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Abstract: Lung cancer is an abnormality where the body’s cells multiply uncontrollably. The disease
can be deadly if not detected in the initial stage. To address this issue, an automated lung cancer
malignancy detection (ExtRanFS) framework is developed using transfer learning. We used the
IQ-OTH/NCCD dataset gathered from the Iraq Hospital in 2019, encompassing CT scans of patients
suffering from various lung cancers and healthy subjects. The annotated dataset consists of CT slices
from 110 patients, of which 40 were diagnosed with malignant tumors and 15 with benign tumors.
Fifty-five patients were determined to be in good health. All CT images are in DICOM format with a
1mm slice thickness, consisting of 80 to 200 slices at various sides and angles. The proposed system
utilized a convolution-based pre-trained VGG16 model as the feature extractor and an Extremely
Randomized Tree Classifier as the feature selector. The selected features are fed to the Multi-Layer
Perceptron (MLP) Classifier for detecting whether the lung cancer is benign, malignant, or normal.
The accuracy, sensitivity, and F1-Score of the proposed framework are 99.09%, 98.33%, and 98.33%,
respectively. To evaluate the proposed model, a comparison is performed with other pre-trained
models as feature extractors and also with the existing state-of-the-art methodologies as classifiers.
From the experimental results, it is evident that the proposed framework outperformed other existing
methodologies. This work would be beneficial to both the practitioners and the patients in identifying
whether the tumor is benign, malignant, or normal.

Keywords: lung cancer malignancy detection; transfer learning; feature extraction; feature selection;
extratree classifier; deep learning

1. Introduction

Lung cancer is considered the second most common cancer worldwide, and it usually
begins in the lungs and spreads to nearby tissues or fluids easily. Normal cell division and
growth are adequate for repairing the body’s cells. Still, when the growth is abnormal and
uncontrollable, tumors tend to develop. Lung tumors may not have specific symptoms
initially and are broadly divided into benign (non-cancerous) and malignant (cancerous).
When a patient is diagnosed with a lung tumor, the next step is to identify whether the
tumor is benign or malignant. Benign tumors are non-cancerous masses that grow slowly.
The cells within the benign tumor always lie within the tumor boundary and will not spread
or invade nearby tissues. Sometimes benign tumors can evolve into enormous masses of
tissues with well-defined boundaries and are not harmful. However, malignant tumors are
cancerous tumors that can spread to any body part through the circulatory system or the
lymph. These tumors invade nearby cells easily and will not have well-defined boundaries.
Owing to the rapid proliferation, these malignant tumors may eventually return even after
surgery. The differentiation of benign and malignant tumors is clearly illustrated in the
annotated Figure 1. Figure 1a is an annotated benign tumor, Figure 1b represents a lung
CT with a malignant tumor, and Figure 1c is a normal lung CT image. There are various
imaging modalities for lung cancer detection. Computed Tomography (CT), PET (Positron

Diagnostics 2023, 13, 2206. https://doi.org/10.3390/diagnostics13132206 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13132206
https://doi.org/10.3390/diagnostics13132206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-9352-4860
https://orcid.org/0000-0003-2298-1906
https://doi.org/10.3390/diagnostics13132206
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13132206?type=check_update&version=1


Diagnostics 2023, 13, 2206 2 of 18

Emission Tomography), and MRI (Magnetic Resonance Imaging) are widely used for lung
abnormality detection.

Figure 1. Annotation of malignancy in lung tumor.

Sometimes even an experienced physician may miss a lung tumor because of an error
in observation, low image quality, or wrong patient position. At times, the size of the cancer
tissue and the location can also lead to a misdiagnosis. Hence, Computer Aided Detection
(CAD) can be effectively utilized to lessen manual and technical errors in diagnosis and can
be employed for the early detection of lung cancer. Artificial intelligence is a broad domain
with unlimited applications, including clinical decision-making [1]. Various Machine
Learning and Deep Learning algorithms can effectively automate disease or abnormality
detection, localization, and quantification [2,3]. Initially Niki et al. [4] experimented with
lung CT images to detect whether the tumor was cancerous in 2001 by utilizing CAD
techniques, whereas Aberle et al. [5] analyzed how low-contrast CT images can be used
in lung cancer diagnosis and thereby reducing mortality. Awai et al. [6], and Mozaffary
et al. [7] utilized CAD for identifying small lung nodules from computed tomography
images. Sahiner et al. [8] identified that CAD has better performance when compared to
radiologists’ visualization and can eliminate manual misdiagnosis errors too.

