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Abstract: Current approaches to breast cancer therapy include neoadjuvant systemic therapy (NST).
The efficacy of NST is measured by pathologic complete response (pCR). A patient who attains
pCR has significantly enhanced disease-free survival progress. The accurate prediction of pCR in
response to a given treatment regimen could increase the likelihood of achieving pCR and prevent
toxicities caused by treatments that are not effective. Th early prediction of response to NST can
increase the likelihood of survival and help with decisions regarding breast-conserving surgery. An
automated NST prediction framework that is able to precisely predict which patient undergoing
NST will achieve a pathological complete response (pCR) at an early stage of treatment is needed.
Here, we propose an end-to-end efficient multimodal spatiotemporal deep learning framework
(deep-NST) framework to predict the outcome of NST prior or at an early stage of treatment. The
deep-NST model incorporates imaging data captured at different timestamps of NST regimens, a
tumor’s molecular data, and a patient’s demographic data. The efficacy of the proposed work is
validated on the publicly available ISPY-1 dataset, in terms of accuracy, area under the curve (AUC),
and computational complexity. In addition, seven ablation experiments were carried out to evaluate
the impact of each design module in the proposed work. The experimental results show that the
proposed framework performs significantly better than other recent methods.

Keywords: multimodal deep learning framework; automated neoadjuvant systematic therapy
prediction; 3D-CNN multimodal framework

1. Introduction

In the U.S., about 1 in 8 women (13%) are expected to develop invasive breast cancer
during their life. Breast cancer is the most diagnosed cancer among U.S. women, accounting
for an estimated 30% of newly diagnosed cancers, and breast cancer ranks second amongst
the leading causes of cancer-related death in women in the U.S. [1]. Current approaches
to breast cancer therapy include neoadjuvant systemic therapy (NST), which has several
potential advantages including avoiding mastectomy by reduction in tumor size and
downstaging the axilla, which may obviate the need for axillary lymph node dissection
and its potential complications. In addition, NST also permits the in vivo assessment of
drug efficacy with the possibility to opt for a different treatment approach if the tumor is
not responding. The efficacy of NST is measured by pathologic complete response (pCR).
A patient who attains pCR has significantly enhanced disease-free progress survival. The
accurate prediction of which patients will achieve pCR in response to a given treatment
regimen could increase the likelihood of achieving pCR and prevent toxicities caused by
treatments that are not effective [2].
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The response to NST is traditionally assessed by a combination of physical exams
and dedicated breast imaging exams, most commonly dynamic contrast enhance magnetic
resonance imaging (DCE-MRI). Radiologists typically assess this response by measuring
changes across a limited handful of clinical imaging parameters on DCE-MRI over the
course of treatment, such as a tumor’s largest diameter (LD) or its pattern of contrast
agent uptake. More recently, hand-crafted radiomic imaging features [3–6] have been
shown to predict pCR from pre-treatment DCE-MRI data by characterizing the texture of
the tumor and micro-environment. Nonetheless, radiomics assessment is limited by the
need to pre-define meaningful and predictive hand-crafted features to assess the attributes
such as lesion shape and image texture, and radio mic models are constrained by the
discriminability of a finite and pre-defined pool of features.

Recent advancements in artificial intelligence (AI), especially deep learning (DL) [7–9],
have shown a significant improvement compared to the conventional approaches [10,11]
in the prediction of pathological results through radiological data. DL has become the
most effective technique for various applications such as prediction, classification, object
detection, and image segmentation. DL makes it possible to automatically extract features
from MRI exams instead of engineered features, and it achieves impressive performance
for the prediction of the response to NST [7,8]. Data obtained from tumor samples through
biopsies can also shed light on cellular biomarkers such as HER2, ER, and PgR. These
biomarkers can help guide clinicians’ choices on which NST to prescribe. For example, a
patient with ER-positive cancer may respond well to Tamoxifen, a hormone therapy that
targets ER-positive cells. On the other hand, if a patient is ER-negative, they will fail to
respond to this drug and may require chemotherapy. Combining information from different
modalities, e.g., MRI exams and tumor pathological features can help with the development
of robust machine/DL algorithms to help predict the response to NST, as shown by some
researchers. For example, Ravichandran et al. [7] introduced a deep learning-based unique
patch-based response prediction approach that allows for the visualization of specific
spatial regions and image patterns associated with poor or favorable responses to NST.
They introduced a CNN model to learn the features from the pre- and post-contrast pre-
treatment imaging and yielded an AUC of 0.77. In addition, they also validated that
the incorporation of the HER2 biomarker features with MRI could yield an AUC of 0.85.
Duanmu et al. [12] further showed that convolving the clinical features with the imaging
features learned in the CNN instead of concatenating them could yield an accuracy of 0.83
and an AUC of 0.80. However, these studies considered only pre-NST MRI data along
with clinical reports. Therefore, these approaches neglected the structural and functional
tumor changes on DCI-MRI over the course of NST. The structural and functional changes
in the tumor microenvironment at different stages of the NST regimen can better reflect the
therapeutic response [13,14].

