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Abstract: Obstructive sleep apnea (OSA) is multi-faceted world-wide-distributed disorder exerting
deep effects on the sleeping brain. In the latest years, strong efforts have been dedicated to finding
novel measures assessing the real impact and severity of the pathology, traditionally trivialized by the
simplistic apnea/hypopnea index. Due to the unavoidable connection between OSA and sleep, we
reviewed the key aspects linking the breathing disorder with sleep pathophysiology, focusing on the
role of cyclic alternating pattern (CAP). Sleep structure, reflecting the degree of apnea-induced sleep
instability, may provide topical information to stratify OSA severity and foresee some of its dangerous
consequences such as excessive daytime sleepiness and cognitive deterioration. Machine learning
approaches may reinforce our understanding of this complex multi-level pathology, supporting
patients’ phenotypization and easing in a more tailored approach for sleep apnea.

Keywords: cyclic alternating pattern; sleep texture; sleep apnea; polysomnography

1. Introduction

Sleep-disordered breathing (SDB) defines a heterogeneous group of sleep pathologies
encompassing obstructive sleep apnea (OSA), central sleep apnea (CSA), and other rarer
sleep-related breathing pathologies.

OSA is a world-wide-diffused disorder associated with serious multi-systemic
consequences.

It is estimated that around a billion adults suffer from mild-to-severe OSA while more
than 400 million adults are affected by moderate-to-severe OSA worldwide [1].

Conventionally, OSA is investigated by means of home-set nocturnal cardio-respiratory
recording, and diagnosis is based on the number of respiratory events occurring per hour of
sleep, as expressed by the apnea-hypopnea index (AHI). A minimum of 4 recording hours
is required to consider the sleep study reliable for diagnosis and, according to the number
of respiratory events, the clinical relevance is classified as mild (AHI: 5–14 events/h),
moderate (AHI: 15–30 events/h) or severe (AHI > 30 events/h).

As the condition is typically associated with both diurnal and nocturnal consequences,
their assessment is also required, according to current diagnostic criteria. In the Interna-
tional Classification of Sleep Disorders (ICSD-3), sleepiness, fatigue, insomnia, snoring,
subjective nocturnal respiratory disturbance and observed apneas, and associated medical
or psychiatric disorders support the diagnosis of OSA.
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Notably, the coexistence of other chronic diseases, especially cardiovascular disorders,
has been evaluated to assess prognosis, and the novel indicator of C-OSA (comorbid-OSA)
has been proposed to ease sleep clinicians in the evaluation of mortality risk in patients with
OSA [2]. In a bidirectional perspective, if the concurrence of other disabling pathologies
may worsen prognosis, intermittent hypoxia and sleep fragmentation induced by OSA can
increase the severity of comorbid cardiovascular and metabolic pathologies [3]. Recently,
the severity of OSA-associated sleep fragmentation, measured with the arousal index, has
been linked to increased coronary plaque burden, suggesting a direct association between
the extent of sleep instability and cardiovascular risk [4]. This observation is important, as
routinely PSG is not required for OSA diagnosis, increasing the risk of an under-rating of
the cardiovascular impact of the condition. Finally, C-OSA with cardiovascular diseases
may coexist with central-type respiratory patterns, such as Cheyne–Stokes breathing (CSB).
It has been recently proved that the remote monitoring of CPAP devices in OSA patients
may reveal early signs of incipient heart failure, such as long cycles of CSB [5]. The
tight association between clinical disorders and sleep apnea suggests that SDB should be
investigated in all patients.

2. The Limits of AHI

Once sleep apnea has been identified, it is important to measure severity with reli-
able methods. The predictive value of AHI has been evaluated in a real-world setting,
demonstrating a low sensitivity (19%) and a high specificity (84.4%) in the identification of
patients affected by mild, moderate or severe OSA [6]. AHI also fails in the identification of
OSA patients at a higher risk for diabetes, while the hypoxic burden appears more reliable
to predict the metabolic consequences of the disease [7]. Overall, AHI appears as a poor
indicator for disease severity and alternative measures are deemed necessary.