As part of disease diagnosis, various pre-processing techniques can be applied to
medical imaging. Studies reveal that pre-processing enhances the efficiency of the model.
Researchers proposed various methodologies for lung cancer diagnosis using machine
learning techniques. In the case of machine learning, relevant features must be manually
extracted with the help of domain expertise, but sometimes inaccurate feature selection may
impact the classifier. Chaganti et al. [9] suggested that in image classification, the traditional
machine learning approach is superseded by deep learning because of its computational
efficiency. Deep learning enables the extraction of fundamental and complicated features
automatically rather than manual feature extraction. Deep learning enables us to quantify
the tumor size, thereby measuring the tumor size and depth. Our proposed method
employs lung CT imaging modality for malignancy detection.

In our proposed model, we choose transfer learning as a feature extractor which
enables us to utilize the information learned from one dataset to another and works well
even with inadequate datasets. We have utilized pre-trained VGG16 as a feature extractor
by freezing all convolution layers. To reduce the computational complexity, an extremely
Randomized Tree Classifier is employed as a feature selector and is fed to the Multi-Layer
Perceptron (MLP) Classifier for classification. The model could improve performance when
compared to other machine learning techniques.

Related Works

The advancements in artificial intelligence and machine learning can be used in various
stages of lung cancer. When a patient has no symptoms, machine learning can be used for
the prediction and risk assessment of lung cancer based on multiple factors such as family
history, smoking history, etc. If a patient is symptomatic, these techniques can be used for
disease detection, localization, and segmentation. Another use case of machine learning is
in assessing disease progression and treatment response prediction. Danjuma et al. [10] con-
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ducted a study on the life expectancy prediction of lung cancer patients by utilizing Naive
Bayes, Decision Tree, and Artificial Neural Network algorithms. Zehra et al. [11] compared
various machine learning algorithms such as SVM, KNN, and Logistic Regression and out
of which the SVM Classifier achieved the best accuracy. Radhika et al. [12] employed a
comparative study on various machine learning algorithms for lung cancer detection.

Many works were conducted, including pre-processing, contrast enhancement, and
segmentation. Image pre-processing and contrast improvement are vital steps in digital
image processing. Segmentation techniques enable one to separate the foreground from the
background. In machine learning algorithms, manual feature extraction has to be performed
for image classification. Tiwari et al. [13] suggested the mask3 FCM and TWEDLNN
algorithms for lung cancer diagnosis. The work involves lung segmentation by utilizing
OTSU thresholding, followed by contrast enhancement. Features are extracted from the
thresholded images and are fed to the classifier, and the model achieved an accuracy of
96.00%. Surendar et al. [14] proposed a hybrid deep learning model utilizing image pre-
processing with non-local means filter followed by segmentation using thresholding. The
features are extracted from the segmented image by a grey-level matrix accompanied by
feature selection with a binary grasshopper optimizer. The selected features are classified
using a hybrid deep neural network model with a sine-cosine crow search algorithm.

The significant contributions of the work are as follows:

• Developed a framework for predicting lung cancer malignancy at an early stage.
Sometimes even an expert radiologist may miss a relatively small lung tumor tissue
which can be life-threatening.

• The implication of various tree splitting criteria in ExtraTreeClassifier as feature
selector is compared.

• A comparative study is performed on various CNN models as feature extractors, with fur-
ther consideration of the performance of the proposed framework with existing systems.

• A comparison is performed with other state-of-the-art machine learning classifiers.

2. Materials and Methods

The pipeline of the proposed framework is shown in Figure 2. We have used a publicly
available IQ-OTH/NCCD dataset consisting of CT images of lung cancer patients with
benign, malignant, and normal cases. Initially, the images are pre-processed, followed by
extracting relevant features. To reduce the computational complexity, feature selection
is performed using ‘ExtraTreeClassifier’. The selected features are fed as neurons to the
input layer of the Multi-Layer-perceptron (MLP) Classifier for classifying tumors into
either benign, malignant, or normal cases. The models were trained and tested in Python
3.8.10 on NVIDIA Tesla V100-PCIE Graphics Processing Units (GPU) deployed on a high-
performance computing cluster with 1 Teraflop.

Figure 2. Pipeline of the proposed methodology.