We propose a multimodal spatiotemporal deep learning framework by incorporating
multimodal information for predicting the response of breast cancer to neoadjuvant therapy.
The proposed work has the following key contributions:

1. We develop a multimodal spatiotemporal deep learning by integrating the following
multi-modalities: imaging data with N-time stamps (pre-treatment, early treatment,
inter-regimen, prior to surgery, etc.), molecular data (ER, PgRPos, HRPos, BilateralCa,
Laterality, HER2Pos, HR_HER2_Category, and HR_HER2_Status), and demograph-
ical data (age and race). We demonstrate the influence of each time point on the
predictions made by the network through ablation experiments.

2. We design a novel 3D-CNN-based deep learning framework by introducing a cross-
kernel feature fusion (CKFF) module.

3. The CKFF module makes the architecture more learnable at a lower computational cost
by paying attention to multiple receptive fields to extract the spatiotemporal features.

4. The efficacy of the proposed framework is tested on a challenging breast cancer data
set, ISPY-1 [15], in terms of accuracy and AUC.
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2. Methodology

In computer vision applications, the conventional CNN models VGG 16-Net [16],
VGG19-Net [16], and ResNet [17] have demonstrated impressive results. On the other
hand, a deep, dense network prevents these models from preserving important aspects of
breast cancer MRI scans. Progressive convolution and pooling operations may cause the
deep, dense CNN architectures to overlook the cancerous regions’ micro-level features [18].
In addition, large data samples are required for deep dense CNN architectures to learn
important features. Profound CNN networks fail to learn appropriate features over smaller
datasets and endure overfitting [19,20]. Only a few samples in the benchmark datasets of
NST are available. Recently, Qu et al. [14] and Ravichandran et al. [7] proposed a deep
learning-based solution for NST prediction and overcame the issue of limited data samples
through data augmentation. Additionally, before supplying images to the network, they
used segmentation. Huynh et al. [21] also found a solution to the problem of overfitting by
combinining the LDA classifier with the transfer learning capabilities of VGGNet. However,
its two-stage framework makes the presented strategy challenging to implement in real-
time applications. We proposed an end-to-end multimodal spatitemporal deep learning
framework to extract spatiotemporal features from the MRI scans to predict the pCR
response of neoadjuvant treatment.

Proposed Method

The proposed multimodal spatiotemporal deep learning framework comprises four
parallel 3D-CNN networks along with clinical features, as shown in Figure 1. Specifically,
the 3D-CNN network is introduced to learn spatial and temporal features from the MRI
scans at a particular time-stamp. In addition, parallel 3D-CNN networks are used to
learn the structural and functional changes in the tumor microenvironment at four-time
stamps T1, T2, T3 and T4, as shown in Figure 1. Further, clinical reports’ features, including
molecular and demographical data, are processed to aid imaging features to enhance the
generalization of the deep-NST framework. Moreover, we used the LeakyReLU as an
activation function over the resultant features of each convolution layer.

The proposed deep-NST framework is trained by using two stages to predict the
outcome of the NST, as shown in Figure 1. The proposed deep-NST framework is initially
trained using MRI scans captured at four-time stamps (T1, T2, T3, and T4) and clinical
data. Further, knowledge of the 1st 3D-CNN network associated with early-stage MRI
scans (T1) is finetuned again with T1 MRI scans and clinical features. The motivation
behind developing this framework was to utilize the multimodal spatiotemporal features
of different time stamps along with clinical data to train deep learning methods. However,
the final prediction model only needed pre-NST MRI scans with clinical data and ensured
early-stage prediction for NST in breast cancer.
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Figure 1. The proposed deep-NST prediction framework architecture. Image sequences with different
time stamps (represented by T1, T2, T3, and T4) are processed through parallel 3D-CNN networks.
The feature outputs from all time stamps and clinical reports are added and processed by a final
soft-max layer. Further trained weights of the first 3D-CNN network are fine-tuned over image
sequences captured at the early stage of the treatment (T1) along with the clinical features. The
numbers in the image denote the size of the feature dimension at each layer.