In Figure 1 we summarize the polysomnographic data of a 52-year-old obese Italian
woman (body mass index 42), with a personal history of arrhythmia and nocturnal sinus
pauses, complaining of snoring and non-refreshing sleep. Her cardio-respiratory recording
was consistent with a mild OSA (AHI 12.2 events/h). However, looking at the Sat O2
profile and the morphology of her apneas, we could ascertain that the hypoxic load of the
patient was compatible with a much more severe clinical condition and thus, regardless of
the number of respiratory events measured be the AHI, nocturnal non-invasive ventilation
was applied with clinical benefits.

In the latest years, increasing efforts have been dedicated to the identification of non-
AHI-dependent measures for OSA severity, the most significant being the Sleep Revolution
Project [8]. Furthermore, current definitions neglect the ‘OSA patients’ pathophysiologic
traits’, such as upper airway function, anatomical collapsibility, loop gain, arousal threshold,
and sleep structure.
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Figure 1. Example of a nocturnal pulse oximetry profile (upper part of the figure), with a detail on 
her nocturnal respiratory events (lower part of the figure), in a female patient affected by mild OSA 
(AHI 12.2 events/h). Despite the lower value of AHI, her hypopneas (highlighted in light green) 
were associated with severe drops in oxygen saturation and respiratory efforts. 
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Curiously, SDB occurs during sleep, but the recording of brain activity during sleep 

is not required for diagnosis. This contradiction is due to the high costs and demanding 
effort to carry out a complete video-polysomnography (PSG) recording, a burden which 
can be easily bypassed to screen a condition that affects nearly a billion people world-
wide [1]. However, it is well known that OSA strongly impacts the structural organization 
of the sleeping brain. PSG can be analyzed both at macro- and microstructure levels. Sleep 
macrostructure refers to conventional sleep architecture, which is composed of subse-
quent 30 s sleep epochs, belonging to different sleep stages, as firstly proposed by 
Rechtschaffen and Kales back in 1960 [9]. Conversely, sleep microstructure defines all the 
transients (e.g., sleep spindles, arousals, CAP) appearing during sleep and which are not 
forcibly confined in the rigid temporal domain of sleep epochs. 

Compared to healthy subjects, at the macrostructure level, patients with sleep apnea 
show reduced amounts of slow-wave sleep (SWS) and increased amounts of lighter sleep 
stages. Severe OSA also presents a longer latency to stage N3 compared to the mild and 
moderate subtypes [10]. 

Interestingly, while a paraphysiological drop in SWS is expected with aging, the ef-
fect of sleep apnea on stage N3 reduction appears much stronger [11]. Regardless of the 

Figure 1. Example of a nocturnal pulse oximetry profile (upper part of the figure), with a detail on
her nocturnal respiratory events (lower part of the figure), in a female patient affected by mild OSA
(AHI 12.2 events/h). Despite the lower value of AHI, her hypopneas (highlighted in light green)
were associated with severe drops in oxygen saturation and respiratory efforts.

3. OSA and Sleep Architecture

Curiously, SDB occurs during sleep, but the recording of brain activity during sleep is
not required for diagnosis. This contradiction is due to the high costs and demanding effort
to carry out a complete video-polysomnography (PSG) recording, a burden which can be
easily bypassed to screen a condition that affects nearly a billion people world-wide [1].
However, it is well known that OSA strongly impacts the structural organization of the
sleeping brain. PSG can be analyzed both at macro- and microstructure levels. Sleep
macrostructure refers to conventional sleep architecture, which is composed of subsequent
30 s sleep epochs, belonging to different sleep stages, as firstly proposed by Rechtschaffen
and Kales back in 1960 [9]. Conversely, sleep microstructure defines all the transients (e.g.,
sleep spindles, arousals, CAP) appearing during sleep and which are not forcibly confined
in the rigid temporal domain of sleep epochs.

