models have been shown to aid healthcare experts in terms of
classifying medical images of diseases such as different kinds of cancers, tuberculosis and
pneumonia [29].
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Furthermore, data augmentation is often used to expand the range of data available
to CNNs. For example, Antczak and Liberadzki [30] proposed that CNNs be used to
detect stenosis. The study utilized several data augmentation techniques in order to
increase the training sets using images acquired from online repositories. The developed
CNN model was capable of generating random (positive and negative) stenosis patches
with a Gaussian kernel. The performance evaluation of the model resulted in an overall
accuracy of 90% [30]. Gil-Rios, Miguel-Angel, and colleagues proposed the use of a
Support Vector Machine (SVM) for the detection of coronary stenosis from the Antczak and
Liberadzki image dataset as well as the dataset of the Mexican Social Security Institute. The
model performance yielded remarkable results [31]. Ovalle-Magallanes, Emmanuel, and
colleagues presented a method to automatically detect coronary artery stenosis based on
X-ray coronary angiograms. The images were trained using a pretrained CNN on a large
amount of data, including synthetic and clinical data. The results obtained demonstrated
the ability of pretrained networks in classifying coronary artery stenosis from coronary
angiography images [32].

The study conducted by Lee et al. [33] applied deep learning for the quantification
of Coronary Artery Calcium (CAC). The approach was designed according to ECG-gated
coronary CT angiography (CCTA) with reference to coronary calcium scoring CT (CSCT).
The data used in this retrospective study were acquired from 315 patients who underwent
both CCTA and CSCT. The patients were divided into two groups, 200 in the internal and
115 in the external validation tests. The outcome of the study has shown that the automated
algorithms were able to extract CACs in less than 300 s mean time with a 1.3% failure rate.
The model’s volume and Agatston scores have displayed high agreement with those from
CSCT with concordance correlation coefficients of 0.76–0.94 for external sets and 0.90–0.97
for external sets. In terms of the model classification performance, the study was able to
record 0.94 weighted kappa and 92% accuracy for the internal sets and 0.91 weighted kappa
and 86% accuracy for the external sets.

Jamil and Roy [34] proposed the application of DL models for the detection of Valvular
Heart Disease (VHD). The study employed a relatively simpler DL model in terms of net-
work structure and performance. In order to train and validate the model performance, the
study employed three different frameworks which include 1D and 2D Phonocardiography
(PCG) raw signals. The frameworks revolve around the use of linear prediction cepstral
coefficients (LPCC) and Mel frequency cepstral coefficients (MFCC) features for 1D PCG
signal while the second framework revolves around the use several deep convolutional
neural networks (D-CNNs) features for 2D PCG signals. The third framework revolves
around the application of nature/bio-inspired algorithms (NIA/BIA) which include two
algorithms namely, genetic algorithm (GA) and particle swarm optimization (PSO) for
efficient and automatic selection of raw PCG signals. In addition, a vision transformer (ViT)
was implemented in order to improve the performance of the classifiers. The evaluation of
DL-based algorithms and classifiers has shown that ViT achieved the best result with an
average accuracy of 99.90% and 99.95% F1-score.

Considering the fact that the manual approach for quantitatively assessing the stenosis
severity of coronary arteries is very tedious and is subject to the experience of cardiologists;
therefore, developing automatic quantitative coronary analysis (QCA) is crucial. In order
to address this concern, Liu et al. [35] proposed the application of artificial-intelligent-
based QCA also known as AI-QCA for the accurate and fast quantitative assessment of the
severity of stenosis. The framework is designed according to three main units which include
the boundary-aware segmentation on the coronary angiogram (CAG) images followed by
the construction of the coronary artery tree which is enabled by AI and lastly the diameter
fitting and detection of stenosis. The evaluation of the AI-QCA based on segmentation
resulted in a precision value of 0.866, recall of 0.897 and F1-score of 0.879 using 1322 CAGs.
A comparison of the diameter assessment of 249 CAGs between AI-QCA and senior experts
using Root Mean Square Error (RMSE) resulted in 0.064 and 0.765 Pearson coefficients.
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Moreover, the use of AI-QCA has been shown to reduce the operation time from tens of
minutes to a few seconds. The summary of the related work is presented in Table 1.

Table 1. Literature review table.

Reference Image Acquisition No. of Images Method Results

[14]
Cardiology Department of the

Mexican Social Security
Institute

130 coronary angiograms
Multiscale versions of
the Gaussian filter and

Gabor filter

ACC: 0.9698, Sens:
0.6364, Spec: 0.9880,

PPV: 0.7434, Dice
coefficient: 0.6857

[16]
Department of The University
Hospital Fattouma Bourguiba,

Monastir, Tunisia
50 coronary angiograms

Sato filter, Vessel
enhancing diffusion

filter, and Frangi filter
Multiscale region

growing

Mean precision: 82%,
First dataset of Dice
coefficient: 80 ± 5%,

second dataset of Dice
coefficient: 70 ± 5%

[18]
Asan Medical Center (Internal)

Chungnam National
University Hospital (External)

Internal:3302 coronary
angiograms, External:181

coronary angiograms

U-Net, ResNet101,
DenseNet121,

InceptionResNet-v2

Average F1 score: 0.917,
and 93.7% of the image

[19] University of Michigan
Hospital 462 coronary angiograms Convolutional neural

network, AngioNet

Dice score: 0.864, pixel
accuracy (PA):0.983,

Sens: 0.918, Spec:0.987

[20] Fuwai Central China
Cardiovascular Hospital

109 patient’s Coronary
angiogram

Threshold
segmentation,
Region-based

segmentation, PSPNet
with TL

ACC: 0.957
Sens: 0.865
Spec: 0.949

[21] Public Database 134 Coronary angiograms

CLAHE,
Multiresolution

strategy and multiscale
strategy with U-Net

ACC: 0.9765
Sens: 0.7978
Spec: 0.9885
PPV: 0.8137

Dice coefficient: 0.7905

[31]

