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Abstract: Cancer, including the highly dangerous melanoma, is marked by uncontrolled cell growth
and the possibility of spreading to other parts of the body. However, the conventional approach to
machine learning relies on centralized training data, posing challenges for data privacy in healthcare
systems driven by artificial intelligence. The collection of data from diverse sensors leads to increased
computing costs, while privacy restrictions make it challenging to employ traditional machine
learning methods. Researchers are currently confronted with the formidable task of developing a skin
cancer prediction technique that takes privacy concerns into account while simultaneously improving
accuracy. In this work, we aimed to propose a decentralized privacy-aware learning mechanism to
accurately predict melanoma skin cancer. In this research we analyzed federated learning from the
skin cancer database. The results from the study showed that 92% accuracy was achieved by the
proposed method, which was higher than baseline algorithms.

Keywords: federated learning; skin cancer classification; SVM; neural networks; privacy-aware learning

1. Introduction

Health encompasses the overall well-being of an individual, encompassing mental,
physical, and social aspects that contribute to a higher quality of life. However, global
health faces challenges arising from factors such as limited healthcare resources, disparities
between rural and urban areas, and inadequate services. Early detection plays a crucial role
in the effective treatment of skin cancer, a particularly serious form of the disease. The skin
acts as a protective barrier for internal organs and structures, emphasizing the significant
impact that even minor disruptions can have on the body’s systems. The diverse nature of
skin disorders is reflected in the varying appearance and severity of skin lesions. The many
types of skin cells that contribute to the development of each lesion are used to categorize
them. Melanocytes, the cells responsible for producing the protein pigment melanin, are
damaged or destroyed in melanocytic diseases such as melanoma [1]. Types of melanoma
skin cancer are shown in Figure 1.

Melanoma, the deadliest type of skin cancer among approximately 200 different types,
can be diagnosed through clinical screening, dermoscopy, and histology [2]. Early detection
significantly increases the chances of successful treatment. Dermoscopy images, when com-
bined with visual inspection by specialists, improve the accuracy of melanoma diagnosis,
raising it from 65–80% to 75%. Mobile edge computing (MEC) offers computational work
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offloading and low-latency services, which are particularly valuable for time-sensitive ap-
plications. However, optimizing reliability and latency in MEC remains a challenging task.
Data privacy concerns have led to the establishment of regulations such as the GDPR [3],
China Cyber Security Law [4], and CCPA [5], granting individuals rights pertaining to
data collection, disclosure, erasure, and protection against automated decision making.
The CCPA specifically applies to for-profit businesses operating in California, ensuring
transparency in data handling.
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Figure 1. Types of melanoma skin cancers. (a) Benign; (b) malignant.

Leveraging data from multiple institutions can be advantageous in addressing class
imbalance and expanding databases. However, sharing medical records faces obstacles
due to privacy, technical, and regulatory limitations [6]. Google’s federated learning
approach aims to train machine learning algorithms on local datasets without explicit data
sharing [7]. Local nodes exchange parameters to build a common global model capable of
accommodating diverse datasets and unreliable clients, as shown in Figure 2. In centralized
federated learning, a central server oversees participating nodes and algorithmic stages.
Decentralized federated learning, on the other hand, avoids a single point of failure by
exchanging model updates across interconnected nodes without relying on a central server.
This approach prevents potential bottlenecks caused by update transmission. By integrating
federated learning and AI in a hybrid strategy, healthcare systems can navigate restrictions
and privacy concerns while training models in a distributed manner.
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The data privacy problem was the main motivation to solve these highlighted issues.
This article presents a novel approach for optimizing communication in federated learning
by utilizing an asynchronous strategy for updating the parameters of shallow and deep
layers of deep neural networks (DNNs) at different frequencies [8–13]. The proposed
method aims to reduce the amount of communication required between the server and
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clients, which can be a significant bottleneck in federated learning. Additionally, the
article suggests a temporally weighted aggregation strategy to effectively incorporate the
information from previously trained local models into the final model aggregation. This
approach allows the model to effectively learn from the unique characteristics of each
local dataset and improve learning performance overall. The proposed method aimed to
achieve a balance between communication efficiency and learning performance, making it
a valuable approach for implementing federated learning in real-world scenarios.

The major contributions of our work are listed as follows.

• We proposed an optimal classification for skin cancer detection.
• To improve the communication concern, we used asynchronous for skin cancer.
• We improved the convergence rate by using FL.
• We achieved more accuracy by using these methods.