Compared to healthy subjects, at the macrostructure level, patients with sleep apnea
show reduced amounts of slow-wave sleep (SWS) and increased amounts of lighter sleep
stages. Severe OSA also presents a longer latency to stage N3 compared to the mild and
moderate subtypes [10].

Interestingly, while a paraphysiological drop in SWS is expected with aging, the
effect of sleep apnea on stage N3 reduction appears much stronger [11]. Regardless of
the OSA severity, the number of respiratory events in stage N3 is significantly lower
compared to the other sleep stages [10]. The lack of respiratory events during SWS probably
depends on the higher stability of this sleep stage, which physiologically contains minor
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amounts of microstructural oscillations [12]. Human NREM sleep is characterized by
periodic oscillatory patterns that reflect its inner adaptability and readiness [13]. The cyclic
alternating pattern (CAP) is the main representative of NREM microstructural dynamics
and is deemed as the electroencephalographic (EEG) hallmark of sleep instability [14].

The restorative power of sleep is influenced by the amount of CAP [15], expressed
by repetitive cycles composed of a phase A (activation) and its subsequent phase B (de-
activation). CAP, by nature, overcomes the rigid boundaries of 30 sec of duration for sleep
epochs and elevates the sleep scoring to a more realistic and dynamic framework. Each
phase of the CAP cycle can range from 2 to 60 s in duration. At least two CAP cycles are
required to identify a CAP sequence. The amount of CAP oscillations during NREM sleep
is measured by CAP rate. CAP is observed as sequences of transient electrocortical events
which appear distinct from the ongoing tonic background and recur at periodic intervals.
CAP phase A can be composed of different electroencephalographic patterns including
delta bursts, vertex sharp transients, K-complex sequences, polyphasic bursts, k-alpha,
intermittent alpha, or typical EEG arousals.

According to the EEG features, CAP phase A can be further classified as subtypes A1,
A2, and A3 (see Figure 2). In the A1 subtype, the EEG synchrony (high-amplitude slow
waves) is the predominant activity and, if present, EEG desynchrony (low-amplitude fast
waves) occupies less than 20% of the entire phase A duration. The phase A2 subtype is
characterized by a mixture of slow and fast rhythms with 20% to 50% of phase A occupied by
EEG desynchrony. Finally, CAP phase A3 is dominated by rapid low-voltage rhythms with
more than 50% of phase A expressed by EEG desynchrony [16]. The distinction between
phase A subtypes is not trivial as they have different roles in sleep organization. Subtype
A1 prevails in the first half of the night and boosts the build-up and consolidation of SWS,
while subtypes A2 and A3 increase in the second part of the night and prepare the sleeping
brain for the appearance of REM sleep or wakefulness. Furthermore, subtype A3 exerts
a stronger impact on cardiovascular parameters compared to subtypes A1 and A2 [17].
Overall, CAP metrics quantify the magnitude of stressful perturbation on the sleeping
brain and its kinetics strongly correlate with the autonomic and behavioral function at
whole-body level [18].

CAP also reflects the specific impact of diseases on sleep organization, providing
additional information compared to the American Academy of Sleep Medicine (AASM)
arousal rules in OSA patients; the physiological behavior of sleep instability (involving both
respiratory events and EEG activation) overcomes the limited quantification of conventional
‘fast arousals’ [19].