Mexican Social Security
Institute (First dataset),

Antczak and Liberadzki
dataset (second dataset)

First dataset: 180 coronary
angiograms (500 patches)

Second dataset: 250
coronary angiograms

SVM-based classifier,
UDMA

First database ACC:
0.89 and Jaccard Index:

0.80, and the second
database, ACC: 0.88
Jaccard Index. 0.79

[32] Antczak and Liberadzki
dataset (public)

10,000 synthetic images
and 250 real coronary
angiograms images

Pretrained (VGG16,
ResNet50, and

Inception-v3 with
Transfer Learning

ACC: 0.95, Precis: 0.93,
Sens: 0.98, Spec: 0.92,

and F1 score: 0.95

ACC: Accuracy, Sens: Sensitivity, Spec: Specificity, PPV: Positive predictive value, Precis: Precision, F1 score:
harmonic mean of PPV (precision) and sensitivity (recall), Contrast Limited Adaptive Histogram Equalization
(CLACHE), Pyramid Scene Parsing Network (PSPNet), Transfer Learning (TL), Univariate Marginal Distribution
Algorithm (UMDA).

2. Methodology

The proposed system of this study contains two main stages. The first stage consists
of image pre-processing and segmentation and the second stage is comprised of image
classification. The dataset is evaluated based on K-fold cross-validation set. In the first
stage, U-Net, ResUNet-a, and UNet++, models are used to segment the coronary arteries.
In the second stage, the coronary arteries are classified using five different pretrained
models according to the presence of stenosis based on the original images of the patients.
These pretrained models are evaluated using five-fold cross-validation. DenseNet201,
EfficientNet-B0, Mobilenet-v2, and ResNet101 models adjust the input size of the RGB
images to 224 × 224 × 3, whereas for the Xception model, the input images are resized to
229 × 229 × 3. The block diagram of the proposed system is presented in Figure 2.
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2.1. Dataset Description

The dataset used in this study consisted of 170 coronary angiograms from 22 patients,
including 68 narrowed (with stenosis) and 102 normal (without stenosis), acquired using
the GE (General Electric) Innova 3100 Cath/Angio System (Angiography machine) at the
Department of Cardiology, Near East University Hospital, Nicosia, TRNC. Image examples
of coronary arteries with and without stenosis are shown in Figure 3. Patient data were col-
lected with the approval of the hospital management ethics committee. Data collection took
place between October 2020 and February 2020. Data collection was conducted according
to the university’s ethical guidelines. The images captured by the medical imaging device
used in this study were in Digital Imaging and Communications in Medicine (DICOM)
format with a size of 512 × 512 in an RGB color model. In addition, the medical images
were converted to PNG format. First, the labels for all images were created manually for
segmentation by a board-certified cardiologist. Then, the catheter was marked with the
major coronary arteries in the images.

In this study, a cardiologist and an angiography technician from the Near East Univer-
sity Hospital analyzed the images using Syngo QCA clinical software. Catheter calibration
was used as the reference standard to analyze the QCA (Quantitative coronary angiogra-
phy). It should be mentioned that the QCA is one of the most commonly used tools in
clinical practice to assess coronary artery stenosis. The QCA was developed to objectively
measure the lumen diameter of the coronary artery [36].

The scale currently proposed by the Society of Cardiovascular Computed Tomography
for grading the severity of stenosis is used to rate the grade according to a standardized
reporting system for patients with coronary Computed Tomography Angiography (CTA)
images. The percentage of narrowing of the luminal diameter of the coronary arteries
can be classified according to specific grades. According to the Coronary Artery Disease
Reporting and Data System (CAD-RADS) [37], if there is “no visible stenosis,” the stenosis
of the coronary arteries is classified as 0%. If the percentage of narrowing of the coronary
artery is 1–24%, it is called minimal stenosis or plaque with no stenosis. It is called mild
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stenosis if the rate is 25–49%. If the percentage of stenosis is 50–69%, it is called “moderate”;
if there is “severe stenosis,” the narrowing of the coronary arteries is categorized as 70–99%,
and if the degree of narrowing (stenosis) is 100%, it is called “occluded”. The dataset
used in this study was classified as coronary arteries without stenosis between 0% and
24%. Coronary arteries, with more than 24%, were classified as stenosis. Figure 4 shows
an example of a coronary artery with stenosis and without stenosis from a QCA analysis
performed at Near East University Hospital.
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2.2. Image Pre-Processing

Image pre-processing was used in this study to prepare images before coronary artery
segmentation. First, the images in the dataset were converted from RGB to grayscale. In
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addition, the images were resized to 256 × 256 to meet memory requirements by reducing
training time.

2.3. Cross Validation

Cross-validation is a popular technique used in AI to select parameters and evaluate
learning parameters and predictive performance. In this technique, the original sample is
randomly divided into groups of equal size in K-fold cross-validation. Then, the training of
the dataset is repeated several times for K (e.g., n = K). Finally, the average performance
of the training and testing datasets is calculated as an evaluation index for the models.
This approach is very effective, especially when dealing with a limited number of images,
as it uses the entire dataset [38,39]. In this study, we used a five-fold cross-validation to
determine training and testing sets for both segmentation and classification tasks.

