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Abstract: Obstructive sleep apnea (OSA) is a sleeping disorder caused by complete or partial dis-
turbance of breathing during the night. Existing screening methods include questionnaire-based
evaluations which are time-consuming, vary in specificity, and are not globally adopted. Point-of-care
ultrasound (PoCUS), on the other hand, is a painless, inexpensive, portable, and useful tool that has
already been introduced for the evaluation of upper airways by anesthetists. PoCUS could also serve
as a potential screening tool for the diagnosis of OSA by measuring different airway parameters,
including retropalatal pharynx transverse diameter, tongue base thickness, distance between lingual
arteries, lateral parapharyngeal wall thickness, palatine tonsil volume, and some non-airway param-
eters like carotid intima–media thickness, mesenteric fat thickness, and diaphragm characteristics.
This study reviewed previously reported studies to highlight the importance of PoCUS as a potential
screening tool for OSA.
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1. Introduction

Obstructive sleep apnea (OSA) is a common sleep-related breathing disease character-
ized by recurrent upper airway (UA) narrowing due to an imbalance between mechanical
load and compensatory neuromuscular responses during sleep, resulting in sleep frag-
mentation and hypoxemia, as well as increased morbidity and mortality [1]. OSA is also a
common risk factor for postoperative cardiopulmonary problems [2,3] with increased use
of perioperative healthcare resources [4]. In OSA, the breathing disturbances are recurrent
episodes of either complete blockage of UA (apnea) or substantially reduced UA diam-
eter (hypopnea) while sleeping [5]. These recurrent events are associated with variable
degrees of oxygen desaturation (SaO2) and hypoventilation, and such events are halted
by brain stimulation to maximize the activity of UA dilator muscles to increase the UA
diameter [6–8]. The severity of OSA is traditionally expressed using the apnea–hypopnea
index (AHI). In mild OSA, the AHI is 5–15 per hour; in moderate OSA, it is between
15–30 per hour; and in severe OSA, the AHI is at least 30 or more per hour [9,10].

The underlying pathophysiology is complex, and it is the result of an interplay of
four determinants: a narrowed/crowded collapsible upper airway, poor muscle respon-
siveness, high loop gain, and low arousal threshold. The impact of each determinant and
the combination of determinants can be different and explain the existence of different
phenotypes of OSA [11]. A structurally narrower and more collapsible UA is the most
prominent feature of OSA severity, which can be characterized by an interaction between
redundant soft tissue, decreased tone of the UA dilator muscles, and the bony anatomy
of UA, which accounts for two-thirds of the heterogeneity in the AHI [12,13]. Not only is
the UA narrower and more collapsible in OSA patients while awake, but it also collapses
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more easily during sleep as the activity of the UA dilator muscles decrease after sleep
onset [14–16].

Detecting moderate-to-severe OSA is critical for preventing cardiovascular and cere-
brovascular disorders, including potentially life-threatening cardiac problems during
surgery. However, a large proportion of patients with OSA remain undiagnosed at the
time of surgery [17]. Polysomnography (PSG) is the gold-standard laboratory technique
to diagnose OSA, but it is costly and not commonly available [18,19]. Currently, screen-
ing for OSAS is being gradually implemented in the preoperative setting. The available
screening techniques are mostly questionnaire-based, and although they are generally
sensitive enough, these techniques are not specific [20,21] and do not have a high enough
negative predicting value results [22,23]. Point-of-care ultrasound (PoCUS) has been used
by anesthetists to efficiently evaluate UA [24]. This technique could also be useful for
the diagnosis and screening of OSA together with other available methods because it is
portable, painless, and has an increased specificity [24]. Specialized ultrasound tests have
already been broadly and diversely utilized through PoCUS applications by anesthetists
in the perioperative setting in order to guide patient management and improve clinical
outcomes [25]. But only limited studies have evaluated the effectiveness of PoCUS as a
screening tool for OSA.

This narrative review aimed to describe our current knowledge on the different
applications of the PoCUS technique in the measurement of various anatomical parameters
in OSA patients.