2.1. Dataset

We utilized the lung cancer dataset from the Iraq-Oncology Teaching
Hospital/National Center for Cancer Diseases (IQ-OTH/NCCD) from Kaggle [15], which
was published in 2019 and comprises CT scans of individuals who have been diagnosed
with lung cancer. The collection includes images of 110 people with lung cancer in vari-
ous stages, including benign, malignant, and normal. These 110 patients vary in gender,
age, education, etc. Out of these, 40 patients were diagnosed with a malignancy in lung
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tumors, 15 patients had lung tumors that were not cancerous (benign), and 55 patients had
normal lungs. Each patient has roughly 80–200 slices of a CT scan, each with a 1mm slice
thickness. These patients come in various ages and genders; they do not all belong to the
same category. The dataset comprises 1097 CT images of two different lung cancer types
and a normal category. The first category is benign lung cancer containing 120 CT images,
and the second category includes 561 malignant lung CT images. The third category is
normal lung CT containing 416 images. Tumors are typically classified into either benign
or malignant. Benign tumors are non-cancerous, whereas malignant tumors are cancerous.
Here, 80% of the data are used for training, and 20% of the data are used for testing.

2.2. Proposed Methodology

This paper proposes a Deep Transfer learning Based Lung Cancer Detection System
consisting of three tasks such as feature extraction, feature selection, and classification. The
detailed architecture of the proposed methodology is illustrated in Figure 3. Initially, the
Lung CT images are acquired from the ‘IQ-OTH/NCCD’ dataset. Let IOri be the initial
image which is resized to 224 × 224 × 3 dimension and is represented by IRsize as in
Equation (1). Keras provides the VGG16 model pre-trained on the huge ImageNet dataset.

IRsize = Resize(IOri) (1)

The resized images are inputted into the VGG16 model, with pre-trained weights on
ImageNet Dataset.

Figure 3. Architecture of ExtRanFS framework.

The model has five blocks of 3 × 3 convolution layers with five max-pooling layers
in between. The feature extraction is performed by the convolution and pooling layers
of VGG16 by leaving behind the fully connected layer. Hence the Include_Top is set as
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False to exclude the final classification layer of VGG16. The pre-trained model outputs a
three-dimensional feature stack after feature extraction.

An extremely randomized tree classifier is applied on the feature stack as a feature
selector. As a result of feature selection, the training and testing of the classifier take less
computational time. The model performs better because feature selection reduces execution
time, eliminates duplicate and irrelevant features, and removes misleading characteristics.
The model training becomes faster with fewer features, which eliminates overfitting. The
model becomes less intricate, more economical, and more generic. The features selected
by the extremely randomized tree classifier are given to the input layer of the Multi-Layer
Perceptron (MLP) Classifier. The classifier has two fully connected layers with 100 and
70 neurons, respectively, with ReLu activation. The last output layer consists of three
neurons with Softmax activation. The model is trained using the selected features, and the
model predicts the testing data efficiently. The overview of ExtRanFS framework is shown
in Algorithm 1.

Algorithm 1 ExtRanFS: Proposed Framework
Input: Lung CT Image (IOri)
Output: Classified Lung CT Image (IOut)

1: procedure PROC1
2: Read each (IOri) in the Dataset
3: Resize (IOri) into (224,224,3)
4: Extract Features from (IOri) Using Pre-trained VGG16 to F
5: end procedure
6: procedure PROC2
7: Fs← Select the Best Features using ExtraTreeClassifier
8: Apply Label Encoding
9: Divide the Dataset into Training and Testing

10: Input Selected Features to Multi-Layer Perceptron (MLP) Classifier
11: Predict the lung cancer malignancy into the classes benign, malignant, or normal
12: end procedure

2.2.1. VGG16 as Feature Extractor

The proposed methodology is implemented in a Python environment using the IQ-
OTHNCCD dataset. Transfer learning is a strategy that allows the knowledge gained in
one task to be applied to another, improving the performance of the second work. Transfer
learning eliminates the need for an extensive dataset and training the model from scratch.
A transfer learning approach has a lot to offer. When compared to a transfer-learned model,
normal convolutional neural networks require days to train. Since the transfer learned
model was trained on a huge dataset, it outperforms the model that was created from
scratch and can already recognize key features with less training data. In our case, we have
an inadequate dataset with three classes: benign, malignant, and normal. To deal with
the insufficient dataset, it is highly recommended to use the features identified by another
model trained on a larger dataset. This technique is known as transfer learning, where
the knowledge gained on one model is re-applied to another problem. Transfer learning
can be used as a feature extractor or for fine-tuning. Here we used VGG16 for feature
extraction only.