2.4. Segmentation
2.4.1. U-Net

Ronneberger et al. [40] proposed U-Net as a CNN for biomedical image segmentation.
U-Net is a neural network architecture that focuses on image segmentation. There are two
main paths in the U-Net architecture. The first path is considered the contracting path,
also known as the encoder path or analysis path. Classification information is provided
by the convolutional network, which is similar to a standard convolutional network. The
second path is the expansion path, also called the decoder or synthesis path, which involves
the upward convolution and concatenation of features from the contraction path. Thus,
the network learns localized classification information. Furthermore, the extension path
increases the output resolution, which can then be fed into a final convolutional layer
to obtain a fully segmented image [41]. A convolutional network is used to create the
contraction path. It consists of two 3 × 3 convolutions (unpadded convolutions) applied
simultaneously, traced by a rectified linear unit (ReLU), a 2 × 2 max-pooling operation,
and a stride-2 downsampling operation for each. In each downsampling stage, the number
of feature channels is increased by two times their value. Each step on the expansion path
is preceded by an upsampling of the feature map. The convolution path involves two
3 × 3 convolutions, followed by ReLUs, a 2 × 2 convolution (upconvolution) that halves
the number of feature channels, and the concatenation of the contraction path through the
corresponding feature map. Since the edge pixels are lost with each convolution, cropping
is required. Convolutions of 1 × 1 are used in the last layer to divide the 64-component
feature vectors into classes. There are 23 convolution layers in the network. The resulting
network has a U-shaped topology and is nearly symmetric [40].

2.4.2. Deep Residual U-Net (ResUNet)

The modification of U-Net gives rise to ResUNet and is categorized under the semantic
segmentation neural networks. ResUnet which combines the characteristics of U-Net and
the residual networks [42]. The name “ResUNet-a” is established due to the fact that the
architecture is composed of residual building blocks with multiple atrous convolutions and
a U-Net backbone design. ResUNet-a utilizes a U-Net encoder and decoder backbone cou-
pled with residual connections, atrous convolutions, multi-tasking inference and pyramid
scene parsing pooling which is placed in both the middle and the end of the network. The
inferred tasks are applied inside the network prior to the formation of the final segmenta-
tion mask. ResUNet-a determines the boundary of the objects, the distance transform of
the segmentation mask, the segmentation mask and a colored reconstruction of the input
sequentially. Based on the ResUnet-a model there are two basic types of architecture, d6
and d7, which differ in depth such as the total number of layers. The encoder part of
ResUNet-a d6 includes six ResBlock-a building blocks, followed by the PSPooling layer.
The encoder part of ResUNet-a d7 there are seven ResBlock-a building blocks. There are
three different output options for each model (d6 and d7), which are referred to as single
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task semantic segmentation layer, multi-task layer (mtsk), and conditioned multi-task
output layer (cmtsk) [43].

2.4.3. UNet++

U-Net++ is proposed by Zhou et al. which applied the model for the segmentation of
medical images. U-Net++ is another form of the U-net model derived from the DenseNet
model, using a dense network of skip connections between the expansive and the contract-
ing paths. The architecture is known for its encoder and decoder sub-networks which are
linked via a series of nested, dense skip pathways. As an updated or modified version of
U-Net, U-Net++ is designed with skip pathways that link the decoder and the encoder
network. Another variation between the two is that the feature map in the encoder network
is straightly transmitted to the decoder network in U-Net while the feature map of the
encoder network is mapped to the decoder network via dense convolution blocks through
the redesigned skip pathways in U-Net++. In essence, the feature graph semantic level
in the encoder is proximate to the feature graph semantic level in the decoder via dense
convolution blocks [44].

2.5. Classification

The pretrained CNN model is already trained using millions of images (ImageNet) of
different objects such as pencils, coffee mugs, cats, dogs, keyboards, etc. Most pretrained
CNN models are trained on a subset of the ImageNet database, used in the ImageNet
Large-Scale Visual Recognition Challenge (ILSVRC). The architecture is designed to classify
up to 1000 categories [45,46].

In this study, five different pretrained CNN models were used to classify coronary
angiography images. DenseNet201, EfficientNet-B0, Mobilenet-v2, ResNet101 and Xception
models were used for the classification system. This section briefly summarizes these
pretrained models.

2.5.1. DenseNet

Increasing the model’s depth through blocks and layers has been shown to increase
efficiency. DenseNet is one of these models along with ResNet with higher depths. Densely
Connected Convolutional Networks (DenseNet) shared a lot of similarities with ResNet,
one of the main differences between the 2 is that ResNet utilized an additive approach
in which the model takes previous output as an input for future layers while DenseNet
takes in all the entire previous output as an input for a future layer. DenseNet is stacked
with narrow layers (i.e., 12 filters), which add a lesser set of new feature maps. Currently,
there are several variants of DenseNet with the latest one as DenseNet264 followed by
DenseNet201, DenseNet169 and the oldest as DenseNet121. The computational cost of
this architecture is lower compared to ResNet which owes to the fact that each layer in
the DenseNet model has uninterrupted access to the original input as well as a gradient
from the loss function. This specific characteristic makes DenseNet one of the superior
DL architectures for image classification tasks [47,48]. For example, in DenseNet201, the
direct connections of the hidden layers are replaced with dense connections which enable
the re-utilization of network features as well as optimize data transmission between the
model’s layers. The model is designed to take in input with a size of 224 × 224 followed
by a series of convolution and pooling operations. The four dense blocks of the model are
interspersed with ternary transition blocks which result in an output based on 14 × 14
feature maps [49].