Accordingly, sleep instability, which represents one of the main factors responsible
for excessive daytime sleepiness in OSA patients, cannot be measured only with the
count of AASM conventional arousals, but should also include the (commonly neglected)
’subcortical arousals’, which are frequently accompanied by various degrees of autonomic
stimulation [20]. In this perspective, sleep microstructure may be highly informative. In the
clinical domain, CAP subtype A1 prevails in the milder OSA phenotype, whilst subtypes
A2 and A3 abound in patients with moderate-to-severe OSA [21]. Notably, a higher amount
of sleep fragmentation and lower representation of SWS has also been noticed in patients
affected by Upper Airway Resistance Syndrome (UARS), a condition firstly described
in 1993 and nowadays considered as the milder phenotype of OSA. Patients affected by
UARS typically complain of excessive daytime sleepiness, non-refreshing sleep, and might
develop various daytime consequences (such as mood disturbances and/or cognitive
impairment). Sleep instability in patients with UARS has traditionally been linked to
excessive respiratory effort and flow limitation [22]. Notably, compared to the conventional
AASM sleep scoring system, sleep microstructure and CAP ease the detection of sleep
fragmentation in patients suffering from UARS, which appears strongly correlated with
subjective symptoms (daytime fatigue, sleepiness) [23].
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If the CAP system still promotes sleep continuity in OSA milder cases, the situation be-
comes unbalanced in moderate–severe OSA, where the CAP system turns into an intrusive
phenomenon, perturbing sleep dynamics [21]. The existence of two distinct arousal-related
mechanisms in human sleep is similar to what has been described in rodents [24]. Accord-
ing to this model, depending on the stimulated regions of the parabrachial nucleus (PBN),
arousal may yield to either fast-frequency bursts, strongly similar to A2/A3 CAP subtypes
(when the more lateral regions of the PBN are stimulated) or high-amplitude slow-waves,
in response to the medial PBN stimulation [25]. In this perspective, CAP can phenotype
the ‘arousal-gate’ in patients with sleep apnea.

Sleep microstructure can also inform on the neurobehavioral adaptability to sleep
fragmentation in OSA patients. In fact, it has been suggested that the AHI is inconsistently
associated with behavioral performances in patients affected by sleep apnea: while some
patients may be highly vulnerable to sleep loss, some others can be impressively resistant
to the negative effects of sleep deprivation [26]. This is not trivial as, for instance, indi-
vidual resilience to sleep loss might influence driving performance and subsequent risk
for car crashes [26]. While neither conventional polysomnographic metrics nor the AASM
arousal index were predictive of neurobehavioral impairment, it has been documented that
higher EEG slowing ratios during REM and lower spindle density at the frontal EEG were
significantly associated with slower reaction times in a psychomotor vigilance task and
driving simulator test [27]. In parallel, it has been demonstrated that, in ventilated OSA
patients, the utilization of suboptimal continuous positive airway pressure (CPAP) may
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favor the recurrence of sustained inspiratory airflow limitation, which in turn is associated
with abnormal K-complexes (coupled with bursts of alpha as arousal surrogates). Hence,
suboptimal CPAP therapy can lead to subtle/‘nonvisible’ sleep fragmentation [28].

Another interesting measure adopted to indicate sleep continuity is represented by the
odds ratio products (ORPs) [29]. The ORPs represent an attempt to capture the transitions
within sleep/wakefulness states during clinical polysomnography, in order to overcome
the rigid subdivisions imposed by the conventional Rechtschaffen and Kales rules for PSG
scoring. ORPs correlate with sleep depth and quality, and this metric is calculated as a
ratio of the absolute power of different frequency bands over 3 s segments. The ORP ratio
ranges from 0 to 2.5, with 0 being indicative of very deep sleep and 2.5 being related to
a wide-awake state [29]. ORPs might serve as novel biomarkers for PSG in various sleep
conditions. In OSA, for instance, it has been proved that, compared to healthy sleepers,
ORPs are usually lower during an awake state (suggesting increased sleep propensity)
but NREM is higher (consistent with lighter NREM sleep) [30]. Among the advantages of
using ORPs, there is the possibility to verify the arousal effects towards sleep depth, which
can be inferred by the speed with which sleep deepens following an arousal, to so-called
postarousal sleep dynamics [31]. When ORPs are high, arousal stimuli can easily trigger
arousal, whereas when ORPs are low, strong stimuli are required to provoke an arousal.
In other words, the metric of ORPs informs us of the extent to which patients can recover
sleep after arousal intrusions [31].