Filters are used in the convolution layer to extract features from images. The kernel
size and stride are the two most crucial variables. The pooling layer’s purpose is to lower
the network’s spatial size so that there are fewer parameters and computations to be made.
The fully connected layers in pre-trained models are replaced with the classifier as per our
requirement. The VGG16, a type of convolutional neural network, was unveiled as a part
of the ILSVRC competition. It has 16 layers and is trained on an ImageNet dataset with
1000 classes. The detailed architecture of the proposed framework is illustrated in Figure 4.
Initially, we imported VGG16 from keras.applications with an input image size. The input
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images in the dataset are in the dimension of 512 × 512 × 3 RGB images. To use the dataset
for the VGG16 model, the images are resized to 224 × 224 × 3. The Include = Top is set
to False, which signifies omitting the topmost classification layer, and the weights are
imported from ImageNet classification from which VGG16 is pre-trained. We have used
VGG16 only for feature extraction, which contains five blocks of convolution layers. The
first convolution block consists of two 3 × 3 Convolution layers with 64 filters, stride 1, and
ReLu activation. Each convolution block is followed by a Max-pooling layer with a 2 × 2
window and stride 2. The second convolution block has two 3 × 3 Convolution layers
with 128 filters, stride 1, and ReLu activation. The third block of convolution has three
3 × 3 Convolution layers with 256 filters, stride 1, and ReLu activation. The fourth and
fifth blocks of convolution have three 3 × 3 Convolution layers, 512 filters, stride 1, and
ReLu activation.

Figure 4. Detailed architecture of the proposed framework.

The detailed illustration of feature maps generated at each convolution block is pro-
jected as Figure 5. The pre-trained model’s convolution and max-pooling layers gather
features from the image and output a 3-Dimensional feature stack. The first five convolu-
tion layers of the pre-trained VGG16 extracted visual features necessary for classification.
From this, it is evident that the initial layers extract more prominent and finer details when
compared to the last convolution layers. From the initial convolution layers to the final
layers, the model can abstract the image details into broader ideas to lead to categoriz-
ing the image. Before utilizing these features in machine learning classifiers, they will
be flattened to 1-Dimension. The extracted flattened features are given to the Extremely
Randomized Classifier for feature selection. The original VGG16 architecture has three
fully connected layers with 4096 neurons at two dense layers and 1000 neurons in the
output layer. The selected features are fed to the input layer of the MLP Classifier with
4323 neurons. We removed the fully connected classifier of VGG16, and instead of the last
three fully connected layers (classifier part) of the VGG16 model, we used an MLP Classifier
with two dense layers as fully connected layers with 100 and 70 neurons, respectively. The
output layer has a fully connected layer with three neurons with Softmax Activation.
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Figure 5. Visualization of the feature maps extracted from each block in the VGG16 Model.

2.2.2. Extremely Randomized Ensemble Classifier as Feature Selector

An extremely Randomized Trees Classifier is an ensemble learning algorithm that
resembles the Random Forest Classifier, also known as Extra Trees Classifier. This method
accomplishes classification by aggregating the output of numerous decision trees that make
up a forest. The decision trees in Extra Tree Classifier are constructed from the training
data, and the splitting criteria are decided mainly by Gini Index or Entropy. Gini Index and
Entropy are used for assessing the information gain and are considered as a measure of
the impurity of a node. When splitting the node, if a node has multiple classes, the class is
highly impure. Entropy is calculated using Equation (2), and Gini Index is calculated in
Equation (2). Pc(i) is the probability of class c(i) in a node, and n is the number of classes.

Entropy =
n

∑
i=1
−P(cilog2(P(ci))) (2)

Gini = 1−
n

∑
i=1

P2c(i) (3)

If the Gini Index is 0, it means that when two classes are split, just one class shows
on one side while the other class is represented on the other. This division is thought to
be perfect and is considered a pure classification. The Gini Index calculation is simple
when compared to the Entropy calculation. In Entropy, in addition to probability, the log of
the probabilities has to be computed and hence will not be computationally efficient. The
Extra Tree Classifier fits several extra trees on different samples of the dataset and utilizes
averaging ensemble technique to increase the accuracy and thereby control overfitting.
The ExtraTreeClassifier is an ensemble technique similar to the Random Forest. The
bootstrapping technique is used in the Random Forest Classifier, and the sub-samples are
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created from the input using replacement. Instead of using bootstrapping, Extra Trees use
the entire training sample, which minimizes bias. Random Forest employs an optimal
split when dividing trees, whereas Extra Trees uses a randomized split. Random Forest
and Extra Trees chose the best feature after deciding on the split point. Extra Trees, when
compared to the Random Forest, adds randomness by selecting each node’s split point at
random, which unquestionably lowers variance.