2.5.2. EfficientNet

EfficientNet is a DL model developed by Mingxing Tan and Quoc V. Le [50]. The model
provides an exceptional approach for scaling neural networks by enhancing precision,
depths and widths. The CNN model’s scaling method revolves around the application
of compounded coefficients that evenly scale up the resolution dimensions, width, and
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depth [50]. Moreover, EfficientNet is a type of DL model that is developed from baseline
models established via neural network search [51]. In terms of architecture, EfficientNet-
B0’s main building block is a mobile inverted bottleneck convolution (MBConv) that is
slightly modified as a result of the addition of special blocks known as squeeze-and-
excitation optimization blocks. Thus, each of these MBConv blocks depends on shortcut
connections and depthwise convolutions between the blocks [52].

2.5.3. MobileNet

MobileNet is CNN developed by a team in Google with the aim of minimizing the
amount of memory used for computing and simultaneously producing high performance.
The CNN architecture was trained using the large ImageNet dataset which contains thou-
sands of categories. As the name implies, the model is designed for mobile phones or
devices with lower computational power. The layers of MobileNet-v1 are divided into 2;
the first layer is a depthwise convolutional layer designed for lightweight filtering (which
utilized one convolutional filter for each input channel) while the second layer is a point-
wise (1 × 1 convolution) layer designed for building new features through computing
linear combinations of input channels. The MobileNet-v2 model is comprised of two
residual blocks, the first block is designed with a stride of 1 and the second block with a
stride of 2 where their main function is for downsizing. Each of these residual blocks is
equipped with three main layers which include a convolutional layer (1 × 1) with a rectified
linear unit (ReLU), followed by a depthwise convolution and a third of convolutional layer
(1 × 1) without non-linearity. The MobileNet-v2 architecture comprises a fully convolu-
tional layer with 32 filters followed by 19 residual bottleneck blocks [53,54].

2.5.4. ResNet

ResNet is a kind of DL based on residual learning. The ResNet model was crowned
the best-performing model in the 2015 ILSVRC competition. The model was developed by
a team working at Microsoft. Currently, there are a handful of ResNet variants designed
with a different number of layers. Some of these variants include ResNet1202, ResNet164,
ResNet152, ResNet110, ResNet101, ResNet50, ResNet34 and ResNet18. Among these
variants, ResNet101 is utilized in this study. There are three main layers in the ResNet101
model: convolutional layers, pooling layers, and fully connected layers. The model is
designed with 101 layers with 33 residual blocks. The main function of the residual blocks
of ResNet101 is to enable shortcuts or skip connections to other layers [55–57].

2.5.5. Inception

In order to improve the training efficiency of neural networks, Google’s team first
developed the Inception model back in 2014. The introduction of 1 × 1 convolutional
kernels after 3 × 3 convolutional kernels, 5 × 5 convolutional kernels and 3 × 3 pooling
kernels significantly minimizes the number of parameters and simultaneously increases the
width of the model and optimizes the model’s adaptability to scale. The modification of the
Inception model gives rise to Xception (with better performance) due to the introduction of
both depthwise separable convolution and residual structure. Thus, the Xception model
makes more efficient use of its parameters compared to the Inception model despite
having the same number of parameters. The architecture of Xception CNN consists of
36 convolutional layers which form the feature extraction base of the CNN. In this study,
the evaluation method will solely investigate image classification of CAD and thus, the
convolutional base will be coupled with a logistic regression layer. Another option is to
add fully connected layers before adding the logistic regression layer [58,59].

2.6. Experimental Design

All our experiments were conducted on a computer with 32 GB RAM, an NVIDIA
GeForce RTX 2080 Ti graphics card, and an Intel i7–8th Generation CPU. We implemented
all experiments with DL networks in the MATLAB 2021b programming language. For the
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training process, the Adam optimizer and five-fold cross-validation are employed to train
and test the dataset. Coronary artery segmentation is performed using 0.0001, 100, and 8
parameters for learning rate, epoch, and batch size, respectively. The training parameters
for classifying coronary arteries with and without stenosis are set to 0.0001, 100, and 32.

2.7. Performance Metrics and Confusion Matrix

The efficiency of the image segmentation and classification system is evaluated using
a variety of performance metrics [60,61]. In this study, various performance metrics in-
cluding accuracy, sensitivity, specificity, precision, Dice Score (F1 score), Jaccard Index and
Matthews correlation coefficient (MCC) were used to evaluate the segmentation system.

Accuracy =
(TP + TN)

(TP + FP + FN + TN)
(1)

Sensitivity measures the ability of the system to segment coronary artery pixels, as
seen in Equation (2).

Sensitivity =
TP

(TP + FN)
(2)

In contrast to sensitivity, specificity represents the segments of the background pixels
and is described in Equation (3).

Speci f icity =
TN

(TN + FP)
(3)

Precision (Positive Predictive Value) represents the ratio of correctly classified coro-
nary artery pixels to all pixels classified as coronary arteries by the system. This led the
researchers to analyze the system’s success in generating true positives compared to all
pixels classified as arteries, as defined in Equation (4).

Precison (PPV) =
TP

(TP + FP)
(4)

Image segmentation algorithms are often evaluated using the Dice score, which ignores
the correct classification of negative samples, such as background pixels. The equation of
the Dice score is given in Equation (5) [62].

Dice score measures the pixel similarity between the segmented image and the ground
truth that ranges from 0 (no similarity) to 1 (identical) [63].

Dice Score (F1 score) =
2TP

(2TP + FP + FN)
(5)

The Jaccard Index is calculated as the overlap ratio between the predicted and ground
truth segmentation. This is the union area between the predicted and ground truth seg-
mentation, as given in Equation (6) [64].