2. Materials and Methods

Studies were eligible for inclusion in the review if they evaluated patients with OSA
compared to non-OSA controls for parameters measured with ultrasonography. OSA
patients were required to have a positive sleep study (PSG or polygraphy), while non-
OSA controls were required to have a normal one. We also retained studies without a
control group if ultrasound parameters were compared between different categories of
OSA severity. While we focused on the imaging of the UA, we also included studies that
evaluated non-airway parameters as a screening tool for OSA. However, we excluded
echocardiography and liver ultrasound measurements because of their low specificity for
the diagnosis of OSA. There were no exclusion criteria based on the type and brand of
the ultrasound devices or the ultrasonographic modes and probes used in the studies.
Any measurement obtained by ultrasonography, such as dimensions, moving distance,
or signal intensity, either in an awake or a sleep state was eligible as an outcome. Only
published observational and randomized controlled studies in the English language were
included. Studies were grouped according to the outcomes measured (UA versus non-UA
anatomical parameters).

To find relevant studies, the “Google Scholar” and “PubMed” online databases were
searched in December 2022. The search strategy included keywords related to OSA and
ultrasonography: (“sleep apnea*” OR “sleep-disordered breathing” OR “sleep-related
breathing” OR OSA) AND (ultrasound* OR ultrasonography* OR sonography*). The
titles and abstracts of the retrieved records were then screened to determine eligibility for
inclusion. The full texts of eligible studies were obtained, and the following data were
extracted: participants’ characteristics, ultrasound parameters measured, patients’ state of
consciousness during measurement, and results comparing OSA to controls or comparing
between different OSA severity categories. No synthesis was undertaken because of the
limited available evidence and the heterogeneity in the ultrasonographic measurements.
Instead, the data are presented narratively and in a tabular format. Images were obtained
using a portable Philips Lumify ultrasound in a healthy volunteer to provide visualization
of the most commonly used techniques for the scanning of UA anatomical parameters.
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3. Results

The data extracted from the included studies were classified according to the outcomes
into UA and non-airway parameters and were subsequently tabulated (Table 1). A more
thorough narrative explanation, along with some technical standards and images, are
presented in this section.

3.1. Ultrasound of the Upper Airway

As mentioned before, OSA is characterized by recurrent periods of upper airway
occlusion during sleep. Some OSA patients can present with clinically obvious skeletal
anatomic variations such as micrognathia or retrognathia. Additional clinical physical
evaluation of the upper airway region is focused on the tongue’s size and its hiding of the
soft palate and tonsil size.

When examining the structures of the upper airway, its anatomical variations and
possible predisposition for OSA [26] have been an early target for radiographic studies.
There are several significant limitations to conventional cephalometrics with standardized
lateral radiograph of the head and neck. Moreover, a meta-analysis of this method showed
a limited value and only one cephalometric variable, mandibular body length, has a clin-
ically meaningful correlation with the severity of sleep apnea [27]. This knowledge has
recently been revised in the latest systematic review and meta-analysis on anatomical deter-
minants as mandibular length is not considered an important factor for OSA; the primary
anatomical determinants of upper airway mechanical stability are hyoid position, tongue
size, pharyngeal length, and obesity measures [28]. Three-dimensional magnetic resonance
imaging (MRI) has also been suggested for the identification of craniofacial risk factors for
obstructive sleep apnea [29], but it brings the question of cost-effectiveness. Even though
ultrasound of the upper airway has already been broadly used in airway management, it
is only recently that Osman et al. presented anatomical points of sonographic interest for
sleep apnea patients [30].

3.1.1. Tongue Parameters (Figures 1 and 2)

The tongue is one of the most common anatomical locations for an obstruction of the
upper airways, blocking them through its increased volume and/or a fallback position [31].
One of the most frequently used methods in the practice of sleep medicine as a first
step to clinically identify patients at a high risk for sleep apnea is the Friedman tongue
position (FTP) [32], relative to the tonsils/pillars, uvula, soft palate, and hard palate. Non-
echographic imaging studies investigating tongue anatomy in OSA patients have mainly
focused on tongue volume, fat distribution, and muscle activity [33]. The high cost and the
radiation of computed tomography (CT) and magnetic resonance imaging (MRI) discourage
the scaling of the use of these imaging techniques in sleep apnea patients.