Extra Trees are faster than Random Forest. Hence this technique is more computation-
ally efficient and takes less time to execute. The classifier employs averaging to improve the
ensemble classifier accuracy and will also lessen over-fitting by fitting several randomized
decision trees. We can adjust the number of trees and the tree-splitting criteria. The number
of trees is generally in the range of 10 to 100, and as the number of trees increases, the
performance improves, but obviously, the computation time will be more. It is obvious
that beyond a certain no of trees, the results are not improving. Either Gini or Entropy
can be used as the tree-splitting criterion. Entropy and the Gini Index are used to evaluate
information gain and are seen as indicators of a node’s impurity. If a node contains several
classes after splitting, the class is quite impure. When contrasted with the Entropy compu-
tation, the Gini Index calculation is simpler. Entropy is not computationally efficient since,
in addition to probability, the log of the probabilities also needs to be computed.

2.2.3. Classification

The features selected from the Extremely Randomized Tree Classifier are inputted into
the Multi-Layer Perceptron(MLP) Classifier. The input is flattened in the sequential model
to produce a single input-single output model. The input layer consists of 4323 neurons
comprising the features selected by ExtraTreeClassifier. The next two dense layers make
up the fully connected hidden layers, and the final output layer, which is the final dense
layer, is accountable for deciding the image class. The classifier has two fully connected
dense layers of 100 and 70 neurons, respectively. Each dense layer is activated by ReLu
activation. The model is optimized using the Adam optimizer, and loss is calculated using
sparse categorical cross-entropy. The last output layer had three neurons and was activated
by Softmax activation. The Batch size is fixed at 32, and the number of epochs is 15. The
proposed MLP Classifier classified the input image into either of the three classes with an
accuracy of 99.09%.

2.2.4. Evaluation

The assessment of the model is measured in terms of quality metrics such as accuracy,
precision, sensitivity, specificity, and F1-Score. The performance of the classifier is evaluated
using the confusion matrix. The accuracy and loss of the model, along with the Receiver
Operating Characteristics (ROC) Curve, is also illustrated in Section 3.

3. Results and Discussion

We discuss the experiments conducted by various pre-trained models as feature
extractors. The performance of the MLP Classifier is compared with other state-of-the-art
methodologies as classifiers. On NVIDIA Tesla V100-PCIE Graphics Processing Units
(GPU) set up on a high-performance computing cluster with 1 Teraflop, all models were
trained and tested in Python 3.8.10.

3.1. Feature Extraction by VGG16

The proposed methodology is implemented in a Python environment using the IQ-
OTHNCCD dataset. In this study, transfer learning is applied as a feature extractor to deal
with insufficient datasets. We utilized VGG16 as a feature extractor by excluding the top
classification layers. Figure 5 represents the visualization of feature maps extracted from
each convolution block of the VGG16 feature extractor.

To compare the feature extraction with other state-of-the-art methodologies, the ex-
periment was performed with different pre-trained models as feature extractors, such as
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InceptionV3, Xception, and MobileNetV2. Google unveiled the Inception V1 architecture,
commonly known as GoogleNet, in 2015. Later, Inception-V2, a variation of Inception
V1 with Batch normalization, was developed. The Inception-V3 with BN auxiliary is an
improved version of the Inception-V2. The main design of Xception consists of three flows:
entry, middle, and exit, each with Convolution and Separable Convolution block along with
Residual connection. MobileNetV2 is another CNN developed by Google with residual
skip connections between bottleneck layers. The results are discussed in Section 3.3.

3.2. Feature Selection by ExtraTreeClassifier

The features extracted by VGG16 are fed to the ExtraTree Classifier, which is a model-
based feature selection technique. The Extremely Random Tree Classifier is an ensemble
technique that sorts the features with the most votes and generates numerous trees built
randomly from the training dataset. The decision trees are fitted to the complete dataset
rather than utilizing a bootstrap technique, and the nodes are divided randomly. The
splitting is based on randomness, thereby lowering variance. The model’s accuracy will be
reduced when irrelevant features are processed and will take more time for computation.
The execution time for the classification in this study has been significantly shortened by
feature selection employing extra trees classifiers. In ExtraTreeClassifier, the number of
trees in the forest can be in the range of 10 to 100, and based on the number of trees, the
features selected will be different. We tried other tree-splitting criteria, and the number
of features chosen depends on the number of trees in the forest as in Table 1. The highest
performance is achieved when the tree splitting criteria is Gini and the trees in the forest
are set as 50.

Table 1. Features selected by different tree splitting criteria.