Jaccard Index =
TP

(TP + FP + FN)
(6)

Mathews Correlation Coefficient (MCC). This metric was first introduced in 1975 by a
biochemist known as Brian W. Matthews who was working on the prediction of enzyme
structure. As a marginal measure unaffected by the unbalanced datasets issue, the MCC
is a contingency matrix approach to calculating the Pearson product-moment correlation
coefficient between predicted and actual values. MCC is represented mathematically in the
equation below:

MCC =
TP × TN − FP × FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(7)
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The interpretation of MCC is based on −1 as the worst value and +1 as the best value.
Moreover, the metric is the only binary classification rate that produces a higher value only
if the binary predictor was able to accurately predict the majority of positive and negative
data cases [65].

A confusion matrix is a popular approach for estimating the performance of a model for
segmentation and classification based on the number of true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) [66,67]. TP correctly identifies segmented
coronary arteries, while FP identifies segmented background pixels as arteries. TN indicates
background pixels classified as background, but FN incorrectly identifies arterial pixels
segmented as background.

This study used accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV), F1 score, MCC, Cohen’s kappa, Area Under Curve
(AUC) and Receiver Operating Characteristic (ROC) curve to evaluate image classification.
Accuracy indicates the overall success rate of the system in classifying images with and
without coronary artery stenosis. The sensitivity metric is the ability of an algorithm to
detect coronary artery stenosis. Specificity refers to the power of a classification technique to
see images with non-stenotic coronary arteries. The PPV or precision defines the probability
of coronary stenosis in the images when the stenosis is present. The NPV indicates the
probability that the result is negative when stenosis is not present. The equation of the NPV
is given in Equation (8).

NPV =
TN

(TN + FN)
(8)

The model correctly identifies TPs as positive cases on images with coronary artery
stenosis. TNs are correctly identified by the model as negative cases on images without
stenosis. FPs occur when the model identifies coronary artery stenosis on images without
stenosis according to the ground truth classification. FNs describe the case when the model
does not identify stenosis on the image where stenosis is present according to the ground
truth classification.

The F1 score is another evaluation metric that determined how precisely an ML model
operates by differentiating the actual true positives from the expected ones [68]. Thus, the
F1 score is regarded as the harmonic mean of recall and precision which depicts that it
penalizes extreme values of both. However, one of the limitations of the F1 score is that it is
not symmetric between classes as it depends solely on which class is labeled as positive or
negative [69].

The kappa coefficient is another performance metric approach the is used to summarize
the agreement between 2 nominal classifications according to similar categories. The
evaluation metric is popularly utilized in the field of social and behavioral sciences as well
as the medical field as a measure of agreement between two raters. The concept was first
introduced in 1960 by Jacob Cohen which is an alternative evaluation to accuracy. The
kappa coefficient is mostly used as a performance measure or sample statistic. For instance,
when calculating kappa for a sample of subjects is one step in a series of experimental steps,
or when kappa is used for analyzing a binary classification [65].

Cohen’s kappa can be represented mathematically [70]:

κ =
pA − pE
1 − pE

(9)

where pA is the observed relative agreement between two annotators
pE is the hypothetical probability of agreement by chance (with data labels randomly

assigned).
κ = 1 corresponds to the case of perfect agreement
κ = 0 indicates no agreement other than what would be expected by chance
AUC is regarded as one of the most significant performance metrics for evaluating

the performance of ML models, especially classification tasks. AUC-score summarizes the
Receiver Operating Characteristic (ROC) curve or is a metric that is used to represent the
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area under the ROC curve. The higher the score, the better the performance of the model
and its ability to discriminate between positive and negative cases.

Mathematically, AUC is represented as: [68]

AUC =
TPR − FPR + 1

2
(10)

AUC score is showcased as a random classification score which is represented by a
diagonal ROC curve in the unit square. The value can range between 0.5 to 1, where 1
represents a perfect classification score. Nevertheless, a score range of 0.7–0.8 is acceptable
while any score below 0.7 is considered as poor performance [71]. The ROC curve is
graphically represented by the false-positive rate (FPR) and the true-positive rate (TPR) [51].

3. Experimental Results
3.1. Segmentation Results

The results of our segmentation study and the steps that led to these results are shown
in Figure 5. The images provided include the original input image, the patient’s images
marked by the cardiologist (ground truth), and the output images (segmented images)
resulting from the segmentation models performed on them. The visual output results of
the U-Net model are closer to ground truth images than ResUNet-a and UNet++ as seen in
Figure 5.
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Figure 5. Sample segmentation results from the dataset.

We performed K-fold cross-validation to evaluate coronary artery segmentation and
classify non-stenotic and stenotic coronary arteries using DL models. The parameter K was
set to 5 in our experiments. In our dataset, for each fold, 136 images were used for the
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training set and 34 for the test set. All the images (total = 170) in our dataset were tested.
Tables 2–4, respectively, show the K-fold cross-validation and segmentation of coronary
arteries with the U-Net, ResUNet-a and UNet++ models.

Table 2. The segmentation results of the K-fold cross-validation of the U-Net model (k = 5).

Folds Accuracy Sensitivity Specificity Precision Dice Score Jaccard Index MCC

Fold1 0.9929 0.8477 0.9970 0.8809 0.8611 0.7628 0.8591

Fold2 0.9905 0.8355 0.9960 0.8628 0.8429 0.7390 0.8413

Fold3 0.9917 0.8946 0.9942 0.8006 0.8416 0.7446 0.8405

Fold4 0.9926 0.8397 0.9968 0.8697 0.8521 0.7542 0.8497

Fold5 0.9911 0.8822 0.9942 0.7976 0.8360 0.7266 0.8335

Average 0.9918 0.8599 0.9957 0.8423 0.8467 0.7454 0.8448

Table 3. The segmentation results of the K-fold cross-validation of the ResUNet-a model (k = 5).