2. Related Work

The purpose of this review was to assess the present status of research on machine
learning-based techniques for skin cancer detection and classification. It investigated the
application of various algorithms, datasets, assessment measures, and field problems, pro-
viding insights into advancements and future approaches for better skin cancer diagnosis.
The authors introduced an improved method for classifying skin cancer in [14]. Their
approach utilized deep convolutional neural networks (CNNs) with transfer learning,
demonstrating its effectiveness in achieving accurate classification results by leveraging
pre-trained models and fine-tuning them on skin cancer datasets.

The authors in [15] addressed the issue of shortcut learning in machine-learning
models used for skin lesion diagnosis. They identified the presence of shortcut learning
in these models, which can lead to misleading results. Their work aimed to enhance
the reliability and accuracy of machine learning models for skin cancer diagnosis. A
comparison of different machine-learning strategies for analyzing infrared thermography
images in skin cancer detection was outlined in [16]. They evaluated the performance of
various algorithms and discussed the advantages and limitations of each approach. The
study provided insights into selecting appropriate machine-learning techniques for infrared
thermography-based skin cancer diagnosis.

The paper [17] presented a machine learning-based approach for predicting skin
conditions. The authors proposed dynamic training and testing augmentation techniques
to improve prediction accuracy. Their study demonstrated the effectiveness of this approach
in accurately predicting skin conditions based on various input features. A framework
focused on region-of-interest (ROI) and transfer learning was proposed in [18]. They
aimed to enhance the efficiency and accuracy of skin cancer detection by considering
specific regions within the images. Their results showed the effectiveness of the proposed
framework in achieving reliable skin cancer detection results.

The authors in [19] highlighted the advantages of combining human expertise with
artificial intelligence (AI) for skin cancer classification. The authors emphasized the impor-
tance of leveraging the knowledge and expertise of dermatologists alongside AI algorithms
to improve the accuracy and reliability of skin cancer classification systems. The authors
in [20] addressed obstacles and future possibilities by discussing various ML approaches
used for skin cancer detection and classification. The research highlighted the potential of
machine learning in improving skin cancer diagnostic outcomes.

The authors in [21–31] discussed several elements of skin cancer detection and classifi-
cation using machine learning. They also looked at the use of deep convolutional neural
networks, transfer learning models, infrared thermography, dynamic training and testing
augmentation, region-of-interest-based transfer learning, and the combination of human
and artificial intelligence in skin cancer detection, classification, and prediction. The current
benchmark models for skin cancer detection are only available to non-compliant healthcare
providers. As a result, the focus of this study was on constructing a privacy-preserving
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model for melanoma skin cancer datasets to assess the efficacy of the suggested strategy in
terms of accuracy.

3. Materials and Methods

The existing healthcare system faces several data privacy issues [6,7] and the existing
ML techniques [8–30] are unable to address privacy concerns since they require user data to
be processed at a central location for model generation and skin cancer diagnosis. User data
cannot be shared in the healthcare system owing to privacy and security concerns. This
research proposed a federated learning framework for melanoma skin cancer prediction in
the healthcare system, which would solve privacy issues and deliver effective skin cancer
prediction in a privacy-aware healthcare system. This present study sought to explore
the feasibility and efficacy of federated learning in a healthcare context, with the goal of
creating machine learning models that would be both accurate and secure. In Figure 3, the
proposed methodology involved leveraging the collective computing power of multiple
hospitals to train models that would be representative of the patient population at each
facility. The following steps were taken to accomplish this objective:

• Selection of Four Hospitals: The study involved the participation of four hospitals,
chosen based on their capacity to contribute data to the project and their willing-
ness to collaborate. The hospitals were chosen to ensure geographic diversity and
representation of both public and private healthcare facilities.

• Local Training using SVM and CNN: The data collected from each hospital was
preprocessed and used to train support vector machines (SVMs) and convolutional
neural networks (CNNs) locally. This step ensured that each hospital’s data were
used to create models that were specific to their patient population, thereby enhancing
model accuracy.

• Conversion of Data into Weights: Following the completion of local training, the data
were transformed into weight values that were representative of the learned patterns
within the models. This process ensured that only model parameters were exchanged
between hospitals, preserving data privacy and security.

• Transfer of Local Weights to Cloud for Training: The weight values obtained from
the individual hospitals were then transferred to a cloud-based server for further
training. The central server aggregated the weight values and used them to update a
global model, which incorporated the latest learnings from all participating hospitals.

• Federated Learning using Asynchronous Method: The global model was then used
to perform federated learning using an asynchronous method. This approach enabled
the central server to train the model using the updated weights from each hospital,
without the need for synchronous communication, which reduced the communication
overhead and latency between clients and server.

