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Abstract: Purpose: A nomograph model of predicting the risk of post-operative central nervous
system infection (PCNSI) after craniocerebral surgery was established and validated. Methods: The
clinical medical records of patients after cranial surgery in Renmin Hospital of Wuhan University
from January 2020 to September 2022 were collected, of whom 998 patients admitted to Shouyi
Hospital District were used as the training set and 866 patients admitted to Guanggu Hospital District
were used as the validation set. Lasso regression was applied to screen the independent variables
in the training set, and the model was externally validated in the validation set. Results: A total
of 1864 patients after craniocerebral surgery were included in this study, of whom 219 (11.75%)
had PCNSI. Multivariate logistic regression analysis showed that age > 70 years, a previous history
of diabetes, emergency operation, an operation time ≥ 4 h, insertion of a lumbar cistern drainage
tube ≥ 72 h, insertion of an intracranial drainage tube ≥ 72 h, intraoperative blood loss ≥ 400 mL,
complicated with shock, postoperative albumin ≤ 30 g/L, and an ICU length of stay ≥ 3 days were
independent risk factors for PCNSI. The area under the curve (AUC) of the training set was 0.816
(95% confidence interval (95%CI), 0.773–0.859, and the AUC of the validation set was 0.760 (95%CI,
0.715–0.805). The calibration curves of the training set and the validation set showed p-values of 0.439
and 0.561, respectively, with the Hosmer–Lemeshow test. The analysis of the clinical decision curve
showed that the nomograph model had high clinical application value. Conclusion: The nomograph
model constructed in this study to predict the risk of PCNSI after craniocerebral surgery has a good
predictive ability.

Keywords: neurosurgery; post-operative central nervous system infection; nomograph

1. Introduction

PCNSI refers to the infection caused by the invasion of various pathogenic microor-
ganisms into the central nervous system due to trauma, edema, hemorrhage, stress, and
other causes after craniocerebral surgery. PCNSI is one of the serious complications of
neurosurgery, which may lead to a second operation, increase mortality and hospitalization
costs, and even result in patients remaining with permanent sequelae [1,2]. Some studies
have shown that the incidence of PCNSI is 4.6–25% [3,4], which accounts for 0.8–7% of
central nervous system infections (CNSIs) [5]. However, the incidence of PCNSI varies
with different hospitals, different diseases, different surgical methods, and different diag-
nostic criteria. Although the incidence of PCNSI has been reduced with the improvement
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of operating room equipment, the rapid development of neurosurgical techniques and
the widespread use of prophylactic antibiotics [6], the drug resistance rate of pathogenic
bacteria has increased year by year and the positive rate of bacterial culture has decreased
due to the application of broad-spectrum antibiotics, which further increases the difficulty
of treatment [7]. Therefore, accurate prediction of the risk of PCNSI is of great significance
to guide the prophylactic use of anti-infective therapy in the perioperative period. The
purpose of this study is to determine the risk factors of PCNSI and construct a nomograph
model to guide the clinical decision-making of differentiated use of anti-infective therapy.

2. Materials and Methods
2.1. General Data

This study is a single-center (dual hospital district), retrospective, observational cohort
study. The clinical data of 1864 patients after craniocerebral surgery in Renmin Hospital
of Wuhan University from January 2020 to September 2022 were collected. The patients
in Shouyi Hospital District were taken as the training set (n = 998), while the patients in
Guanggu Hospital District were taken as the verification set (n = 866). Patients who were
scheduled to undergo craniocerebral surgery upob admission were taken as the starting
point of the study, and the occurrence of PCNSI within 30 days after craniocerebral surgery
was taken as the end point of the study.

2.1.1. Inclusion Criteria
1© Patients admitted to the neurosurgery department or intensive care unit of our hos-

pital for ≥7 days after initial craniocerebral surgery; 2© age ≥ 18 years old; and 3© patients
with complete case data.

2.1.2. Exclusion Criteria
1© Patients with initial craniocerebral surgery in another hospital; 2© patients with

CNSIs before craniocerebral surgery; 3© patients who died or were discharged from
hospital within 7 days after the operation; 4© age < 18 years old; and 5© patients with
incomplete data.