Folds Accuracy Sensitivity Specificity Precision Dice Score Jaccard Index MCC

Fold1 0.9926 0.8224 0.9975 0.8925 0.8534 0.7508 0.8518

Fold2 0.9892 0.7728 0.9966 0.8760 0.8129 0.6964 0.8134

Fold3 0.9914 0.8133 0.9960 0.8407 0.8238 0.7178 0.8211

Fold4 0.9923 0.8394 0.9966 0.8615 0.8462 0.7452 0.8445

Fold5 0.9921 0.8029 0.9974 0.8872 0.8379 0.7324 0.8376

Average 0.9915 0.8101 0.9968 0.8716 0.8348 0.7285 0.8337

Table 4. The segmentation results of the K-fold cross-validation of the UNet++ model (k = 5).

Folds Accuracy Sensitivity Specificity Precision Dice Score Jaccard Index MCC

Fold1 0.9878 0.9128 0.9900 0.7092 0.7945 0.6673 0.7969

Fold2 0.9872 0.8673 0.9915 0.7456 0.7932 0.6637 0.7935

Fold3 0.9879 0.8937 0.9904 0.7291 0.7919 0.6779 0.7959

Fold4 0.9907 0.9046 0.9932 0.7709 0.8292 0.7176 0.8288

Fold5 0.9867 0.9086 0.9890 0.6825 0.7742 0.6435 0.7786

Average 0.9881 0.8974 0.9908 0.7274 0.7966 0.6740 0.7988

Training and evaluation of U-Net yield an average accuracy of 0.9918, average Sen-
sitivity of 0.8599, average Specificity of 0.9957, precision of 0.8423, average Dice score of
0.8467, average Jaccard Index of 0.7454 and average MCC of 0.8448 as shown in Table 2.

Training and evaluation of ResUNet-a yield an average accuracy of 0.9915, average
Sensitivity of 0.8101, average Specificity of 0.9968, precision of 0.8716, average Dice score of
0.8348, average Jaccard Index of 0.7285 and average MCC of 0.8337 as shown in Table 3.

Training and evaluation of UNet++ yield an average accuracy of 0.9881, average
Sensitivity of 0.8974, average Specificity of 0.9908, precision of 0.7274, average Dice score of
0.7966, average Jaccard Index of 0.6740 and average MCC of 0.7988 as shown in Table 4.

3.2. Classification Results

The performance measures for classifying coronary arteries with and without steno-
sis using five different pretrained classification models with 5-fold cross-validation are
presented in Tables 5–9. For each fold, the performance measures accuracy, sensitivity,
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specificity, PPV, and NPV, F1 score, MCC and Cohen’s Kappa were calculated for the
system evaluation. The result of this study validated that machine learning algorithms can
automatically classify coronary arteries with high accuracy. Figure 6 presents the confusion
matrix of five pretrained CNN models for classifying coronary artery images as normal
(without stenosis) and stenosis.

Table 5. The classification results of the K-fold cross-validation of the pretrained Densenet201 model
(k = 5).

Folds Accuracy Sensitivity Specificity PPV NPV F1 Score MCC Cohen’s Kappa

Fold1 0.9412 0.8889 1 1 0.8889 0.9412 0.8889 0.8826

Fold2 0.8824 0.6923 1 1 0.8400 0.8182 0.7626 0.7354

Fold3 0.8529 0.7000 0.9167 0.7778 0.8800 0.7368 0.6369 0.6352

Fold4 0.9412 0.8182 1 1 0.9200 0.9000 0.8676 0.8589

Fold5 0.8824 0.7500 1 1 0.8182 0.8571 0.7834 0.7606

Average 0.9000 0.7699 0.9833 0.9556 0.8694 0.8507 0.7879 0.7746

Table 6. The classification results of the K-fold cross-validation of the pretrained EfficientNet-B0
model (k = 5).

Folds Accuracy Sensitivity Specificity PPV NPV F1 Score MCC Cohen’s Kappa

Fold1 1 1 1 1 1 1 1 1

Fold2 0.8529 0.6154 1 1 0.8077 0.7619 0.7050 0.6640

Fold3 0.8824 0.8000 0.9167 0.8000 0.9167 0.8000 0.7167 0.7167

Fold4 0.7941 0.8182 0.7826 0.6429 0.9000 0.7200 0.5711 0.5609

Fold5 0.9118 0.8125 1 1 0.8571 0.8966 0.8345 0.8211

Average 0.8882 0.8092 0.9399 0.8889 0.8963 0.8357 0.7655 0.7525

Table 7. The classification results of the K-fold cross-validation of the pretrained MobileNet-v2 model
(k = 5).

Folds Accuracy Sensitivity Specificity PPV NPV F1 Score MCC Cohen’s Kappa

Fold1 0.9118 0.8333 1 1 0.8421 0.9091 0.8377 0.8247

Fold2 0.8824 0.6923 1 1 0.8400 0.8182 0.7626 0.7354

Fold3 0.8824 0.8000 0.9167 0.8000 0.9167 0.8000 0.7167 0.7167

Fold4 0.9118 0.8182 0.9565 0.9000 0.9167 0.8571 0.7954 0.7935

Fold5 0.8235 0.6875 0.9444 0.9167 0.7727 0.7857 0.6600 0.6408

Average 0.8824 0.7663 0.9635 0.9233 0.8576 0.8340 0.7545 0.7422
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Table 8. The classification results of the K-fold cross-validation of the pretrained ResNet101 model
(k = 5).