3. Experimental Results and Analysis

In this section, first we present the dataset and the implementation details. Further, the
experimental setups and experimental results are discussed. In addition, we explore the impor-
tance of each module of the proposed framework in the ablation study. Finally, we compare
the computational complexity of the proposed model with state-of-the-art approaches.

3.1. Dataset

To validate the effectiveness of the proposed deep-NST framework, we work with
the ISPY-1 [15] public dataset’s dynamic contrast-enhanced (DCE)-MRI images and non-
imaging clinical report information. The ISPY-1 dataset comprises a cohort of 207 patients,
out of which only 121 had MRI scans at all four-time points (pre-treatment, early treatment,
inter-regimen, and prior to surgery). The original dataset exhibited a significant disparity
in class distribution, with the majority of samples belonging to the non-responded (pCR0)
class, as shown in Figure 2. We noticed instances where certain patients underwent multiple
MRI scans at the same timestamp. To address the class imbalance and achieve a balanced
distribution for both classes, i.e., non-responded (pCR0) and responded (pCR1) to NST, we
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included multiple MRI scans captured at the same timestamp for the responding class as
shown in Figure 2. However, for the non-responding class, we considered only a single MRI
scan. Ultimately, we collected a total of 148 samples from 84 patients in the non-responding
class and 105 samples from 37 patients in the responding class for each timestamp. Addi-
tionally, we utilized ten non-imaging clinical features (age, race, ERPos, HRPos, PgRpos,
Her2MostPos, HR_HER2_CATEGORY, HR_HER2_STATUS, BilaterCa, and Laterality) from
the clinical data dictionary of the ISPY-1 trial. In this study, we focused on 121 patients from
the ISPY-1 trial, splitting them into a training set consisting of 84 patients with 182 data
samples, and a testing set comprising 37 patients with 71 data samples.

Figure 2. Data sample distribution in pCR0 and pCR1 classes of ISPY-1. In the original dataset, each
patient was represented by a single instance of MRI scans. However, in the balanced dataset, we have
made updates to include multiple MRI scans at the same time-stamp for patients who responded to
the NST.

3.2. Training and Implementation Details

We used two stages to train the proposed deep-NST framework: training with four-
time stamps NST MRI scans and clinical data and fine-tuning with only pre-NST MRI scans
and clinical data, as shown in Figure 1. The first stage is trained for 300 epochs, whereas the
second stage is finetuned by using 50 epochs. Moreover, final testing is done end-to-end by
utilizing pre-treatment NST MRI scans and clinical data captured at the initial stage of the
treatment to ensure the early-stage prediction for NST in breast cancer.

The publicly available ISPY-1 breast cancer dataset has MRI scans with different du-
rations. To overcome this issue, we use the temporal interpolation model (TIM) [22] to
normalize the length of the scan sequences to 60. The image sequences are normalized to
112 × 112 × 60 before using a spatiotemporal CNN model. To ensure a fair comparison
of CNN-based networks, we implemented the conventional deep learning models: VG-
GNet [16], and ResNet with 3D-CNN [17], and trained them over our experimental settings.
Moreover, we tested the effects of cross-entropy loss function over focal loss [23] by evalu-
ating the results of the proposed deep-NST with focal loss and named deep-NST+Focal.
All implementations use python 3.6 with Keras 2.3.1 and Tensorflow 2.1.0. We utilized
the SGD optimizer for training the models with a 0.001 learning rate, 0.9 momentum, and
0.01 weight decay. The cross-entropy loss function is used for network optimization.

3.3. Experimental Results Analysis

This section presents the experimental results of ISPY-1. We used the prediction
accuracy and AUC-ROC performance measures to evaluate the proposed deep-NST with
state-of-the-art NST approaches. The AUC-ROC curve represents the degree or measure of
separability. The AUC-ROC measures the capability of the model to distinguish between
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classes by analyzing the true positive response (TPR) against the false-positive response
(FPR). The TPR and FPR are calculated by using Equations (1) and (2).

TPR =
True Positive

Total no. o f data samples
(1)

FPR =
Flase Positive

Total no. o f data samples
(2)

Moreover, the prediction accuracy is calculated by the following Equation (3).