2.1.3. Diagnostic Criteria for PCNSI

Those who met the clinical diagnosis or etiological diagnosis were included in the
study with reference to the expert consensus [8].

Clinical Diagnostic Criteria

Patients with fever, intracranial hypertension, turbid or purulent cerebrospinal fluid
(CSF), leukocytosis, glucose < 2.2 mmol/L, and CSF glucose content/serum glucose
content ≤ 0.4.

Etiological Diagnostic Criteria

Patients with positive microbiological cultures of specimen smears, drainage tube
tips, implants, and CSF on the basis of clinical diagnosis, excluding those with bacterial
contamination and colonization.

2.2. Data Collection

Structured data extraction forms were administered by trained researchers for collec-
tion. The detailed flow chart of data collection is shown in Figure 1.

2.3. Statistical Methods

Statistical analysis and mapping were performed using SPSS 26.0 and R 4.1.3. None of
the measurement data in this study followed the normal distribution, and measurement
data that were not normally distributed were expressed as the median (quartile) [M (QL,
QU)], and comparisons between the groups were performed using the Mann–Whitney U
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test. For count data presented as [n(%)], comparisons between the groups were performed
using the Chi-square test or Chi-square test with continuous correction or the Fisher’s
exact probability test. Whether PCNSI occurred within 30 days after craniocerebral surgery
(secondary outcome index) was used as the dependent variable. The independent variables
were screened by Lasso regression, and the risk factors were screened by multivariate
logistic regression analysis. The R software RMS package was applied to construct the
nomogram model, and the predictive ability of the model was evaluated by the ROC. The
bootstrap method was used to repeat the sampling 1000 times for internal validation and to
compare the difference in the C-index. Furthermore, the prediction model was evaluated
using calibration curves and DCA. The difference was statistically significant when p < 0.05.

1099 patients, after initial craniocerebral surgery in Shouyi
Hospital District, from January 2020 to September 2022

958 patients, after initial craniocerebral surgery in Guanggu
Hospital Distric, from January 2020 to September 2022

101 patients were excluded
32 with craniocerebral surgery in another hospital
28 with CNSIs before craniocerebral surgery
14 less than 7 days hospitalization
9 discharged automatically
7 with imcomplete data
7 lost follow up
4 younger than 18 years old

72 patients were excluded
27 with craniocerebral surgery in another hospital
19 with CNSIs before craniocerebral surgery
11 less than 7 days hospitalization
6 discharged automatically
5 with imcomplete data
3 lost follow up
1 younger than 18 years old

998 patients included in training set 866 patients included in validation set

set

Non PCNSI group
(n=892)

Non PCNSI group
(n=753)

PCNSI group
(n=106)

PCNSI group
(n=113)

Figure 1. Flowchart of enrolled craniocerebral surgery patients in the training set and validation set.

3. Results
3.1. Analysis of Baseline Data of Patients

In total, 106 (10.62%) of the 998 patients in the training set had a PCNSI, while
113 (13.05%) of the 866 patients in the validation set had a PCNSI. However, there was
no significant difference in the incidence of PCNSI between the two groups (χ2 = 2.635,
p = 0.105). The clinical baseline characteristics are shown in Table 1.

Table 1. Comparison of baseline data between the training set and the validation set.

Characteristic Training Set
(n = 998)

Validation Set
(n = 866) Z/χ2 Value p-Value

Male/female (cases) 530/468 464/402 0.042 0.838
Age [n(%)]
18~40 years 260 (26.1) 216 (24.9) 0.300 0.584
40~50 years 128 (12.8) 129 (14.9) 1.672 0.196
50~60 years 252 (25.3) 241 (27.8) 1.276 0.259
60~70 years 150 (15.0) 129 (14.9) 0.007 0.936

>70 years 208 (20.8) 151 (17.4) 3.457 0.063
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Table 1. Cont.