Yu et al. used ultrasonography to quantify tongue fat in OSA patients [34]. Their
study was carried out with a basic hypothesis that a higher amount of tongue fat would
result in a higher echo intensity and, consequently, OSA patients would exhibit a higher
echo intensity of ultrasonics. The results indicated that OSA patients tended to have a
higher tongue fat percentage depicted in ultrasound, which was also supported by MRI
analysis. The amount of tongue fat in OSA cases was higher in both fat and lean patients in
comparison to the controls, suggesting that tongue fat is a potential predictor of OSA [34].

Besides this qualitative evaluation of the tongue, researchers have studied several
other markers and dimensions in this anatomical region. Total sagittal thickness (TSag)
(submental skin to tongue dorsum), tongue muscle sagittal thickness (TMSag), submental
fat sagittal thickness (SFSag), and submental fat transverse thickness (SFTrans) parameters
did not show significant differences during awake and drug-induced sleep states [35]. On
the contrary, when comparing US measurements at rest and during Müller’s maneuver
(MM), significantly higher diameters and tongue volumes were detected in patients with
OSA, both at rest and during MM, compared to the control group [36]. Chen et al., in an
earlier study, performed a US quantitative assessment of the retroglossal airway in OSA
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patients and concluded that the thickness of the tongue base during MM is a potential
indicator for OSA severity [37].
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Another anatomical marker that is often studied along with the dimensions of the
muscle itself is the distance between the two lingual arteries (DLA). Lahav et al. used
an ultrasonic technique to explore the mucosa, connective tissues, muscles, and blood
vessels of 41 male participants [38]. The analysis suggested that a distance of more than
30 mm between the lingual arteries increases the chances of OSA. This study also observed
a correlation between BMI and OSA; however, the correlation was not as strong as that of
the lingual distance of the vessels. In the aforementioned study by Abuan et al. [35], DLA
elongated significantly during drug-induced sleep and had a positive correlation with AHI
and BMI.

More recently, Hussein et al. conducted a study on 90 participants, including both
obese and non-obese patients. Parameters like DLA, retro lingual diameter (RLD), and
tongue base thickness (TBT) were measured [39]. The results indicated that DLA and TBT
were significantly higher and RLD was significantly lower in OSA patients than in the
control. In addition, the increase in DLA and TBT was directly related to the severity of
OSA, suggesting that both parameters could be useful for diagnosing the intensity of the
disease. Lun et al. also studied ultrasonic anatomical characteristics of the oropharynx and
looked for potential markers of OSAS. Among several measurements, lingual height, the
anatomical distance between the mylohyoid muscle and the palate, was a significant factor
for determining the severity of OSAHS patients independent of age, sex, and BMI [40].

By exploiting ultrasound’s capability for dynamic measurements of muscle contraction,
Kwan et al. found good consistency and agreement between ultrasound and MRI in
measuring posterior tongue displacement in healthy patients and patients with obstructive
sleep apnea [41]. Manlises et al. evaluated both tongue dimensions and movements. Their
results indicated that tongue movements were severely restricted in moderate-to-severe
OSA cases, but a bidirectional motion could still be observed in mild OSA cases. Moreover,
significantly higher tongue values were detected during MM and OSA patients had a
higher mid-sagittal tongue area compared to the controls [42].

Arens et al. investigated the use of ultrasound shear-wave elastography (US-SWE)
as a quantitative tool to measure tongue muscle activation during selective hypoglossal
stimulation therapy (sHNS) and found significant differences during contraction only on
the side of stimulation [43]. Another group used a novel ultrasonographic marker, the
mean hyoid bone excursion (HBE), to not only visualize the response to treatment but also
to assist the programming of hypoglossal nerve stimulation [44]. Recently Curado et al.
used ultrasound to determine whether changes in tongue morphology under selective
hypoglossal stimulation in OSA were associated with alterations in airway patency during
sleep when specific portions of the hypoglossal nerve were stimulated. The authors
demonstrated that HNS-induced responses in tongue morphology during wakefulness
showed specific traits in ultrasound and correlated with airway patency responses during
sleep [45].

This ability to quantify the morphologic changes of the tongue, together with move-
ment in three dimensions, gives sHNS a more targeted character. Objective measurements of
tongue muscle movement and activation undoubtedly present some difficulties due to the
lack of a well-established technique, but these non-invasive methods provide new possibili-
ties to distinguish and characterize responders from non-responders in hypoglossal nerve
stimulation therapy as a sort of pre-treatment screening. Moreover, simultaneous ultrasono-
graphic evaluation of changes in tongue morphology under selective hypoglossal nerve
therapy can act as guidance for the optimal positioning and adjustment of the electrodes.

