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Abstract: Glaucoma is a chronic eye disease that may lead to permanent vision loss if it is not
diagnosed and treated at an early stage. The disease originates from an irregular behavior in the
drainage flow of the eye that eventually leads to an increase in intraocular pressure, which in the
severe stage of the disease deteriorates the optic nerve head and leads to vision loss. Medical
follow-ups to observe the retinal area are needed periodically by ophthalmologists, who require an
extensive degree of skill and experience to interpret the results appropriately. To improve on this issue,
algorithms based on deep learning techniques have been designed to screen and diagnose glaucoma
based on retinal fundus image input and to analyze images of the optic nerve and retinal structures.
Therefore, the objective of this paper is to provide a systematic analysis of 52 state-of-the-art relevant
studies on the screening and diagnosis of glaucoma, which include a particular dataset used in
the development of the algorithms, performance metrics, and modalities employed in each article.
Furthermore, this review analyzes and evaluates the used methods and compares their strengths and
weaknesses in an organized manner. It also explored a wide range of diagnostic procedures, such
as image pre-processing, localization, classification, and segmentation. In conclusion, automated
glaucoma diagnosis has shown considerable promise when deep learning algorithms are applied.
Such algorithms could increase the accuracy and efficiency of glaucoma diagnosis in a better and
faster manner.

Keywords: retinal fundus image; cup–disc ratio (CDR); glaucoma screening and diagnosis; deep
learning; retinal disease; optic nerve head (ONH)

1. Introduction

Glaucoma is an eye disorder that is associated with the loss of retinal ganglion cells,
whereby their axons gradually deteriorate over time, which leads to permanent vision
loss if the condition goes untreated. Globally, 80 million individuals of different ages are
affected by this disease, and it was considered the major cause of blindness in 2020 [1]. The
main cause of this disease can be attributed to an imbalance between aqueous humor fluid
drainage and flow that can result in increased intraocular pressure, which is a major risk
factor for this disorder. The chance of getting glaucoma may additionally be increased by
other elements such as age, race, and family history.

Extensive eye tests using tonometry, sight field tests, and an evaluation of the optic
nerve head are crucial procedures for the diagnosis of glaucoma [2]. However, these tests
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usually take a lot of time, are costly, and require special equipment and expertise. Due
to these limitations, there is an increasing trend in applying deep learning algorithms for
automated glaucoma detection using fundus images.

Fundus imaging is a noninvasive modality that is easily accessible and provides
essential information about the eye and optic nerve heads, including structural alterations
used to indicate glaucoma presence. This image captures a detailed description of every
aspect of the retina, including the size, shape, and color of significant regions such as the
optic disc (OD), optic cup (OC), blood vessels, neuroretinal rim, and fovea [3,4]. Figure 1
shows the main structures in a retinal fundus image [5].
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In the past few years, deep learning algorithms have shown good performance in
diagnosing glaucoma based on fundus images, according to several studies that reported
high sensitivity and specificity rates. However, this approach faces numerous challenges
and constraints, such as the need to gather large and heterogeneous datasets, potential
algorithm bias, and bureaucracy issues in healthcare system validation [6–8].

The goal of this review paper is to present a comprehensive overview of the most
recent techniques for detecting glaucoma by means of deep learning methods applied to
retinal fundus images. A discussion of the strengths and limitations of these techniques in
addition to their potential to improve glaucoma screening accuracy and efficiency is also
included in this paper. This review was based only on reliable academic databases, where
recent articles were gathered from 2019 to 2023. We hope that this paper provides insight
into the current state of glaucoma screening and helps identify gaps in the research and
development in this area.

1.1. Information Sources

According to [5,9,10], an extensive search has been performed for glaucoma diagnosis-
related articles by utilizing reputable databases, such as Scopus, ScienceDirect, IEEE Xplore,
WoS, and PubMed Central. The compiled list comprises both medical and technical litera-
ture and provides a comprehensive representation of all research activities in this field.
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1.2. Study Selection Procedures

To identify relevant papers, a two-stage approach was executed that involved screen-
ing and filtering processes. Both stages used the same criteria for including or excluding
relevant papers. During the first stage, duplicate studies were removed as well as articles
that were unrelated according to the preliminary review of the titles and abstracts. In the
second stage, we thoroughly reviewed, analyzed, and summarized the remaining papers
in order to obtain a set of relevant studies.