• Distribution of Updated Weights to Clients: The updated weight values were sent
back to each hospital according to their request. This step allowed each hospital to
incorporate the latest learnings from the global model into their locally trained models,
thereby improving model accuracy and generalization performance. The distribution
of these weights is done asynchronously as depicted in Figure 3. The different colored
weights shows weights at different time.

The proposed methodology offered several benefits, including enhanced data privacy
and security, reduced communication overhead, and improved model accuracy. By enabling
hospitals to train models locally and contribute to a shared global model, the approach
offered a scalable and sustainable means of creating machine learning models that would
be representative of diverse patient populations. This study showcased the potential of
federated learning in a healthcare context and suggested that it may offer a viable means
of creating models that would be both accurate and secure. The working of our proposed
Async-FL model for both client and the server ends is discussed in Algorithm 1 below.
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Algorithm 1. Proposed Async-FL model for skin cancer prediction

Input: Skin Lesion data from various client users
Output: Personalized models for skin cancer prediction
//Working at the FL server end
for round r = 1, 2, . . . do
if r in every round_i n_loop ∈ Set ES then§

tag← 1
else

tag← 0
max←maximum(A∗B.1)
ts ← (random set of maxclients)
every client j є ts in parallel do
if tag then

wj ← ClientUpdate(j, ws,tag)
timeframek

g ← s
timeframek

s ← s
else

wk
g ← ClientUpdate(j, wk,s, tag)

timeframek
g ← s

wk,s+1 ← ∑b
g = 1 mg

m *fk(s,j)*wk
g

if tag then
wt,s+1 ← ∑b

g = 1 mg
m *ft (s,j)*wk

g

end function
//Working at FL client
client update (j, w, tag)//client j
α← (fragment bj into batches of size A)
if tag then

w← w
else

wt ← w
for local epoch j from 1 to f do
for batch a є α do

perform classification using radial basis SVM
if tag then

return w to server
else return wt to server
end function

3.1. Rules for Skin Lesion Assessment

The proposed system is a technique for the identification and categorization of skin
cancer through the utilization of imagery. The process begins by transmitting an image to
the system, which is then subject to preprocessing utilizing the median filtering method to
eliminate extraneous elements such as hair, bubbles, and noise. This method is employed as
the skin cancer image often contains fine hair, noise, and bubbles, which are not indicative
of the presence of cancer and therefore must be removed. The median filter is chosen for its
ability to preserve the amplitude and location of edges while also reducing the variance
of intensities in the image, resulting in a smoothing effect on the overall image. After
preprocessing, the preprocessed image is segmented using the watershed algorithm. The
watershed algorithm is a popular image segmentation method that partitions an image
into multiple segments or regions. It is based on the idea that the image can be seen
as a topographic surface, where the intensity of the pixels represents the height of the
surface. The algorithm starts by identifying the local minima of the image, which are used
as markers for the initial segmentation. Then, it propagates the markers to the surrounding
pixels, creating a catchment basin for each marker. The result is a set of segments where each
segment corresponds to a catchment basin. The GLCM feature technique, ABCD rule, and
shape feature are then used to extract features from the photos. The texture characteristics
of the lesion are extracted using the GLCM feature technique. The statistical technique
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known as GLCM, or gray-level co-occurrence matrix, defines the texture of an image by
calculating the likelihood that certain gray-level combinations would appear in the picture.
Shape feature is utilized to extract the shapes such as irregularity index, abnormality index,
and distance that are evaluated from lesions in the binary picture. Lastly, classification
approaches are employed to achieve the best outcomes. To achieve these best outcomes,
the system employs three different categorization methods. The ABCD rule and GLCM
feature technique are the basis for the first kind of classification and the shape feature is
the basis for the second type of classification; the combination of all the features forms the
basis for the third type of classification. By comparing the outcomes of each classification
technique and choosing the one with the highest accuracy, the system employs these three
forms of classification to arrive at the best results.
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3.2. Experimentation Details and Dataset Utilized

Our experimentation did not involve any human subjects, instead we utilized the
images of skin lesions. For evaluation and testing of our proposed model, we utilized the
publicly available dataset of International Skin Imaging Collaboration (ISIC-2019) dataset,
which contains 25,331 dermoscopy images. In this study, we considered only the melanoma
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skin cancer type. For the experimentation, simulation, and performance analysis, we used
the PyTorch machine learning library. The experimentation trials were carried out using the
NVIDIA Tesla T4 16 GB graphics processing unit (GPU) on Google Colaboratory.

4. Results and Discussion

The proposed system is a privacy-preserving decentralized learning method for rec-
ognizing and classifying melanoma skin cancer using an image. It uses a combination of
preprocessing, segmentation, feature extraction, and classification techniques to identify
the characteristics of the lesion and to classify it as malignant or benign.