3.1.2. Tonsils

Enlarged tonsils can result, through airway obstruction, in difficulties in breathing,
thereby frequently leading to snoring and sleep breathing disorders. Enlarged tonsils
caused by tonsillitis are especially common in children who suffer from sleep apnea and
are one of the indications for tonsillectomy [46]. Less frequently, enlarged tonsils can also
cause sleep apnea or snoring in adults as well [47,48].
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In the past, but also in more recent studies, different scales and anatomical criteria, like
Brodsky’s grading scale [49,50], Archimedes’ principle [51], and the Ellipsoid formula [52],
have been applied to estimate the size of the tonsils, especially in children who suffer from
snoring and apneas. However, novel and emerging techniques based on ultrasonics are
considered the most accurate and efficient [53]. Ultrasonics can be used in both children
and adults for measuring tonsils. For instance, Mengi et al. measured the size of tonsils in
50 children and 35 adults before and after tonsillectomy [54]. In both children and adults,
the ultrasonics method had a moderate correlation with Friedman grading, which is a
standard clinical assessment of tonsil size. In a recent systematic review of PoCUS for
screening OSA in the pediatric population, it was concluded that tonsil volume, calculated
using ultrasound, correlated with surgical specimens, but not with OSA [55].

3.1.3. Pharyngeal Parameters (Figure 3)

It has been proposed that a predominant anatomical component driving airway nar-
rowing in apneic people is the thickness of the lateral parapharyngeal muscle walls, as
shown on MRI [56]. Liu et al. used a systematic protocol for performing sonographic
measurements targeting lateral pharyngeal wall thickness (LPWT) [57]. Their method
showed a reproducibility of 90%, and LPWT correlated fairly to moderately (r = 0.37) with
OSA severity even after correction for demographic variables. However, the authors re-
ported that sonographic methods could overestimate LPW size, in comparison to magnetic
resonance imaging (MRI)-based techniques.

Diagnostics 2023, 13, x FOR PEER REVIEW 7 of 17 
 

 

 

 

Figure 3. Lateral approach: lateral parapharyngeal wall thickness. Internal carotid artery (ICA). 

In a more recent study, Molnár et al. used a combination of US LPWT values and 

anthropometric parameters to achieve a 93% effectiveness in OSA prognostication in one 

hundred patients [58]. In children, Yuen et al. compared the efficiency of ultrasonic tech-

niques with MRI in measuring LPW size [59]. Their study consecutively recruited 34 chil-

dren of ages 6 to 11. The results indicated a correlation of 0.72 between the measurements 

taken via ultrasonic and MRI-based techniques, indicating a strong agreement between 

the two methods in the oblique plane. 

Hussein et al. showed a statistically significant increase in the lateral parapharyngeal 

wall thickness (LPWT) in OSA patients compared to controls [60]. Similarly, a statistically 

higher distance between lingual arteries (DLA) was also observed in OSA patients. In ad-

dition, OSA patients showed a significant decrease in retropalatal pharynx transverse di-

ameter (RPD). The value of this latter ultrasonographic marker was shown in an older 

study: the diameters of the retro-glossal (RG) and retro-palatal (RP) regions were meas-

ured via submental US upon expiration during tidal breathing, forced inspiration, and 

Müller’s maneuver (MM) in one hundred and five consecutive referrals for suspected 

OSA [61]. Compared to non-OSA and mild-to-moderate OSA patients, those with severe 

OSA had a narrower RP diameter in all three maneuvers.  

3.2. Non-Airway Parameters 

Along with airway parameters, some non-airway parameters, including the thick-

ness of carotid intimal media and mesenteric fat, the diameter of the brachial artery (BA), 

flow dynamics of peripheral blood, ocular blood flow, and diaphragm, have also been 

studied for their association with OSA through ultrasound.  

3.2.1. Carotid Intima–Media Thickness 

Numerous studies have demonstrated the association of OSA with an increased risk 

of cardiovascular diseases. An increase in carotid intima–media thickness is an 

Figure 3. Lateral approach: lateral parapharyngeal wall thickness. Internal carotid artery (ICA).