ACC =
Total no. o f correctly predicted samples

Total no. o f data samples
(3)

The evaluation results for proposed and conventional CNN models are reported
in Table 1. From Table 1, it is validated that the proposed deep-NST framework gains
significantly better performance than traditional as well as the current deep learning models
for NST. Particularly, the proposed deep-NST achieves 0.20% and 0.38% more AUC than
the 3D-VGGNet and 3D-ResNet CNN models, respectively. More detailed results in terms
of ROC for 3D-VGGNet, 3D-ResNet, and proposed deep-NST are illustrated in Figure 3. In
addition, for detailed class generalization, we have calculated the confusion matrices as
shown in Figure 4. From Figure 4b, it is clear that the 3D-ResNet is under-fitted compared
to the data and is not suitable for the NST due to limited data samples. In, addition,
when we observed the confusion matrices for the existing 3D-VggNet (Figure 4a) and
proposed deep-NST (Figure 4b), we saw a skew towards high accuracy in predicting the
non-responder patients over responder patients. This may be due to the original skewed
dataset distribution. In addition to accuracy and AUC, we also evaluated sensitivity (0.9024)
and specificity (0.7666). Sensitivity tells us the proportion of true positives that the model
correctly identified. It gives us an idea of how well the model detects the condition when it
is actually present. On the other hand, specificity measures the proportion of true negatives
that the model correctly identified. It helps us understand how well the model identifies
the absence of the condition.

(a) (b) (c)

Figure 3. ROC curves for pCR prediction models on the ISPY-1 dataset: (a) conventional 3D-VGGNet
(AUC = 0.68), (b) conventional 3D-ResNet (AUC = 0.50), and (c) proposed deep-NST (AUC = 0.88).
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(a) (b) (c)
Figure 4. Confusion matrices of (a) 3D-VGGNet, (b) 3D-ResNet, and (c) proposed deep-NST frameworks.

Table 1. The AUC score of various methods using the ISPY-1 dataset. Results above the midline are
feature-engineering methods. On the other hand, results below the line are DL-based.

Method AUC ACC

Volume [4] 0.73 N/A
FTV [5] 0.73 N/A
FTV and Varying PER and SER [6] 0.90 N/A

CNN and Feature Convolution [12] 0.80 N/A
CNN pre-post contrast [7] 0.85 N/A
3D-VGGNet * [16] 0.68 0.68
3D-ResNet * [17] 0.50 0.42
Deep-NST+Focal 0.88 0.79
Deep-NST+3DCNN 0.60 0.58
Deep-NST+3DInception 0.61 0.58
UniModal ST 0.84 0.72
Deep-NST 0.88 0.85

N/A indicates the information was not available. Here, * with 3D VGGNet and 3D ResNet represents that these
models are trained from scratch.

3.3.1. Discussion

In contrast to other methods, we highlight a reduced reliance on feature engineering
and manual segmentation (lesion segmentation) during image preprocessing to yield
comparable results to current state-of-the-art methods. For example, authors [4–6] rely
on precalculating the tumor volume or functional tumor volume as a feature before being
input into a machine learning classifier. This extra preprocessing step is costly. We rely
only on the raw DCE-MRI images and let the network learn the relevant image features
through back-propagation. Even compared to existing end-to-end DL methods [7,12,16,17],
AUC (0.88) outperforms the prior results. Moreover, our approach uses imaging data from
all four-time points in a patient’s NST regimens, which allows the proposed deep-NST to
outperform or match the current DL state-of-the-art methods [7,12,24] that rely on data
from the only one-time point.

3.3.2. Ablation Study

We have conducted seven ablation experiments to evaluate the importance of each
component step-by-step in the proposed deep-NST. First, the CKFF module’s effect is
tested by comparing it to the basic 3D convolution layer. The proposed CKFF module
is replaced by the 3D convolution of size 3 × 3 × 3 and named deep-NST+3DCNN. The
second study has been conducted to examine the CKFF module’s impact over parallel
multi-scale convolutional layers and is named deep-NST+3DInception. The other study has
been conducted to test the effect of multimodal information on clinical data and MRI data.
For this study, we used the information from the MRI imaging and called it a Unimodal ST.
The results of Unimodal ST are computed on imaging data only. The comparative results for
proposed deep-NST and ablation studies are tabulated in Tables 1 and 2. The results show
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that the cross-entropy loss function, the proposed CKFF module, and multimodal data play
an important role in the deep-NST framework. Specifically, the proposed framework has
0.23%, 0.23%, and 0.01%, higher AUC than deep-NST+3DCNN, deep-NST+3DInception,
and Unimodal ST. Similarly, the proposed framework gain 0.19%, 0.19%, and 0.02% higher
accuracy over deep-NST+3DCNN, deep-NST+3DInception, and Unimodal ST.