Folds Accuracy Sensitivity Specificity PPV NPV F1 Score MCC Cohen’s Kappa

Fold1 0.9706 0.9444 1 1 0.9412 0.9714 0.9428 0.9412

Fold2 0.8824 0.7692 0.9524 0.9091 0.8696 0.8333 0.7496 0.7434

Fold3 0.8529 0.7000 0.9167 0.7778 0.88000 0.7368 0.6369 0.6352

Fold4 0.9412 0.9091 0.9565 0.9091 0.9565 0.9091 0.8656 0.8656

Fold5 0.8235 0.6875 0.9444 0.9167 0.7727 0.7857 0.6600 0.6408

Average 0.8941 0.8021 0.9540 0.9025 0.8840 0.8473 0.7710 0.7652

Table 9. The classification results of the K-fold cross-validation of the pretrained Xception model
(k = 5).

Folds Accuracy Sensitivity Specificity PPV NPV F1 Score MCC Cohen’s Kappa

Fold1 0.9412 0.8889 1 1 0.8889 0.9412 0.8889 0.8828

Fold2 0.8824 0.6923 1 1 0.8400 0.8182 0.7626 0.7354

Fold3 0.7941 0.8000 0.7917 0.6154 0.9048 0.6957 0.5548 0.5441

Fold4 0.9706 0.9091 1 1 0.9583 0.9524 0.9334 0.9312

Fold5 0.8824 0.8125 0.9444 0.9286 0.8500 0.8667 0.7677 0.7622

Average 0.8941 0.8206 0.9472 0.9088 0.8884 0.8548 0.7815 0.7711
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Figure 6. Confusion matrix for the coronary artery classification (A) DenseNet201 (B) EfficientNet-B0
(C) Mobilenet-v2 (D) ResNet101 (E) Xception.

The AUC/ROC for the classification of coronary arteries is presented in Figure 7.
AUC/ROC are regarded as two of the most significant performance metrics for the eval-
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uation of classification models. It can be seen in Figure 7. The DenseNet201 model
outperformed other classification models with an AUC score of 0.9694.
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Figure 7. ROC curve for the coronary artery classification (A) DenseNet201 (B) EfficientNet-B0
(C) Mobilenet-v2 (D) ResNet101 (E) Xception.

Training and evaluation of the DenseNet201 model yield an average accuracy of 0.9000,
average Sensitivity of 0.7699, average Specificity of 0.9833, average PPV of 0.9556, average
NPV of 0.8694, average F1 score of 0.8507, average MCC of 0.7879 and average Cohen’s
Kappa of 0.7746 as shown in Table 5.

Training and evaluation of the EfficientNet-B0 model yield an average accuracy of
0.8882, average Sensitivity of 0.8092, average Specificity of 0.9399, average PPV of 0.8889,
average NPV of 0.8963, average F1 score of 0.8357, average MCC of 0.7655 and average
Cohen’s Kappa of 0.7525 as shown in Table 6.

Training and evaluation of the MobileNet-v2 model yield an average accuracy of
0.8824, average Sensitivity of 0.7663, average Specificity of 0.9635, average PPV of 0.9233,
average NPV of 0.8576, average F1 score of 0.8340, average MCC of 0.7545 and average
Cohen’s Kappa of 0.7422 as shown in Table 7.

Training and evaluation of the ResNet101 model yield an average accuracy of 0.8941,
average Sensitivity of 0.8021, average Specificity of 0.9540, average PPV of 0.9025, average
NPV of 0.8840, average F1 score of 0.8473, average MCC of 0.7710 and average Cohen’s
Kappa of 0.7652 as shown in Table 8.

Training and evaluation of the Xception model yield an average accuracy of 0.8941,
average Sensitivity of 0.8206, average Specificity of 0.9472, average PPV of 0.9088, average
NPV of 0.8884, average F1 score of 0.8548, average MCC of 0.7815 and average Cohen’s
Kappa of 0.7711 as shown in Table 9.

4. Discussion

Previous studies have shown that early detection of CAD is crucial for the timely
treatment and for prolonging patients’ lives. Since heart disease is the leading cause of
death around the world, cardiologists are entrusted with diagnosing and treating many
patients. In addition, most healthcare facilities rely on invasive coronary angiography
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procedures. However, despite its high accuracy and efficiency, reviewing these angio-
graphic images and interpreting many images can be tedious for cardiologists and can also
lead to misdiagnosis [2–4,6]. To overcome these obstacles, several studies have proposed
the DL approach, in which scientists can use algorithms to classify and segment medical
images [11,12,17–21].

In line with existing studies, this study used pretrained models to classify angiographic
images. However, unlike previous studies that made use of datasets from various online
repositories and many clinical datasets, this study used datasets generated by cardiologists
at Near East University Hospital in North Cyprus. In addition, the classification of angio-
graphic images (i.e., 170 images) was achieved with five pretrained CNN models as shown
in Tables 5–9. Several studies have already used pretrained models such as DenseNet,
EfficientNet and Xception to classify medical images efficiently which is in line with the
result achieved [48,72,73].