Although the disorder is typically evaluated using cardio-respiratory recording, some
informative features can be inferred from the ongoing brain activity: for instance, the
pulse wave amplitude has been associated with the amount of EEG response (including
CAP features) to respiratory events, suggesting a strong coupling between cortical and
autonomic activation [32].

4. Breathing Oscillations, Daytime Sleepiness and Treatment Outcomes

The temporal association between CAP oscillations and respiratory events is pre-
dictable: in fact, most apneas/hyponeas co-occur with CAP phase B and thus the disease
is frequently defined as a prototypical example of a CAP phase-B disorder [33]. As a
translation of the lesser arousal branch of arousal swings, phase B represents a highly
vulnerable background for upper airway collapse and for attenuation of biochemical and
neural mechanisms in the control of the ventilatory drive, while phase A is mandatory to
restore breathing. It has been demonstrated that the vast majority of respiratory events
are coupled with CAP (96% in NREM and 80% in REM sleep). In detail, the apneas and
hypopneas are commonly temporally associated with CAP phase B, while breathing restora-
tion is typically recovered during phase A [34]. Recently, a large study analyzing over
1.6 million cortical arousals, 350,000 apneas, and over 1.9 million hypopneas collected from
11,400 manually scored PSG recordings available online demonstrated that the duration
of 95–99% of all respiratory events falls beneath 60 s [35]. This finding is supported by a
solid physiological background as the length of CAP phase B (which triggers and supports
breathing interruption) spans within the 1 min interval [15].

CAP metrics correlate with subjectively perceived daytime sleepiness in patients with
OSA [36]. In male subjects with moderate-to-severe OSA, CAP rate, CAP duration, the
number of CAP cycles, and the duration and percentage of the subtype A2 are significantly
higher in patients with EDS compared to those without EDS. In contrast, the two groups
(EDS vs. non-EDS) showed no differences in conventional sleep parameters. In other
words, higher levels of arousal activation induced by respiratory events determine a more
aggressive sleep fragmentation which leads to a more somnolent daytime setting.

PSG can also be used to assess treatment benefits on patients with severe OSA. It
has been proved that continuous positive airway pressure (CPAP), the first-line treat-
ment for moderate-to-severe OSA, increases the duration of N3 and decreases the lightest
NREM sleep stages. With respect to microstructural PSG parameters, the reduction in
respiratory events promotes an attenuation of CAP fluctuations, in particular during
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stage N3, and a parallel increase in the CAP oscillations that occur independent from
apneas/hypopneas [37]. In this perspective, we can summarize that CPAP promotes the
restoration of a more physiological CAP oscillatory pattern, with oscillations that are dis-
engaged from breathing constraints. Interestingly, the timing of CPAP-dependent PSG
variations is not the same for all sleep features: for instance, CPAP treatment induces an
immediate restoration of sleep continuity, a more consolidated REM sleep, a curtailment
of sleep latency, and an enhancement of SWS, while the amount of CAP cycles and A1
subtypes remains below normal values even one month after the introduction of ventilatory
support [38] (Figure 3). An impressive increase in the SWS occurs already during the
first night of CPAP, together with a parallel normalization in the overall duration of CAP
phases A and B, both significantly longer in patients with severe OSA [39]. Furthermore, in
patients with severe OSA treated with CPAP, variations of CAP rate significantly correlate
with daytime vigilance [39].
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Figure 3. Polysomnographic example of a patient affected by severe OSA before (A) and after (B) the
introduction of CPAP. Panel A: note the tight association between apneas and cyclic alternating
pattern (CAP) oscillations, with strong prevalence of subtypes A2 and A3, with high autonomic
impact; panel B: observe the restoration of physiologic CAP oscillations, with predominance of
subtype A1. In details, at PSG level, light red highlight CAP phase A3 subtypes, light green refer to
A2 subtypes and light blue to A1 subtypes.