1.3. Search Mechanism

This study was conducted using a range of search keywords in highly reputable
databases, such as IEEE Xplore, ScienceDirect, PubMed, Scopus, and WoS. Our search
query comprised of two parts, linked with the operator “AND”. The first and second parts
consist of different sets of keywords, with the former including “glaucoma” and “fundus
images”, and “optic disc” and the latter comprising “deep learning”, “convolutional neural
network”, and “CNN”. Within each part, the operator “OR” was used to connect the
keywords. We only focused on scientific studies published in journals, and thus excluded
conferences, books, and other forms of literature, while at the same time prioritizing only
the current and relevant research on the use of deep learning in retinal disease, particularly
glaucoma of all types including open-angle, angle-closure, and normal-tension glaucoma.
Our research query and inclusion criteria are detailed in Figure 2. In addition, this work
did not distinguish between patients who had previous treatment experience and those
who did not. Both treatment-experienced and treatment-naïve patients were mixed up,
since most of the works focused only on the resultant disease lesions.
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Figure 3 shows the relationship between the number of articles collected from reliable
databases in conjunction with the year of publication for each article. The collected articles
included a presentation of the latest proposed deep learning techniques in the field of
glaucoma diagnosis.
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1.4. Paper Organization

The main objective of this review is to conduct a detailed analysis of various deep
learning techniques recently used in the diagnosis of glaucoma diseases through the analy-
sis of fundus images. In addition, it provides an extensive overview of the various datasets
available for glaucoma disease, including their ground truth descriptions. This review
additionally provides further details about deep learning frameworks, which are frequently
employed in the diagnosis of retinal diseases, as well as widely used methodologies for
image processing and evaluation metrics.

The review also takes into account a number of current research techniques that are
related to this research focus. In brief, this review aims to provide readers with an in-depth
and up-to-date understanding of the recent developments in the field of AI-based diagnosis
of retinal diseases, especially with regard to glaucoma.

The organization of this article is as follows: Section 2 presents a brief summary of
the various forms of glaucoma, the risk factors, the datasets readily accessible online for
glaucoma diagnosis, and the evaluation metrics that are commonly utilized to measure
the effectiveness of these models. Section 3 provides a breakdown of the different image
pre-processing techniques that are very common for fundus imaging analysis. In Section 4,
the most commonly used approaches for the detection of glaucoma are discussed along
with specific backbone models that are used for both classification and segmentation tasks
in fundus image analysis. Finally, Section 5 discusses several potential research gaps and
the corresponding recommendations, as well as their limitations, and Section 6 concludes
the article.

2. Glaucoma Overview: Types, Factors, and Datasets

Glaucoma, a complicated and progressive eye disease, has several kinds, phases, and
risk factors. Understanding these categories and recognizing the risk factors is essential
for proper diagnosis and treatment. Furthermore, the use of well-known public databases
improves the reliability of diagnostic procedure outcomes and facilitates comparisons with
related studies on this disease.

2.1. Types of Glaucoma

There are several types of glaucoma, which are open-angle glaucoma, angle-closure
glaucoma, and normal-tension glaucoma [11,12]. Open-angle glaucoma, which is the most
common type of glaucoma, occurs when the drainage angle in the eye becomes less efficient
over time, leading to increased pressure inside the eye. Angle-closure glaucoma, on the
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other hand, occurs when the iris bulges outward and blocks the drainage angle, leading to a
sudden increase in eye pressure [13]. Normal-tension glaucoma is a less common type that
occurs when the optic nerve is damaged, even though the eye pressure is within the normal
range. Treatment options for glaucoma include eye drops, medication, laser therapy, and
surgery, and the choice of treatment depends on the type and severity of the disease [14].