Trees in Forest Selected Features (Gini) Selected Features (Entropy)

10 1285 1013
20 2287 2009
30 3074 2950
40 3722 3690
50 4323 4104
60 4876 4562
70 5225 5143
80 6318 5940
90 6896 6231

100 7200 6921

We experimented with different pre-trained models as feature extractors, and the
features selected by ExtraTreeClassifier are projected in Table 2. The number of trees in the
ExtraTreeClassifier is 50, and the tree splitting criteria is chosen as ‘Gini’.

Table 2. Feature extraction and feature selection.

Pre-Trained Model Features Extracted Features Selected

VGG16 25,008 4323
Xception 100,352 6140

MobileNetV2 62,720 5191
InceptionV3 51,200 5949

3.3. Classification

The features extracted by VGG16 are selected by utilizing ExtraTreeClassifier and
are fed to the Multi-Layer Perceptron (MLP) model as the classifier. The MLP Classifier
has an input layer, two hidden layers, and an output layer. The input layer consists of
4323 neurons comprising the features selected by ExtraTreeClassifier. The first and second
hidden layers consist of 100 and 70 neurons, respectively, with ReLu activation. The output
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layer has three neurons with Softmax activation. The VGG16+MLP achieved an accuracy
of 99.09%. Accuracy, precision, recall, and F1-Score are standard evaluation metrics that we
have used to assess the classification performance. The ratio of accurate predictions to all
the input images is called accuracy and is calculated using Equation (4).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

The terms recall, or True Positive Rate (TPR) are also used to describe sensitivity.
Equation (5) calculates it, giving an idea of the percentage of positive samples that were
accurately predicted as positive.

Sensitivity =
TP

TP + FN
(5)

The percentage of all negative samples that were correctly predicted to be negative is
what is known as the “True Negative Rate” (TNR) or Specificity and is computed using
Equation (6).

Speci f icity =
TN

TN + FP
(6)

Equation (7) can be used to measure precision, which indicates what percentage of
positive predictions came true.

Precision =
TP

TP + FP
(7)

An evaluation is performed with different adaptive optimizers in the classifier’s
performance as in Table 3, and the best accuracy is achieved with the Adam optimizer.

Table 3. Comparison of ExtRanFS framework (VGG16+MLP) with various adaptive optimizers.

Optimzer Accuracy (%) Precision (%) Recall (%) F1 Score (%)

Adam 99.09 98.66 98.66 98.66
Adagrad 94.00 91.66 88.33 89.66
Adadelta 65.00 52.33 51.00 51.66
RMSprop 66.00 71.33 68.33 69.33

A comparison is performed with other existing pre-trained models as feature extrac-
tors, and the results are illustrated in Table 4.

Table 4. Comparison of ExtRanFS framework with other state-of-the-art methodologies with
feature selection.

Classification Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

VGG16+MLP (Proposed) 99.09 98.66 98.66 98.66
Xception+MLP 96.00 96.67 90.33 93.00

MobileNetV2+MLP 97.00 96.67 94.00 95.00
InceptionV3+MLP 94.00 90.33 89.66 89.66

From Table 4, it is evident that the proposed framework ExtRanFS outperformed all
other models regarding quality metrics such as accuracy, precision, recall, and F1-Score.
Similarly, we have compared with other existing state-of-the-art feature selectors with and
without ExtraTreeClassifier as feature selectors.

Computational Complexity

An analysis of the mathematical possibilities for effective computer learning is called
‘Computational Complexity of Machine Learning Algorithms’. The total number of train-
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able parameters accounts for the computational complexity of the model. Table 5 projects
the number of trainable parameters and the run time with and without feature selection.
With feature selection, the number of trainable parameters and the run time is drastically
reduced compared to the run time without feature selection.

Table 5. Comparison of ExtRanFS framework with other state-of-the-art classifiers with and without
feature selection in terms of run time.

Classification Model With Feature Selection Without Feature Selection
Trainable Parameters Run Time (s) Trainable Parameters Run Time (s)

VGG16+MLP (Proposed) 445,183 300 2,516,183 660
Xception+MLP 835,583 600 10,042,583 780

MobileNetV2+MLP 762,183 180 6,279,383 300
InceptionV3+MLP 867,483 360 5,127,383 660

When evaluating classification performance, the confusion matrix compares real and
predicted values. We obtain a 3 × 3 confusion matrix since there are three classes. The
confusion matrix of the classifier upon feature extraction from various pre-trained models
is illustrated in Figure 6. Figure 6a represents the confusion matrix of MLP upon feature
extraction from VGG16. There is one wrong classification in the benign class and one in the
normal case.