Table 2. The AUC and accuracy score for proposed framework and ablation studies using different
inputs of the ISPY-1 dataset.

Input AUC ACC

T1 MRI Scans 0.87 0.77
T1 MRI Scans + Clinical Data 0.85 0.82
T1 + T2 MRI Scans + Clinical Data 0.86 0.73
T1 + T2 + T3 MRI Scans + Clinical Data 0.87 0.77
T1 + T2 + T3 + T4 MRI Scans + Clinical Data 0.88 0.85

Moreover, we also investigated the effect of each timestamp MRI scan with the clinical
information. The experimental results are tabulated in Table 2. The results show that
combining all time stamps’ MRI scans with clinical information allows the network to learn
the pertinent features of the breast cancer image sequences and achieve better performance
in predicting the outcome of NST. More detailed results in terms of ROC and class-wise
confusion matrix are illustrated in Figures 5 and 6, respectively. This figure shows an
ablation study by including the time instances during the neoadjuvant regimen (inter-
regimen), gradually increasing the model’s performance.

(a) (b) (c) (d)

Figure 5. ROC curves for the proposed model on different inputs: (a) only T1 MRI scans; (b) T1 MRI
scans with clinical information; (c) T1 and T2 MRI scans with clinical information; and (d) T1, T2, and
T3 MRI scans with clinical information, over ISPY-1 dataset.

(a) (b) (c) (d)
Figure 6. Confusion matrices of the proposed model for different inputs: (a) only T1 MRI scans;
(b) T1 MRI scans with clinical information; (c) T1 and T2 MRI scans with clinical information; and
(d) T1, T2, and T3 MRI scans with clinical information, over ISPY-1 dataset.
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3.3.3. Complexity Analysis

This section represents the comparative study between the traditional 3D-CNN, pro-
posed deep-NST, and its variants: deep-NST+3DCNN, deep-NST+3dInception, and Uni-
modal ST (spatiotemporal) frameworks in terms of computational complexity. The total
number of parameters engaged in each network is presented in Table 3. The proposed
deep-NST has significantly fewer learnable parameters; 4 million (M) fewer than other
existing NST frameworks such as 3D-VGGNet; 225M, and 3D-ResNet; 311M. Furthermore,
deep-NST requires only 37 megabytes (MB) of memory storage, which is minor compared
to 3D-VGGNet; 1.8 gigabytes (GB) and 3D-ResNet; 2.5 GB. Additionally, the total number of
floating-point operations is much less for the proposed deep-NST than for the 3D-VGGNet
and 3D-ResNet models. Moreover, the proposed deep-NST requires 17M fewer parameters
than the deep-NST with a parallel multi-scale inception module. Similarly, the proposed
deep-NST needs 1363 MB less memory than the deep-NST with a parallel multi-scale
inception module.

Table 3. The computational complexity analysis for existing and proposed spatiotemporal deep
learning framework.

Method #Param. #Mem #FLOPS

3D-VGGNet [16] 225 MB 1.8 GB 5.52 × 103 G
3D-ResNet [17] 311.0 MB 2.5 GB 1.95 × 102 G
Deep-NST+Focal 4 MB 37.0 MB 30.5 G
Deep-NST+3DCNN 3.8 MB 31.3 MB 2.85 G
Deep-NST+3DInception 171.0 MB 1.4 GB 1.49 × 103 G
Unimodal ST 4 MB 36.6 MB 30.5 G
Deep-NST 4 MB 37.0 MB 30.5 G

Here, 3DInception is the 3D convolutional inception module [25,26].

This validates that the proposed CKFF module is cost-effective. Based on the experi-
mental results and the computational complexity reported in Tables 1 and 3, respectively,
we can conclude that the proposed deep-NST is the most effective and efficient DL-based
model for NST outcome prediction.

4. Conclusions

We present a compact and lightweight multimodal spatiotemporal deep learning
framework to predict breast cancer response to neoadjuvant therapy by incorporating
patients’ MRI, tumor molecular, and demographics features. MRI exams were obtained at
different stages of treatment. The proposed framework performs better than state-of-the-art
NST approaches. In addition, based on the conducted computational cost analysis, our
framework is cost-effective based on the number of parameters and FLOPS compared to
other models.
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