2.2. Risk Factors for Glaucoma

There are several risk factors associated with glaucoma that include age, family history,
high eye pressure, thin corneas, and certain medical conditions, such as diabetes and
high blood pressure [15,16]. Other risk factors may include a history of eye injuries, long-
term use of steroid medications, and a high degree of nearsightedness or farsightedness.
Additionally, individuals of African, Hispanic, or Asian descent may be at higher risk of
developing certain types of glaucoma. Figure 4 demonstrates the majority of glaucoma
risk factors. Even though some risk factors are out of a patient’s control, regular eye tests
and frequent early screening for glaucoma might be helpful in recognizing and treating
this medical condition. Patients with risk factors must get their eyes checked out by an eye
specialist on an ongoing schedule to check for glaucoma symptoms and hence prevent the
likelihood of vision loss [17,18].
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2.3. Retinal Fundus Image Datasets

For the purpose of diagnosing glaucoma, there are a wide variety of datasets that are
freely available online that include datasets on retinal images, optical coherence tomog-
raphy (OCT) scans, and individual clinical data with glaucoma condition [6,19]. These
datasets often come with expert annotated labels, whereby the labels provide additional
information on the exact location and severity of retinal damage resulting from glaucoma.
Such information can be utilized as the ground truth for the development and evaluation
of automated glaucoma screening tools, which needs to be verified by trained ophthalmol-
ogists or qualified experts in the field. Using these data, the development of novel methods
for the early detection and monitoring of glaucoma has been facilitated. Consequently,
public datasets have emerged as an essential resource for researchers, physicians, and
other healthcare professionals aiming to enhance glaucoma diagnosis and treatment [20,21].
Table 1 shows some of the frequently employed public datasets for glaucoma diagnosis.
Each of these datasets has distinct features that can be dedicated to particular applications
or types of research topics as well. Typically, both healthy and glaucoma-affected images are
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included in the datasets, which is an important factor to enable the creation and assessment
of algorithms that are capable of distinguishing between healthy and affected eyes.

Table 1. Overview of fundus image datasets for glaucoma diagnosis.

Dataset No. of
Images Glaucoma Normal Image Size Cls. * Seg. Ground Truth Label

ACRIMA [22] 705 396 309 - 4 - -

HARVARD [23] 1542 756 786 - 4 - -

ORIGA [24] 650 168 482 3072 × 2048 4 - -

REFUGE [25] 1200 120 1080 2124 × 2056
1634 × 1634 4 4 Location of Fovea

LAG [26] 5824 2392 3432 3456 × 5184 4 - Attention maps

DRISHTI-GS1 [27] 101 70 31 2896 × 1944 4 4
CDR values and

Disc center

HRF [28] 45 27 18 3504 × 2336 4 4
Center and Radius

for Optic Disc

RIM-ONE-r1 [29] 169 51 118 - 4 4 -

RIM-ONE-r2 455 200 255 - 4 - -

RIM-ONE-r3 159 74 85 2144 × 1424 4 4 -

RIM-ONE-DL 485 172 313 - 4 4 -

RIGA [30] 750 - - 2240 × 1488
2743 × 1936 - -

Provide six
boundaries for Optic
Disc and Optic Cup

DRIVE [31] 40 - - 768 × 584 - 4 Vessel Segmentation

STARE [31] 402 - - 605 × 700 - 4 -

MESSIDOR [32] 1200 - -
1440 × 960
2440 × 1488
2304 × 1536

- - Macular edema
information

JSIEC/Kaggle [33] 51 13 38 - 4 - -

CHASE [3] 28 - - 1280 × 960 4 Vessel Segmentation

sjchoi86-HRF [34] 401 101 300 - 4 - -

DRIONS-DB [35] 110 - - 600 × 400 - - Contours for the
Optic Disc

SINDI [36] 5783 113 5670 - 4 - -

SCES [37] 1676 46 1630 3072 × 2048 4 - -

G1020 [38] 1020 296 724 - 4 - -

PAPILA [39] 488 155 333 2576 × 1934 - 4 -

ESOGU [40] 4725 320 4405 - 4 - -

PSGIMSR [41] 1150 650 500 720 × 576 - - -

* Cls.: Classification, Seg.: Segmentation.