Figure 6. Confusion matrix of the classifier upon feature extraction from different pre-trained models.

Figure 6b illustrates the confusion matrix of MLP upon feature extraction from Xcep-
tion and has eight wrong predictions in the benign class, along with one wrong prediction
in the malignant case. Figure 6c represents the confusion matrix of MLP classifier upon
feature extraction from MobileNetV2 and has five wrong predictions in the benign class
and one in the normal class. Figure 6d represents the confusion matrix of MLP upon
feature extraction from InceptionV3 with six wrong predictions in the benign class and
four in the malignant class. From this, it is evident that the MLP classifier with VGG16
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as feature extractor outperformed well when compared to other pre-trained models as
feature extractors.

We experimented with different state-of-the-art classifiers upon feature extraction from
VGG16. Figure 7a is the confusion matrix of the MLP Classifier with two misclassifications,
one in benign and the other in normal cases. Figure 7b has four wrong predictions in the
benign category, whereas Figure 7c has a total of eleven misclassifications. Figure 7d shows
the confusion matrix of the VGG16+KNN Classifier with fifteen wrong predictions. The
Decision Tree Classifier had seven wrong classifications Figure 7e. In this scenario also, the
MLP classifier with VGG16 outperformed well.

Figure 7. Confusion matrix of various classifiers upon feature extraction from VGG16.

The accuracy and loss curves are used to evaluate the model’s progress. These are
prominently used quality metrices in machine learning. When there is a gap in accuracy
between training and testing, overfitting is evident. The overfitting increases as the gap
widens. Figure 8 shows the accuracy and loss of the model. The figure shows that the
model is not overfitted. According to the ‘Model Accuracy’ graph, training does not require
as many epochs as is suggested by the flattening of the curve after the first few rapid rises
in accuracy.

Figure 8a shows the accuracy and loss curve of the MLP classifier upon feature
extraction from VGG16. From the accuracy curve, it is evident that the model attained
around 97.00% accuracy nearly after the second epoch. Since there is no drastic gap between
training and testing accuracy, we can say that the model is not overfitted. Figure 8b projects
the accuracy loss curves of MLP classifier when pre-trained from Xception for feature
extraction. Similarly, Figure 8c illustrates the accuracy loss curve of the MLP classifier upon
feature extraction from MobileNetV2. Figure 8d shows the accuracy-loss curve of the MLP
classifier on feature extraction from pre-trained InceptionV3.

The Receiver Operating Characteristics (ROC) of the classifier is constructed by plot-
ting Sensitivity against Specificity. Classifiers perform better when their curves are closer
to the top-left corner. From Figure 9, it is evident that the classifier performed well with
different pre-trained models as feature extractors.
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Figure 8. Accuracy and loss of the MLP Classifier upon feature extraction from various
pre-trained models.
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Figure 9. ROC curve of the classifier upon various pre-trained models as feature extractors.

4. Discussion

Researchers proposed various deep architectures for the detection of lung cancer
since deep learning eliminates the necessity of feature extraction. Deep learning works
as a black box that performs both feature extraction and classification. Sharaf et al. [16]
utilized ExtraTreeClassifier and metaheuristics to classify email. Diana et al. [17] per-
formed leukocyte classification by extracting features using ResNet50, feature selection
by ExtraTreeClassifier, followed by SVM Classifier and attained an accuracy of 90.76%.
From CT scans, Asuntha et al. [18] identified textural, geometric, and intensity features.
Using Convolutional Neural Networks (CNN), these optimized features were employed
for categorization and obtained an accuracy of 95.62%. The model could effectively reduce
computational complexity. Song et al. [19] experimented with three different deep neural
networks for classification and out of which CNN outperformed other models with an
accuracy of 84.15%. According to Dutta et al. [20], Convolutional Neural Networks can be
used for medical image classification either by training from scratch or by utilizing transfer
learning. Sajja et al. [21] used the LIDC dataset for lung cancer detection using GoogleNet
and achieved a testing accuracy of 99.00%. In contrast, Rahul et al. [22] used pre-trained
models for feature extraction in the survival prediction of adenocarcinoma patients and
resulted in 90.00% accuracy.

Gao et al. [23] used pre-trained VGG16 on the LUNA16 dataset for lung nodule
detection and obtained an accuracy of 96.86%. In contrast, Chon et al. [24] performed
various operations such as segmentation, nodule detection, and classification and achieved
an AUC of 0.83. Razeq et al. [25] concentrated on how CNNs classified lung nodules
according to the size of the input lung CT, whereas Abdulla et al. [26] performed lung
cancer detection using a deep neural network. Chang et al. [27] suggested a two-staged
Convolutional Network for lung cancer detection by integrating noise removal. Satti
et al. [28] proposed a filter-based noise removal technique for eliminating the commonly



Diagnostics 2023, 13, 2206 15 of 18

occurring impulse noise in medical images. Kaviya et al. [29] conducted a detailed literature
review on how artificial intelligence can be effectively utilized in detecting lung cancer.