Sleep recordings may also provide information on the impairment of cognitive pro-
cesses, a detrimental consequence in patients affected by untreated OSA [40,41]. The extent
of cognitive impairment, assessed with the Montreal Cognitive Assessment (MoCA), has
been found to be related to the severity of sleep fragmentation as expressed by the CAP
A3 rate in patients with sleep apnea [42]. A similar association between CAP metrics and
cognitive deterioration has been described by Karimzadeh et al. [43], who demonstrated a
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direct correlation between the quantity of CAP phase A1 fluctuations and cognitive perfor-
mances, especially in verbal fluency, memory, and visuo-spatial skills, in patients affected
by OSA. Patients suffering from sleep apnea presented a higher density of CAP phase A
oscillations within the fronto-parietal regions, a condition that may interfere with NREM
sleep-dependent cognitive processes. Recently, impaired social cognition has also been
identified in middle-aged patients affected by OSA with no other relevant neurological or
psychiatric conditions, potentially associated with the pathology-dependent impairment of
the REM sleep stage [40].

The application of CAP scoring can support the phenotyping of various diseases as
demonstrated for Down syndrome, Fragile-X syndrome, and attention deficit hyperactivity
disorder, where the evaluation of sleep microstructure can help in the identification of pa-
tients suffering between ‘primary disease forms’ (lower amounts of CAP oscillations) from
those with coexistent sleep-related breathing disorders (higher CAP rate values) [44,45].
In the latest years, the European Sleep Apnea Database (ESADA) has tried to detail OSA
heterogeneity using clustering procedures. The OSA clusters identified from the ESADA
consortium are based on gender, age, symptoms, comorbidities, and respiratory features,
but so far, no conventional PSG measures have been included. The possibility to identify
OSA phenotypes might improve patients’ prognostication and ease the identification of
targeted therapies. From an operational point of view, ‘phenotypes’ can be described as
‘A category of patients with OSA distinguished from others by a single or combination of disease
features, in relation to clinically meaningful attributes (symptoms, response to therapy, health
outcomes, quality of life’. The possibility to reveal individual differences through phenotypes
is fundamental to tailor treatment prescription and to increase long-term compliance [46].
For instance, it has been demonstrated that patients with REM-dominant OSA present re-
duced total sleep time, decreased sleep efficiency, and lack of REM sleep representation [47].
REM-dominant OSA patients also present reduced response to mandibular advancement
splints [48] and, due to the association between REM-related AHI indices and incident hy-
pertension, they likely deserve non-invasive ventilation, which should be guaranteed in the
second half of the night, when REM sleep is largely prevalent [49,50]. Conversely, patients
with NREM-dominant OSA present higher ventilator control instability during NREM
sleep (which paradoxically improves during REM sleep), a condition that may coexist with
a low arousal threshold and which might benefit from pharmacological sleep-stabilizing
approaches [51–53].

In this perspective, the utilization of polysomnographic features (with combined macro
and microstructure analysis) may reinforce the reliability of any attempt of OSA phenotypiza-
tion, leading to strongly predictive approaches, with potential clinical implications.