In a more recent study, Molnár et al. used a combination of US LPWT values and
anthropometric parameters to achieve a 93% effectiveness in OSA prognostication in one
hundred patients [58]. In children, Yuen et al. compared the efficiency of ultrasonic
techniques with MRI in measuring LPW size [59]. Their study consecutively recruited
34 children of ages 6 to 11. The results indicated a correlation of 0.72 between the mea-
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surements taken via ultrasonic and MRI-based techniques, indicating a strong agreement
between the two methods in the oblique plane.

Hussein et al. showed a statistically significant increase in the lateral parapharyngeal
wall thickness (LPWT) in OSA patients compared to controls [60]. Similarly, a statistically
higher distance between lingual arteries (DLA) was also observed in OSA patients. In
addition, OSA patients showed a significant decrease in retropalatal pharynx transverse
diameter (RPD). The value of this latter ultrasonographic marker was shown in an older
study: the diameters of the retro-glossal (RG) and retro-palatal (RP) regions were measured
via submental US upon expiration during tidal breathing, forced inspiration, and Müller’s
maneuver (MM) in one hundred and five consecutive referrals for suspected OSA [61].
Compared to non-OSA and mild-to-moderate OSA patients, those with severe OSA had a
narrower RP diameter in all three maneuvers.

3.2. Non-Airway Parameters

Along with airway parameters, some non-airway parameters, including the thickness
of carotid intimal media and mesenteric fat, the diameter of the brachial artery (BA), flow
dynamics of peripheral blood, ocular blood flow, and diaphragm, have also been studied
for their association with OSA through ultrasound.

3.2.1. Carotid Intima–Media Thickness

Numerous studies have demonstrated the association of OSA with an increased risk
of cardiovascular diseases. An increase in carotid intima–media thickness is an indepen-
dent marker of atherosclerosis. Apaydin et al. used B-mode ultrasonography and found
that increased carotid intima–media thickness was correlated with OSA [16]. In another
study comprising 156 OSA patients, Ciccone et al. investigated the correlation between
OSA duration and severity with carotid intima–media thickness through ultrasound. In
patients with severe and long-lasting OSA, the value of carotid intima–media thickness
was greater compared to controls [62]. In an ultrasonographic study performed by Altin
et al., it was observed that the value of carotid intima–media thickness was significantly
higher in severe OSA patients compared to moderate OSA patients [63]. Wattanakit et al.
reported a significant connection between increased carotid intima–media thickness mea-
sured using ultrasound and OSA severity; but multivariate adjustments for demographic
and metabolic characteristics reduced the correlation [64]. These studies supported the
association between OSA and carotid intima–media thickness and suggest the value of an
ultrasound screening test as a diagnostic marker for OSA.

Chami et al. measured the diameter of the brachial artery and peripheral blood flow
dynamics using flow-mediated dilation [65]. The severity of OSA was found to be positively
correlated with increased brachial diameter. However, no positive correlation was observed
between OSA and flow-mediated dilation.

3.2.2. Adipose Tissue

Previous research has revealed that higher visceral fat deposition is crucial for deter-
mining the risk of OSA [66,67], and the quantity of visceral fat is evaluated using cross-
sectional imaging, such as MRI and CT. A significant association (r = 0.8) was observed
between mesenteric fat thickness (MFT) evaluated by ultrasonography and total visceral
adiposity measured by MRI in a pilot investigation of 37 Chinese patients [68]. According to
a more recent publication by Liu et al., a positive correlation was found between MFT and
OSA after adjusting for factors like age, sex, BMI, neck circumference, and preperitoneal
and subcutaneous fat thickness [69]. Interestingly, they found that MFT, rather than the
apnea–hypopnea index, was the major independent determinant of metabolic syndrome in
individuals with suspected OSA, particularly in non-obese patients. This study showed
that ultrasound is a useful tool for measuring mesenteric fat thickness, which means that it
could also serve as a more specific testing method for the connection between OSA and
metabolic disorders.
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Çetin et al. revealed, through ultrasonic analysis, that abdominal fat index (AFI)
correlates with AHI and both increase with increasing severity of OSA [70]. Therefore,
both indices can be combined in OSA predictions. Their study included 104 individuals
(73 males and 31 females) aged 23 to 73. AFI was calculated as the ratio (Pmax/Smin)
between maximum preperitoneal fat thickness (Pmax) and minimum subcutaneous fat
thickness (Smin). Previously, Tokunaga et al. also calculated this ratio in OSA patients
using MRI [71]. However, measuring the ratio using ultrasonics was considered by the
authors as more accurate and easier to implement.