Characteristic Training Set
(n = 998)

Validation Set
(n = 866) Z/χ2 Value p-Value

Comorbidities [n(%)]
Hypertension 206 (20.6) 199 (23.0) 1.490 0.222

Diabetes 96 (9.6) 90 (10.4) 0.309 0.578
Infection in other parts 38 (3.8) 43 (5.0) 1.598 0.206
Autoimmune disease 26 (2.6) 12 (1.4) 3.453 0.063

Pathogenies [n(%)]
Open craniocerebral injury 177 (17.7) 128 (14.8) 2.958 0.085

Closed craniocerebral injury 65 (6.5) 77 (8.9) 3.727 0.054
Hemorrhagic stroke 356 (35.7) 287 (33.1) 1.314 0.252

Ischemic stroke 61 (6.1) 45 (5.2) 6.338 0.012
Intracranial tumor 290 (29.1) 285 (32.9) 3.225 0.073

Others 49 (4.9) 44 (5.1) 0.014 0.905
Type of infections [n(%)]

Epidural abscess 11 (9.7) 0 (0.0) - <0.001 a

Subdural empyema 7 (6.2) 0 (0.0) - <0.001 a

Meningitis 41 (36.3) 0 (0.0) - <0.001 a

Ventriculitis 22 (19.5) 0 (0.0) - <0.001 a

Brain abscess 32 (28.3) 0 (0.0) - <0.001 a

Pathogen types [n(%)]
G+ 31 (27.4) 0 (0.0) - <0.001 a

G− 35 (31.0) 0 (0.0) - <0.001 a

Fungus 9 (8.0) 0 (0.0) - <0.001 a

Type of surgeries [n(%)] 3.609 0.057
Emergency surgery 361 (36.2) 277 (32.0) - -

Elective surgery 637 (63.8) 589 (68.0) - -
Operation mode [n(%)]

Craniotomy 35 (31.0) 259 (34.4) 0.513 0.474
Cranial burr-hole 47 (41.6) 296 (39.3) 0.214 0.644
Neuroendoscope 31 (27.4) 198 (26.3) 0.066 0.798

Operation time [n(%)] 1.877 0.171
≥4 h 222 (22.2) 216 (24.9) - -
<4 h 776 (77.8) 650 (75.1) - -

Intraoperative bleeding [n(%)] 1.297 0.255
≥400 mL 161 (16.1) 155 (18.1) - -
<400 mL 837 (83.9) 700 (81.9) - -

CSF leak [n(%)] 39 (3.9) 42 (4.8) 0.990 0.320
Intracranial drainage tube [n(%)]

≥72 h 334 (33.5) 312 (36.0) 1.343 0.247
<72 h 328 (32.9) 304 (35.1) 1.036 0.309

Lumbar cistern drainage [n(%)]
≥72 h 272 (27.3) 258 (29.8) 1.467 0.226
<72 h 216 (21.6) 158 (18.2) 3.339 0.068

After CPCR [n(%)] 50 (5.0) 52 (6.0) 0.887 0.346
Complicated with Shock [n(%)] 136 (13.6) 132 (15.2) 0.983 0.322

Mechanical ventilation time [n(%)]
≥48 h 149 (15.1) 152 (17.6) 2.072 0.150
<48 h 200 (20.0) 156 (18.0) 1.232 0.267

Total parenteral nutrition ≥ 5 d [n(%)] 139 (13.9) 146 (16.9) 3.076 0.079
ALB ≤ 30 g/L [n(%)] 420 (42.1) 354 (40.9) 0.278 0.598

The duration of ICU [days,M(QL, QU)] 4.0 (3.0,5.0) 5.0 (4.0,6.0) −8.393 <0.001
APACHE II score [points,M(QL, QU)] 13.0 (10.0,16.0) 13.0 (10.0,17.0) −3.599 <0.001

GCS score [points,M(QL, QU)] 14.0 (8.0,15.0) 12.0 (6.0,15.0) −4.116 <0.001

Notes: G+ is Gram positive; G− is Gram negative; CSF is cerebrospinal fluid; CPCR is cardiopulmonary cerebral
resuscitation; APACHE II score is the acute physiology and chronic health evaluation II score; GCS score is the
Glasgow coma scale score; and a is the Fisher’s exact test.
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3.2. Lasso and Logistic Regression Analysis

A total of 44 potential risk factors associated with PCNSI were included in the study.
The dimension of the training set variables was reduced by Lasso regression, and the most
representative feature variables were selected. Five-fold cross validation was adopted
in selecting the optimal lambda parameter, and the number of variables at this time
was counted by taking the smallest lambda value in cross-validation error as the model
optimal (see Figure 2). Each curve in Figure 2A represents the variation trajectory of
a independent variable coefficient. The results of the lasso regression analysis showed
that 14 independent variables were characteristic variables affecting PCNSI (Figure 2B).
The results of the multifactorial logistic regression analysis with the occurrence of PCNSI
or not as the dependent variable and the 14 characteristic variables selected by lasso
regression as independent variables showed (Table 2) that 10 independent variables were
the independent risk factors for PCNSI.
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Table 2. Multifactor logistics regression analysis of PCNSI after cranial surgery.