Figure 5 shows the distribution of the available datasets and the number of times
they were used by researchers for glaucoma diagnosis. These public datasets contain
fundus images according to certain criteria with specific accuracy and dimensions, and
they are often divided into two or more groups for the purpose of training, validation, and
testing. In addition, some researchers use specialized datasets that are collected locally
from hospitals specializing in the respective eye diseases. DRISHTI-GS1, RIM-ONE, and
ORIGA are the most commonly used datasets among the reviewed articles.
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3. Feature Enhancement and Evaluation

The purpose of image enhancement techniques is to increase the quality of images,
which is an essential process for improving the analysis of images. Furthermore, ROI
localization improves image analysis efficacy by detecting and extracting specific parts
within an image that are relevant to a specific task. Finally, these operations, in addition to
classification and/or segmentation operations, usually require evaluation measures that
demonstrate the effectiveness of the systems applied to the data.

3.1. Pre-Processing Techniques

Retinal fundus imaging is a crucial modality used in diagnosing and monitoring
various eye diseases. Despite advancements in retinal imaging technology, several chal-
lenges still exist, such as low image quality due to image artifacts, poor illumination, and
motion blur [42,43].

In order to create accurate and reliable prediction models, it is common practice to
pre-process fundus images prior to the training phase to minimize the effects of noise that
can arise from the use of different image-capturing equipment in various illumination
settings. Basically, deep learning networks often require fixed input dimensions for efficient
processing. These networks commonly operate on fixed-size tensors as input, which means
that the images need to be resized or transformed to a consistent size before being fed into
the network.

Due to the complexity of the retinal structure, important biomarkers and lesions may
not be easily identifiable in images of poor quality. In addition to noise reduction techniques,
pre-processing techniques are utilized to enhance the important features of fundus images
prior to the implementation of deep learning models [44–46]. Table 2 provides a list of
commonly employed pre-processing methods for color fundus images in the diagnosis of
retinal diseases.
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Table 2. General pre-processing methods for fundus images.

Pre-Processing Technique Explanation

Contrast Enhancement
(Histogram equalization)

Histogram equalization is a technique used to enhance the overall contrast of an image.
The main objective of this method is to distribute the pixel values in an image’s histogram
more evenly. The underlying principle of this technique is that if the distribution of pixel
intensity values is more uniform, the resulting image will have increased contrast and will
appear more visually appealing.

Contrast Enhancement (CLAHE)

CLAHE (Contrast Limited Adaptive Histogram Equalization) is a technique that
improves image contrast by redistributing pixel intensity values. It adapts to local
contrast, which will enhance the structures visibility in low-contrast images. CLAHE
adjusts contrast of small image regions to avoid over-amplifying noise, which is useful for
improving image quality in low-contrast settings.

Color Space Transformation
Color space transformation is a technique that improves image analysis accuracy by
converting images from one color space to another. In fundus image analysis, the
commonly used color spaces are RGB, HSI, and Lab.

Noise Removal

Noise removal is a crucial step in improving digital images’ quality by eliminating
unwanted noise. Techniques such as median filtering, Gaussian filtering, and wavelet
transform are commonly used to remove noise from images, thus improving image
analysis accuracy.

Cropping of ROI
Cropping ROI is a technique used to isolate regions of interest in an image, such as the
optic disc, macula, and blood vessels. This technique can improve the subsequent analysis
accuracy by focusing on the relevant structures in the image.

Data Augmentation

Data augmentation is a technique used to increase the diversity of the training dataset by
creating new variations of existing images. Some examples of this technique, which are
used to enhance data variation, including rotation, flipping, scaling, and adding noise.
This technique can improve deep learning models’ performance during the training phase
by providing more diverse and representative dataset.