Recently, Molnar et al. studied the predictive role of ultrasonographic-measured sub-
cutaneous adipose tissue in the pathogenesis of OSA with the use of artificial intelligence;
the presence of upper airway obstruction in drug-induced sleep endoscopy was compared
to ultrasound measurements of subcutaneous adipose tissues (SAT) in the regions of the
neck, chest, and abdomen. Among these measurements, the thickness of the chest SAT was
of the same importance as BMI in the prognosis of OSA, and the thickness of abdominal
SAT measured 2 cm above the umbilicus was shown to be the most helpful prognostic
parameter. It should be noted that while submental adipose tissue was anatomically vital in
upper airway obstruction, the analysis showed a limited role in the prediction of OSA [72].
This agrees with the results of a previous study, which reported that subcutaneous fat in
the neck region and parapharyngeal fat in the airway vicinity were not correlated with the
presence of OSA [73].

3.2.3. Diaphragmatic Parameters

Pazarlı et al. measured diaphragm thickness in OSA patients [74]. Thickness was
measured as the distance between the peritoneum and the pleura. This study included
108 individuals (67 males and 41 females). The results indicated that diaphragm thickness
was significantly higher in OSA patients in comparison to controls during both inhalation
and exhalation. Moreover, diaphragm thickness also correlated (r = 0.4) with the severity
of the disease. Recently, Molnár et al. developed an algorithm based on diaphragm
parameters [75]. The authors also studied movement and further developed a statistical
tool to predict OSA. Their study included 100 patients, with 64 confirmed cases of OSA. The
authors observed that OSA patients had significantly different thicknesses of the right and
left hemidiaphragm compared to controls. Moreover, the changes in diaphragm thicknesses
were positively correlated with AHI. Further, based on diaphragm thickness, age, sex, and
some other demographic variables, the authors developed a logistic regression algorithm
to predict OSA with sensitivity and specificity values of 91% and 81%, respectively.
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Table 1. Summary of important studies that reported the use of point-of-care ultrasound in obstructive sleep apnea.

Ref Individuals State of Consciousness Ultrasound Parameters OSA Outcomes Main Findings

Airway Parameters

[34] 83 adults Awake Tongue echo intensity AHI Tongue echo intensity was significantly associated with higher
AHI (adjusted rho = 0.27).

[35] 26 adults Awake and
drug-induced sleep Tongue parameters AHI

During drug-induced sleep, the tongue muscles become
thinner and the space between the two lingual arteries is
significantly widened. The latter had a significant positive
correlation with AHI (r = 0.51).

[36] 100 adults Awake Tongue parameters OSA (AHI ≥ 5/h) In the prognosis of OSA, a US sensitivity of 94% and a
specificity of 91% were detected.

[37] 40 adults Awake Tongue base thickness OSA (AHI ≥ 5/h) Tongue base thickness during Müller’s maneuver was an
independent predictor of OSA (OR = 2.11, 95% CI: 1.15, 3.87).

[38] 41 male adults Awake Tongue parameters Moderate-to-severe OSA
(AHI > 15/h)

Distance between lingual arteries >30 mm had a sensitivity of
80% and a specificity of 67% for diagnosing
moderate-to-severe OSA.

[39] 90 adults Awake Tongue parameters AHI DLA and TBT were positively correlated with AHI.

[40] 171 adults Awake Tongue parameters OSA severity (mild,
moderate, and severe)

Lingual height was an independent predictor of OSA severity
(OR = 1.14, 95% CI: 1.04, 1.24).

[41] 42 adults Awake Tongue movement - Agreement between MRI and ultrasound of posterior tongue
displacement during inspiration.

[42] 56 adults Awake Tongue parameters and
tongue movement OSA (AHI ≥ 5/h) OSA patients had a larger midsagittal tongue area and

restricted movement of the tongue muscles.