Variable B SE Wald p OR 95%CI

Age > 70 y 1.171 0.261 20.179 <0.001 3.225 1.935–5.375
History of diabetes 1.253 0.310 16.355 <0.001 3.502 1.908–6.429
APACHE II score −0.002 0.027 0.007 0.931 0.998 0.946–1.053

GCS score 0.002 0.028 0.008 0.930 1.002 0.948–1.060
Emergency surgery 1.033 0.240 18.462 <0.001 2.808 1.753–4.498

Operation time ≥ 4 h −0.610 0.295 4.284 0.038 0.543 0.305–0.968
Lumbar cistern drainage ≥ 72 h 1.739 0.304 32.710 <0.001 5.689 3.135–10.323

Intracranial drainage tube ≥ 72 h 0.949 0.241 15.513 <0.001 2.583 1.611–4.143
CSF leak 0.503 0.516 0.591 0.329 1.654 0.602–4.545

Intraoperative bleeding ≥ 400 mL 0.923 0.282 10.725 0.001 2.516 1.448–4.370
Complicated with Shock 1.080 0.296 13.328 <0.001 2.945 1.649–5.258

Total parenteral nutrition ≥ 5 d 0.324 0.330 0.964 0.326 1.383 0.724–2.641
ALB ≤ 30 g/L 0.769 0.238 10.421 0.001 2.158 1.353–3.442

The duration of ICU ≥ 3 d 0.199 0.047 17.839 <0.001 1.220 1.112–1.337
Constant −5.637 0.698 65.226 0.000 0.004 --

Notes: APACHE II score is the acute physiology and chronic health evaluation II score; GCS score is the Glasgow
coma scale score; CSF is cerebrospinal fluid; and ICU is intensive care unit. Bold represents emphasized and
statistically significant p-values, while italics represent statistical parameters.

3.3. Establishment of Nomogram Model

The nomogram model was constructed based on 10 independent variables determined
by multivariate logistic regression analysis (Figure 3). Clinicians could assess the risk
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of PCNSI in a visualized, individualized, and quantitative way based on these 10 easily
available metrics. The C-index of the training set was 0.816 (95%CI, 0.773~0.859). The
greater the C-index was, the better the differentiation of the model was, indicating that the
accuracy of nomogram prediction was good.

Points

Age > 70y

History of diabetes

Emergency surgery

Operation time ≥ 4h

Lumbar cistern drainage ≥ 72h

Intracranial drainage tube ≥ 72h

Intraoperative bleeding ≥ 400ml

Complicated with Shock

ALB ≤ 30g/L

The duration of ICU ≥ 3d

Total Points

0 10 20 30 40 50 60 70 80 90 100

1

0

1

0

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

0 50 100 150 200 250 300 350 400 450

Risk of PCNSI after cranial surgery
0.01 0.1 0.3 0.5 0.8

Figure 3. Construction of a nomogram model for PCNSI after cranial surgery.

3.4. Internal Validation of the Model

The C index of the training set was the same after the internal verification of the
bootstrap, that is, the model prediction results were consistent with the real results.