4.1. Experimental Results of the Proposed Model

In this section, a detailed comparison of proposed Async-Fed-CNN-SVM is made
with the existing state-of-the-art federated learning methods. The rate at which a learning
algorithm approaches its optimal solution, known as the convergence rate, can impact the
overall accuracy of the solution. A fast convergence rate may lead to a solution quickly, but
it does not guarantee a higher level of accuracy. On the other hand, a slower convergence
rate may take longer to reach a solution but may provide a more accurate outcome. The
relationship between convergence rate and accuracy can vary depending on the specific
algorithm and dataset being used, as depicted in Figure 4. Generally, a fast convergence
rate is preferred, but it must be considered in relation to potential problems, such as
overfitting. Our proposed Async-Fed-CNN-SVM uses a better classification and training
model at the client end, which results in better accuracy achievement in a lesser number of
communication rounds.
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4.2. Effect of Learning Rate in Training

The learning rate is a key parameter in machine learning that determines the step size
of updates made to the model’s weights during training and is shown below in Figure 5
and Table 1. The choice of learning rate can have a significant impact on the performance
of the model. A low learning rate will lead to slow convergence but more accurate results,
while a high learning rate will lead to faster convergence but less accurate results. It is
common to use a moderate learning rate initially and adjust it based on the performance of
the model.
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Table 1. Learning rate of our proposed method.

No. of Epochs 5 10 15 20 25 30 35 40 45 50

Accuracy training 81.1 88.8 89.7 91.1 92.0 92.3 92.4 92.8 93.6 94.7

Validation accuracy 80.8 88.7 89.6 90.9 91.8 92.0 92.1 92.6 93.1 93.9

The ABCD rule is a tool used to identify potential melanomas (a type of skin cancer)
by looking at the asymmetry, border, color, and diameter of a lesion and Table 2 shows the
ABCD rule-based performance comparison. The gray-level co-occurrence matrix (GLCM)
is a technique used to extract texture information from an image and the performance
analysis based on GLCM rule is shown in Table 3. It creates a matrix that describes the
relationship between pixels of different gray levels and is often used in image analysis
and computer vision. The learning rate is an important parameter in machine learning
that controls the step size at which the model updates its parameters. It determines how
quickly or slowly the model learns from the data. A smaller learning rate will lead to a
more accurate model, but it will take longer to train. A larger learning rate will lead to
faster training, but the model may not be as accurate. Finding the right balance between
these two extremes is crucial for successful training. Table 4 shows the maximum achieved
performance by our proposed method.

Table 2. ABCD rule-based analysis of performance analysis.

Parameters
Name of the Classifier

SVM (Proposed) KNN Random Forest

Sensitivity (%) 90.1 76.9 77.1
Specificity (%) 89.1 72.7 79.9
Accuracy (%) 92.1 69.1 76.8

Table 3. GLCM feature-based performance analysis.

Parameters
Name of Classifier

SVM (Proposed) KNN Random Forest

Sensitivity 86.1 65.8 74.9
Specificity (%) 87.1 68.7 77.2
Accuracy (%) 88.1 63.1 77.1
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Table 4. Maximum achieved accuracy and loss.

Training 94%

Validation 94%

Testing 93%

Training loss 3%

Validation loss 4%

Testing loss 5%

5. Conclusions

In this study, we investigated an approach for identifying and categorizing melanoma
skin cancer using a federated learning method. Our suggested approach relied on using
a segmentation method to separate the lesion from the skin and a classification method
to identify the lesion’s malignancy or benignity. We used the hybrid of CNN with SVM
technique for the prediction and classification of melanoma skin cancer. We used the ABCD
rule, which assesses skin lesions based on certain criteria, to support the vector machine
(SVM) method for classification. We contrasted SVM’s performance with that of other
classifiers such as random forest and KNN. Our results demonstrated that our proposed
Async-Fed-CNN-SVM achieved 92% accuracy, which was better than the other assessed
federated learning methods. Even with biased training samples, SVM is recognized for its
accuracy and robustness. Furthermore, because SVM’s optimality problem is convex, it
provides a special solution. The threshold for differentiating between benign and malignant
lesions can be chosen with some flexibility. Additionally, it exhibits good generalization to
out-of-sample data. This locally operated nonparametric function allows for a nonlinear
threshold that can change depending on the data’s features. Overall, by proposing a
method that combines CNN with SVM in the federated learning environment appearing as
the most potent classifier, our research has contributed to the field of skin cancer detection
and classification.
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