[43] 18 adults Awake Ultrasound shear-wave
elastography - Median shear-wave velocity increased during selective

hypoglossal stimulation therapy.

[44] 17 adults Awake Tongue movement (hyoid
bone excursion)

Response after HNS
(reduction in AHI > 50% and
AHI < 20/h)

HBE > 0.85 cm had a sensitivity of 83.3% and a specificity of
80.0% in predicting response after HNS.

[45] 12 adults Awake Tongue parameters and
tongue movement

Change in airflow
during sleep

Tongue protrusion with preservation of tongue shape
predicted increases in patency during selective hypoglossal
stimulation therapy.
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Table 1. Cont.

Ref Individuals State of Consciousness Ultrasound Parameters OSA Outcomes Main Findings

[54] 50 children and
35 adults Awake Tonsil’s size - A high correlation was observed between ultrasound

measurements and Friedman’s parameters.

[57] 76 adults Awake LPW thickness AHI LPWT correlated fairly to moderately with OSA severity
(r = 0.37) but could lead to overestimation.

[58] 100 adults Awake LPW thickness OSA
A combination of US measurements of LPW and
anthropometric parameters had a sensitivity of 93% and a
specificity of 94% for the detection of OSA.

[59] 34 children Awake LPW thickness - Ultrasound-based estimations were similar to MRI.

[60] 43 adults Awake LPW thickness and other
upper airway parameters OSA (AHI ≥ 5/h)

OSA patients had increased LPWT (sensitivity of 100%,
specificity of 60%) and DLA (sensitivity of 90.9%,
specificity of 60%), with a decreased RPD (sensitivity of 54.5%,
specificity of 100%).

[61] 105 adults Awake Upper airway parameters Severe OSA (AHI ≥ 30/h)
Change in retropalatal diameter during Müller’s maneuver
and neck circumference had a sensitivity of 100% and a
specificity of 65% for predicting severe OSA.

Non-airway parameters

[16] 87 adults Awake Carotid arteries OSA (AHI ≥ 5/h) Significant association between OSA and carotid
intima–media thickness.

[62] 156 adults Awake Carotid arteries AHI and years from
symptom onset

Association between OSA severity (r = 0.51) and duration
(r = 0.34) and carotid intima–media thickness.

[63] 30 adults Awake Carotid arteries OSA (AHI ≥ 5/h) Association between OSA severity and carotid
intima–media thickness.

[64] 985 adults Awake Carotid arteries RDI Weak correlation between respiratory disturbance index and
carotid intima–media thickness.

[65] 682 adults Awake Branchial artery AHI and % TST with
spO2 < 90%

Baseline brachial artery diameter was significantly associated
with both the apnea–hypopnea index and the
hypoxemia index.

[69] 149 adults Awake Adipose tissue AHI Positive correlation of AHI with mesenteric (r = 0.43) and
preperitoneal (r = 0.3) fat thickness.

[70] 104 adults Awake Adipose tissue AHI Statistically significant correlation between AFI and
AHI (r = 0.23).
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Table 1. Cont.

Ref Individuals State of Consciousness Ultrasound Parameters OSA Outcomes Main Findings

[72] 100 adults Awake Subcutaneous adipose tissue OSA (AHI ≥ 5/h)
Anthropometric data, blood test parameters, and US SAT
measures had a sensitivity of 100% and a specificity of 91.7%
for predicting OSA.

[74] 108 adults Awake Diaphragm AHI
Diaphragm thickness was higher in OSA patients and
positively correlated with disease severity (r = 0.41 for
end-expiratory, r = 0.45 for end-inspiratory).

[75] 100 adults Awake Diaphragm OSA (AHI ≥ 5/h)
A combination of diaphragmatic dimensions, diaphragm
dilation, age, sex, and BMI predicted the presence of OSA with
91% sensitivity and 81% specificity.