3.5. External Validation of the Model

The AUC of the training set was 0.816 (95%CI, 0.773~0.859), with a sensitivity of
74.0% and a specificity of 75.7%, while the AUC of the validation set was 0.760 (95%CI,
0.715~0.805), with a sensitivity of 67.5% and a specificity of 76.1%, indicating that the
prediction performance was good, as shown in Figure 4. The calibration curve was plotted
to assess the discriminatory efficacy of the nomograph model, and a Hosmer–Lemeshow
test was conducted. The calibration plots of the training and validation sets showed that
the nomograph had a good fit with the reference line, as shown in Figure 5, with p-values of
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0.439 and 0.561, respectively (all p > 0.05). The Brier scores were 0.076 and 0.043, respectively
(all close to 0), indicating that the prediction of the probability of PCNSI infection after
craniocerebral surgery by the nomograph model was consistent with the actual infection
percentage of the observed population.
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3.6. Clinical Decision Curve Analysis (Figure 6)

The DCA determined the value of the clinical application of the nomograph model by
calculating the net benefit under the PCNSI risk threshold probability of each patient after
craniocerebral surgery. The horizontal coordinate of the DCA was the threshold probability
of high risk, and the vertical coordinate was the net benefit (NB). The probability of patients
developing PCNSI was noted as Pi when the nomograph model reached a certain value,
and when Pi reached a certain threshold, it was defined as positive (noted as Pt). The
high-risk threshold was set as (0, 1), and the net benefit rate and the range of effective
pretest probability were assessed by subtracting the false-positive population that was
incorrectly judged by the model. When all patients had no PCNSI or all of them had a
PCNSI, the nomogram model had no clinical application value. The threshold probability of
the training set was between 0.01~0.74 and that of the validation set was between 0.01~0.83,
all of which had a net benefit rate >0 and had clinical practical value, which suggested that
the model had good clinical value in predicting PCNSI after craniocerebral surgery.

0.0 0.2 0.4 0.6 0.8 1.0

−
0.

05
0.

00
0.

05
0.

10
0.

15

N
et

 B
en

ef
it

DCA_training
DCA_validation
All
None

High Risk Threshold

Figure 6. DCA of the nomogram predicting the risk of PCNSI after cranial surgery.

4. Discussion

PCNSI is the most serious hospital-acquired infection [9]. The case fatality rate of
meningitis and (or) ventriculitis after craniocerebral surgery is as high as 3~33% [10], and
even if patients with a PCNSI are cured, they will generally remain with varying degrees
of neurological dysfunction, which seriously affects the prognosis and quality of life of
patients. At the same time, the treatment of PCNSI is also one of the important clinical
problems faced by neurosurgeons at present. There are limited antibiotics that can pass
through the blood–brain barrier or reach a higher concentration in cerebrospinal fluid. In
the absence of etiological evidence, the long-term use of broad-spectrum antibiotics will
lead to the majority of bacteria becoming drug-resistant. However, the construction of a
predictive model can screen out patients with PCNSI after high-risk craniocerebral surgery,
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and individualized prophylactic use of antibiotics during the perioperative period can
improve the prognosis of patients [11].

Our study focused primarily on patients after craniocerebral surgery and developed
and verified a practical model to identify people with high PCNSI risk. The development
and validation of the model followed the requirements and recommendations in the tripod
statement [12]. In this study, potential predictors were screened in detail, while those with
more missing values and those that could not be generally detected in clinic were excluded.
The model consisted of 10 variables, which could be easily obtained upon admission and
during and after the operation. The model was externally validated in the validation set,
with high discrimination and good prediction performance.