5. The Contribution of Machine Learning

In order to curtail a timely OSA diagnosis, a number of portable/wearable hardware
devices, based on machine learning approaches, have been proposed to screen for this
condition. Their lower costs and the ease of use compared to conventional polysomnogra-
phy stand out among the major advantages. However, the absence of medical supervision
may expose patients to the risk of less accurate diagnosis. Most of these devices work on
photoplethysmographic (PPG) sensors to detect oxygen desaturations. In this case, the
information regarding breathing events is indirectly collected from blood flow patterns in
the microvascular tissue bed [54]. Although it is still insufficient to ascertain a diagnosis,
the utilization of wearable devices has gained increasing importance in the screening of
subjects with a high risk for OSA [55]. Artificial intelligence can be adopted to evaluate
polysomnographic findings in order to screen for sleep apnea. The automated classification
of polysomnographic features (including macro- and microstructure data) has already been
tested for various sleep pathologies including narcolepsy, rapid eye movement behavior
disorder, periodic leg movement disorder, sleep-related epilepsy, and insomnia [56,57].
Considering the strong impact of OSA on sleep organization, the availability of automated
methods to score sleep recordings might ease the identification of clusters of electrophysio-
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logical data, potentially related to distinct clinical phenotypes. In this perspective, machine
learning could represent a relevant step forward in the intricate scenario of sleep apnea diag-
nosis and phenotypization. So far, the most important applications of artificial intelligence
in obstructive sleep apnea have been the following: (1) predicting treatment outcomes of
various treatment options, (2) improving treatment options, and (3) personalizing treat-
ment thanks to the enhanced understanding of underlying mechanisms of the disease [58].
This new ‘personalized’ approach to sleep apnea may increase patients’ compliance and
increase the efficacy of proposed approaches. The utility of machine learning has also been
suggested to select patients assigned to CPAP therapy, surgical treatment, and/or oral
appliances. The possibility to predict therapeutic success with non-invasive techniques
represents an ambitious goal for sleep specialists. Due to unavoidable links between the
autonomic system and electroencephalographic findings, few authors explored the bidirec-
tional association between cardiopulmonary functioning and EEG signals. Simplifying all
the NREM sleep stages into two opposite dimensions, i.e., stable versus unstable NREM
sleep, it has been proved that stable breathing periods result in high-frequency coupling
of respiration and HRV, with the simultaneous presence of higher EEG delta power. In
parallel, the so-called unstable NREM sleep may be recognized by a sleep fragmentation
phenotype [59]. Sleep apneas are strongly associated with cardiovascular consequences
and autonomic imbalance. The periodic alterations in sympathetic nervous activity and
parasympathetic nerve activity during each respiratory event define a peculiar heart rate
pattern, which seems like a signature of the condition. Typically, we can notice a drop in
heart rate, which is a physiological reaction to the apnea (known as the ‘diving reflex’),
immediately followed by a phasic acceleration in heart rate (the relative tachycardia),
restoring blood–gas exchange in the lung. This alternation can also be schematized in
terms of periodic shifts between parasympathetic and sympathetic tone dominance. Given
the periodic reproducibility of these cardiological variations, mathematical approaches
and machine learning techniques have been adopted to assess their dynamics in sleep
apnea. However, due to inter- and intra-individual variability of cardiovascular activity
related to physical training conditions, age, weight, and concomitant diseases, the utiliza-
tion of the sole cardiac signal is still largely insufficient to represent OSA severity [60,61].
In conclusion, automated sleep scoring approaches will probably guarantee a simplified
approach to sleep microstructure analysis that, hopefully, will be followed by world-wide
diffusion of its application in everyday sleep scoring practice. This might also promote a
higher homogeneity in PSG microstructure scoring, favoring a more reliable comparability
between study results. However, due to the inner complexity of human sleep, we believe
that, even with the most sophisticated techniques, the role of the ‘man-in-loop’, supervising
the entire process, should never be neglected.

6. Conclusions

In the present contribution, we summarized the informative value of sleep recording
in the diagnosis and management of OSA, with a focus on sleep microstructure. Although
not commonly evaluated in the routine OSA work-up, we remarked on the key role of
sleep assessment to deeply understand the disease severity at an individual level. While
international guidelines promote the ‘one-size-fits-all’ strategy for OSA management, it is
important to remember that the disease may present important inter-individual differences,
reasonably warranting a more tailored approach. In this framework, video-PSG and
sleep microstructure could provide additional information in the clinical management of
patients with SDB. In addition, CAP-related arousal instability seems to be one of the key
mechanisms explaining cognitive decline and vigilance impairment in sleep apnea. The cost
and complexity of CAP scoring can be overcome by the availability of reliable automatic
scoring systems, which will help both researchers and clinicians to better define the impact
of SDB on the sleep texture as well as neurological and extra-neurological consequences.
The vertical integration of combined approaches might ease our understanding of this
complex sleep pathology.
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