OSA, obstructive sleep apnea; AHI, apnea–hypopnea index; US, ultrasound; OR, odds ratio; CI, confidence interval; DLA, distance between lingual arteries; TBT, tongue base thickness;
MRI, magnetic resonance imaging; HNS, hypoglossal nerve stimulation; HBE, hyoid bone excursion; LPW, lateral pharyngeal wall; RPD, retropalatal pharynx transverse diameter; RDI,
respiratory disturbance index; TST, total sleep time; AFI, abdominal fat index; SAT, subcutaneous adipose tissue; BMI, body mass index.
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4. Discussion

OSA is a sleep disorder that affects individuals of all ages and genders. Accurate and
timely diagnosis are important aspects as OSA is associated with several other serious
diseases such as cardiorespiratory disorders [76].

The first solid indication for a possible need to screen the population for OSA came
through the results of the Wisconsin Sleep Cohort Study (WSCS), a National Institutes
of Health (NIH)-funded epidemiologic research project conducted by the University of
Wisconsin’s Specialized Center of Research in Cardiopulmonary Disorders of Sleep [77].

This study monitored 1522 randomly selected individuals for two decades to establish
the total societal burden of sleep-disordered breathing. Mild OSA was reported in 17% of
adults, and 6% of adults had moderate-to-severe OSA.

A recent publication of the US Preventive Services Task Force (USPSTF) recommen-
dation statement on screening for obstructive sleep apnea has been a systematic effort
to address the high public health risk of untreated patients and sets a steppingstone for
future research [78]. A combination of screening questionnaires, such as the Epworth
Sleepiness Scale, the STOP questionnaire (snoring, tiredness, observed apnea, and high
blood pressure), the STOP-Bang questionnaire (STOP questionnaire plus body mass index,
age, neck circumference, and gender), the Berlin Questionnaire, and clinical factors, such
as body mass index, neck circumference, and blood pressure, were proposed as a set of
tools to be used by primary care providers. The purpose is to try to identify asymptomatic
individuals or individuals with underrecognized symptoms. Further attention is currently
being paid in research to specific groups of individuals who are more directly vulnerable to
undiagnosed sleep apnea and who would benefit from a more thorough evaluation and a
targeted intervention.

Professional drivers are such a population who show a higher prevalence of OSA
compared to the general population, given that drivers with OSA show an increased risk
for car accidents [79]. A retrospective review of all commercial driver medical examinations
reported an overall positive OSA screening yield of 20.1% [80].

Patients on a surgical list are another target population. As previously mentioned in
this manuscript, a careful screening during preoperative assessment along with possible
initiation of appropriate treatment could assist in avoiding respiratory and cardiovascular
complications and improve clinical outcomes [81].

Apart from the use of specialized ultrasound tests by anesthetists in these preopera-
tive settings, PoCUS has already been broadly and diversely utilized in a wide range of
specialties for the evaluation of different systems and pathologies [82].

Several studies have reported the use of ultrasound to measure the association of
OSA with different airway and non-airway parameters. However, limited scientific work
has been conducted so far to evaluate the specificity and effectiveness of PoCUS as OSA
screening in a larger population. The systematic review and meta-analysis by Singh et al.
in 2018 evaluated the utility of surface ultrasound measurements and identified several
airway and non-airway parameters with moderate to good correlation with OSA diagnosis
in the general population [83]. In the pediatric population, Burns et al. recently conducted a
systematic review of PoCUS for screening of OSA. They also came to a positive conclusion
regarding the correlation of ultrasonographic markers with other well-established reference
measurements [55]. However, as mentioned by the authors, most of the results were
based only on a small subset of studies and the increased heterogeneity decreased the
generalizability and application of some of the PoCUS methods in screening settings.

Moreover, we must be aware that ultrasound examination has not yet been evaluated
for the measurement of other determinants of the pathophysiology of sleep apnea, such
as loop gain and arousal threshold. Further exploitation of the advantages of ultrasono-
graphic dynamic measurements, such as shear-wave elastography and circulation flow
measurements, will be needed for a more systematic approach to diagnose OSA patients.
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5. Conclusions

We can conclude that several upper airway or non-airway anatomical parameters mea-
sured using ultrasonography show good diagnostic accuracy, either alone or in combination
with other demographic and anthropometric indices, in predicting OSA; these parameters
also correlate well with AHI and other measures of disease severity and, thus, may have
significant value for future screening of high-risk populations. Although the results are
promising, more studies with larger samples and more standardized methodology are
required before these measures are incorporated into clinical practice. Studies included in
this review could serve as a basis for the development of new research pathways.
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