Previous studies have pointed out that advancing age is a risk factor for the develop-
ment of PCNSI [13,14], which is consistent with the conclusion of this study. Patients with
diabetes have a high risk of PCNSI, which may be due to the fact that hyperglycemia can
inhibit growth factor synthesis, angiogenesis, collagen deposition, and fibroblast prolifera-
tion and migration, making the wound difficult to heal and providing favorable conditions
for bacterial proliferation. This is consistent with the research conclusions reported in
the literature [15,16]. This study found that the risk of PCNSI in patients undergoing
emergency operations is high, which may be related to more open craniocerebral injury,
and most emergency patients are in a critical condition and have a severe stress response,
which is consistent with the conclusion of the study report [17]. However, it is different
from the research results of Ren Xiaohui [18], which may be related to the different selection
of the timing of surgical intervention. Operation time ≥ 4 h and intraoperative blood
loss ≥ 400 mL are risk factors of PCNSI, which may be related to the air pollution caused
by the exposure of surgical wounds and medical devices. At the same time, large wounds
and more bleeding reduce systemic and local resistance to external pathogens, and patients
are under anesthesia during operations and the body reduces the stress ability to external
bacterial invasion [19], which is consistent with the findings of most studies [14,17,20,21].
Insertion of lumbar cistern and a intracranial drainage tube ≥72 h are high-risk operations
of PCNSI, which may be related to retrograde infection of pathogens caused by delayed
removal of the drainage tube, failure to strictly perform aseptic operation, and improper
nursing, which is consistent with the results reported by X Huang [21] and contradicts
the results reported by Y F Zhang [22]. It may be related to the main focus of this study
on cerebrospinal fluid indexes. In a prospective multicenter study of 2944 patients with
the risk of intracranial infection after neurosurgical craniotomy, Korinek et al. [23] found
that CSF leakage was an independent risk factor for PCNSI, but no statistical difference
was found in our study, which may be related to the low overall incidence (4.35%) of CSF
leakage in this study. On this basis, our study paid more attention to the organ function
and immunomodulatory factors, which led to the conclusion that shock and postoperative
albumin ≤30 g/L were risk factors for PCNSI. Therefore, the importance of early screening
is emphasized in order to provide individualized and precision treatment for patients. The
length of stay in ICU ≥ 3 days is one of the risk factors of PCNSI, which may be due to the
critical condition of some patients and their weak ability to resist the invasion of pathogenic
bacteria, as well as the more complex pathogenic bacteria and more drug-resistant bacteria
in the ICU [24]. In the previously published prediction models [11,22,25], PCNSI mostly
considered the risk factors related to surgery or the operating room, while this study
comprehensively considered the basic state of patients, disease severity, and complications.

The nomograph model constructed in this study can directly predict the magnitude
of the risk probability of PCNSI. For example, a patient aged 75 years with a previous
history of diabetes mellitus was admitted to the hospital for emergency surgery, with
an operation time duration of 5 h, intraoperative blood lost amounting to 500 mL, a
intracranial drainage tube placed for more than 5 d, no lumbar cistern drainage tube placed,
no preoperative, intraoperative, or postoperative shock combined, a postoperative ALB
of 28.8 g/L, and a 5-d ICU stay. The scores of each predictor variable were calculated
according to the nomograph model as 68, 68, 58, 22, 44, 0, 50, 0, 42, and 48, respectively,
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with a total score of 400; then, the probability of PCNSI was more than 80%, which should
be paid enough attention by clinicians. After evaluation of the prediction model, the
following diagnostic and treatment decisions were made for this patient: 1. strengthen
the management of hand hygiene in health care; 2. improve blood culture, cerebrospinal
fluid culture, or the NGS of cerebrospinal fluid as soon as possible to clarify the pathogenic
bacteria; 3. remove the intracranial drainage tube as soon as possible according to the
condition; 4. timely supplementation of human serum albumin to ALB ≥ 30 g/L; monitor
and control blood glucose; 5. transfer the patient out of the ICU as soon as possible when
the patient’s condition was stable; and 6. according to the epidemiological characteristics
of the pathogenic bacteria in the region and unit, vancomycin combined with meropenem,
ceftriaxone, cefepime, and other bacterial meningitis systemic intravenous dosing regimens
was empirically selected [26], and adjust the target therapy in the time after pathogenic
return, and if the treatment effect was poor, it could be combined with ventricular or
intrathecal injection [8].

However, our study still has limitations as follows. Firstly, it is a single-center (dual
hospital district), retrospective, observational cohort study based on central China, which
may not be representative of patients after cranial surgery in other countries or regions due
to differences in racial, geographical, economic, and medical levels. Secondly, this study is a
retrospective study, and the data derived from the electronic medical record system are not
all complete; therefore, we tried to use the random forest method to reduce the bias caused
by some missing data. Thirdly, we did not collect the follow-up antimicrobial treatment
of the patients, and the influence of different treatment regimens was not considered in
the nomograph model. Fourth, some indicators reported in the literature, such as CSF
indicators, cranial imaging indicators, and cytokine indicators, have not been evaluated in
the nomograph model due to missing data. Finally, the laboratory data may change with
the progress of the disease, and it is impossible to include the dynamic changes of various
indicators in the model for analysis due to the nature of the retrospective study.

5. Conclusions

The nomogram model established in this study has good predictive ability and dis-
crimination. The model has high stability, reliability, and repeatability, which is worthy of
clinical promotion and application.
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