The authors of [30–33] used Artificial Neural Networks to classify lung nodules or lung
cancer, but the significant limitations were the manual handcrafted feature selection tech-
nique. Manual feature selection requires domain expertise, and choosing inappropriate or
irrelevant features may result in building a less robust model. The authors of [34] employed
LeNet-5 architecture with 10-fold cross-validation and attained a validation accuracy of
97.04%. Wang et al. [35] utilized a transfer learning-based strategy to classify lung cancer,
and the model achieved an accuracy of 85.71%. We have evaluated different machine
learning models as classifiers, such as Support Vector Machine (SVM), Random Forest (RF),
K-Nearest Neighbor (KNN), and Decision Tree (DT) ,and the results are projected in Table 6.
We utilized LinearSVC from sklearn.svm and the loss was calculated using a squared hinge.
The one-vs-rest pattern provides the multiclass classification with a penalty selected as l2,
and the tolerance for the stopping criterion is set as 1 × 10−5. With 50 trees in the forest, the
Random Forest meta-estimator fits a variety of decision tree classifiers to different dataset
subsamples. The number of neighbors in the K-Nearest Classifier is set as 7, whereas the
tree splitting criteria in DecisionTreeClassifier is set as Gini.

Table 6. Comparison of ExtRanFS Framework with other state-of-the-art Classifiers.

Classification Model Accuracy (%) Precision (%) Recall (%) F1 Score (%)

VGG16+MLP (Proposed) 99.09 98.33 98.33 98.33
VGG16+SVM 98.63 96.66 97.33 97.00
VGG16+RF 95.90 89.00 96.33 91.66

VGG16+KNN 93.18 82.33 88.66 84.66
VGG16+DT 93.63 91.00 92.33 91.33

Table 7 compares our proposed framework with other existing state-of-the-art models
on the same dataset ‘IQ-OTHNCCD’. The results demonstrate that our proposed classifier
obtained the best accuracy of 99.09% when pre-trained with VGG16 as a feature extractor.

Table 7. Comparison of ExtRanFS framework with other state-of-the-art Classifiers.

Author Architecture Accuracy (%) Sensitivity (%) Specificity (%)

Al-Yasriy et al. [36] AlexNet 93.54 95.71 95.00
Humayun et al. [37] VGG16 98.83 Not Specified Not Specified

AL-Huseiny et al. [38] GoogLeNet 94.38 95.08 93.70
ExtRanFS (Proposed) VGG16 +MLP 99.09 98.66 98.00

AlexNet CNNs were used by Al-Yasriy et al. [36] to identify and categorize lung
cancer. The model that was developed had a high accuracy of 93.54%. Nishio et al. [39]
tried to classify lung nodules by implementing a transfer-learning-based deep CNN; the
authors concluded that larger input images and transfer learning enhanced the Computer
Aided Diagnosis(CAD). Humayun et al. [37] incorporated data augmentation on the ‘IQ-
OTH/NCCD dataset’, and the classification on pre-trained VGG16 achieved an accuracy of
98.83% for the training data. Still, for testing data, the accuracy was only 86.45% indicating
an overfitting model. Kareem et al. [40] utilized the same ‘IQ-OTH/NCCD dataset’ for lung
cancer classification by utilizing image enhancement, segmentation, and feature extraction.
The features were classified using the SVM classifier, and the authors achieved an accuracy
of 89.88%. AL-Huseiny et al. [38] performed various pre-processing involving texture
analysis, morphological operation, and ROI Extraction. They used pre-trained GoogleNet
architecture for lung cancer classification and obtained an accuracy of 94.38%.
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5. Conclusions

Transfer learning is the process of using a model that has already been learned to solve
a new problem. It is currently highly popular in deep learning since it can train deep neural
networks using a minimal amount of data. Transfer learning eliminates the requirement
for initial training from scratch. The proposed methodology classified lung cancers into
three groups. For the classification challenge, we employed the VGG16 pre-trained model
as a feature extractor. The fully connected dense layers of VGG16 are replaced with
an MLP Classifier. The proposed classifier outperformed other existing state-of-the-art
methodologies with the best accuracy of 99.09%.
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