4.1. Limitations and Clinical Implications

The growing field of AI is changing the landscape of several fields ranging from
computer and electronics, medicine, agriculture, banking and finance, business, and ad-
vertisements, etc. Over the last decade, scientists have developed several platforms that
integrated artificial intelligence in healthcare. Computer-aided systems are currently in
use for modeling biological components (such as patient’s organs), assisted surgery (using
robots), prediction of diseases outbreak, gene profiling, drug invention and repurposing
and computer-aided diagnosis [74]. The use of DL models such as Artificial neural networks
(ANN) and CNN are transforming the field of medical images into autonomic systems
that allow real-time classification of medical data with high efficiency. This study aimed to
use DL techniques for the automatic segmentation and classification of coronary arteries
based on angiography images. The result achieved in this study is in line with other studies
regarding the role of Computer-aided systems which receive medical data as input and
produce output based on a series of algorithms. Similar approaches have been integrated
into several hospitals and are currently in use to help cardiologists. Despite the fact that DL
models produce excellent results, they are hindered by several challenges. For example, the
lack of a limited amount of datasets can limit performance. Therefore, training DL models
using a substantial amount of data is crucial for high performance. To counter this problem,
scientists proposed the use of pretrained models (also known as Transfer Learning (TL)
models). TL models enable scientists to extract weights and features from trained models
and repurpose them on new tasks with insufficient datasets. Thus, the use of pretrained
models has been shown to outperform models developed from scratch [74,75].

Another method proposed by scientists that can be used to resolve the issue of the
limited amount of data is the use of data augmentation techniques which include zooming,
rotation, cropping, mirroring, flipping, etc. Lastly, the last five years have seen the rise of
hybrid and ensemble models. Extracting features and training using fused models have
been shown to result in high performance. Moreover, the use of classifiers such as Support
Vector Machine (SVM), K-nearest Neighbor (KNN) Decision Tree (DT) and Random Forrest
(RF) instead of SoftMax is another dimension integrated by scientists in evaluating models
with higher performances [74].

4.2. Comparison of Segmentation Models Performance

Based on the comparison segmentation models with the U-Net model and its variants
presented in Table 10. Dice score and Jaccard index are considered more reliable and signif-
icant performance metrics for the image segmentation system [76]. Thus, a comparative
assessment of the segmentation models has shown that U-Net outperformed both UNet++
and ResUnet-a in both the Dice score (0.8467) and Jaccard Index (0.7454).
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Table 10. Comparison of Segmentation Models Performance of the 5-Fold Cross-Validation with the
average score.

Models Accuracy Sensitivity Specificity Precision Dice Score Jaccard Index MCC

U-Net 0.9918 0.8599 0.9957 0.8423 0.8467 0.7454 0.8448

ResUnet-a 0.9915 0.8101 0.9968 0.8716 0.8348 0.7285 0.8337

UNet++ 0.9881 0.8974 0.9908 0.7274 0.7966 0.6740 0.7988

4.3. Comparison of Classification Models Performance

Based on the comparison between different pretrained classification models as pre-
sented in Table 11, it can be seen that in terms of accuracy, the DenseNet201 model achieved
the highest accuracy with 0.9000. In terms of sensitivity, Xception achieved the best result
with 0.8206. While in the case of specificity, DenseNet201 achieved the best result with
0.9833. Comparative evaluation of both PPV and NPV has shown that DenseNet201 and
EfficientNet-B0 achieved the best result with 0.9556 PPV and 0.8963 NPV, respectively. In
the case of the F1 score, the model that achieved the highest score is Xception with 0.8548.
Moreover, in the case of MCC, DenseNet201 achieved the best result with 0.7879. The
comparison of the model’s Cohen’s Kappa result has shown that DenseNet201 achieved
the best score with 0.7746. Therefore, in the overall assessment of performance metrics,
DenseNet201 is considered the best-performing model that can automatically classify
coronary arteries.

Table 11. Comparison of Classification Pretrained Models Performance of the 5-Fold Cross-Validation
with the average score.

Task Models Accuracy Sensitivity Specificity PPV NPV F1 Score MCC Cohen’s Kappa

Normal
and

Stenosis

Densenet201 0.9000 0.7699 0.9833 0.9556 0.8694 0.8507 0.7879 0.7746

EfficientNet-B0 0.8882 0.8092 0.9399 0.8889 0.8963 0.8357 0.7655 0.7525

MobileNet-v2 0.8824 0.7663 0.9635 0.9233 0.8576 0.8340 0.7545 0.7422

ResNet101 0.8941 0.8021 0.9540 0.9025 0.8840 0.8473 0.7710 0.7652

Xception 0.8941 0.8206 0.9472 0.9088 0.8884 0.8548 0.7815 0.7711

5. Conclusions

The need to develop accurate diagnosis approaches is crucial for minimizing diagnostic
errors and increasing treatment efficiency. In line with this statement, we proposed a system
that includes U-Net and its variants and pretrained CNN models for the segmentation
and classification of coronary angiograms. Another contribution of this research was
the use of raw data acquired from real patients instead of using a dataset collected from
online repositories. This is associated with the claim that a significant number of images
available in online repositories have been altered (e.g., cropped, rotated, and enlarged),
to facilitate coronary artery segmentation and classification. However, this is not the case
for clinical applications. This work employed U-Net, ResUNet-a, and UNet++ models for
the segmentation of coronary angiography images. Consequently, we used five different
pretrained models (EfficientNet-B0, DenseNet201, Mobilenet-v2, ResNet101 and Xception)
to classify coronary arteries into binary classes, e.g., with or without stenosis. The main
goal of this research was to implement an automatic segmentation and classification system
for coronary arteries. We believe that this will help doctors make more accurate diagnoses,
reduce workload, and minimize the risk of error.

It should be mentioned that one of the study’s limitations is using a small number of
datasets for training and validation. In addition, the study is limited to binary classification.
Therefore, future studies should focus on improving diversity in multiple coronary artery
stenosis classifications according to their specific grades. Moreover, future studies will also
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focus on the precise measurement of coronary artery stenosis diameter using angiography
images based on AI and image processing techniques. Furthermore, future studies will
focus on a large number of datasets curated from various hospitals in Northern Cyprus. It
is also suggested to develop an IoT/AI-based system that will allow cardiologists to upload
images via online systems and obtain results in real-time.
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