3.2. Optic Nerve Head Localization

In most of the automated image processing operations that are employed for diagnostic
purposes, the medical images are usually coupled with localization information that is
helpful for diagnostic operations.

For fundus images, which are usually used to diagnose glaucoma, the locations of the
optic disc or optic nerve head are crucial in diagnosing the disease. The optic disc is the
entry point of the optic nerve, which transmits visual data to the brain. It is often called the
“optic nerve head” with a circular shape area on the retina [47].

In general, the process of localizing this structure will help to identify abnormalities
for diagnosing diseases later on. This process reduces the attention area size, which usually
increases the diagnostic accuracy since only these specific areas are analyzed. However,
this approach relies on the assumption that the rest of the areas are less important for
diagnosing the disease.

To locate the optic disc or optic nerve head, there are several techniques that localize
the center of the optic disc and calculate its radius to be used as input for the segmentation
process [48]. For the optic cup, its localization information is less crucial as it is located
within the optic disc and is often easily identified.

The following list describes some of the image processing techniques that are com-
monly used to perform localization of the optic disc and/or the optic cup [49]. These
techniques include the following:

• Threshold: A certain boundary value is set to separate the optic disc and optic cup
from the surrounding retina, depending on the density of image pixels;

• Edge Detection: Identify and detect edges of the optical disc and optical cup based on
sudden changes in pixel values using algorithms such as the Sobel operator or Canny
edge detector;
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• Template Matching: Locating the optical disc or optic cup in the image using a binary
template that matches their shapes;

• Machine Learning/Deep Learning: Training a network to identify the optic disc and
optic cup in a fundus image based on a set of predefined features such as texture, size,
and shape.

After successful localization of the optic disc and optic cup, this information will be
used as an input to implement further image processing methods such as isolating these
structures, determining their sizes, and identifying any irregularities that may be present.

3.3. Performance Metrics

Performance metrics are essential components used as an evaluation measure for
deep learning applications to evaluate their accuracy and efficiency among the numerous
proposed segmentation and classification methods [50]. For glaucoma diagnosis, the
segmentation output of the retinal fundus image is crucial information used to detect the
specific areas in which the disease is present.

The standard performance metrics that are involved in the segmentation task are
Jaccard index, Dice similarity coefficient (DSC), and sensitivity, which are frequently uti-
lized to assess the effectiveness of the segmentation process. These metrics measure how
closely the segmentation result matches the actual disease-affected areas, namely, the
ground truth [51,52].

For the classification task, the purpose of performance metrics is to measure how well
the algorithm has correctly categorized the images as either having glaucoma or being
in a healthy state. Hence, it is important to collect basic information on the number of
correctly classified images. The performance of a classification task is typically evaluated
using metrics such as the accuracy, precision, recall, F1 score, and area under the receiver
operating characteristic curve (AUC-ROC).

Hence, holistic performance metrics are essential for assessing the performance of
glaucoma diagnosis classification and segmentation applications. These metrics assist
researchers in assessing the methods’ precision and figuring out how well they detect the
presence of glaucoma.

The evaluation and comparison of various glaucoma diagnosis techniques depend
heavily on the choice of appropriate performance metrics. Table 3 lists the most commonly
used metrics along with their descriptions [47,53,54].

Depending on the extracted articles, different sets of evaluation matrices were em-
ployed, which are appropriate to the architecture of each network, whether for segmentation
or classification tasks, which reveal the strength of the performance. Figure 6 shows the
distribution of the most used evaluation matrices in the collected papers.
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Table 3. Evaluation metrics for automated glaucoma screening and diagnosis systems.

Metric Formula Description

Sensitivity (Sen)
Recall Sen = TP */(TP + FN) Measure of the percentage of patients with glaucoma

who are correctly detected or identified by the model.

Specificity (Spe) Spe = TN/(TN + FP) Measures the proportion of patients without glaucoma
who are correctly identified by the model.

Precision (Pre) Pre = TP/(TP + FP) Measures the proportion of patients identified as having
glaucoma by the model who actually have the disease.

Accuracy (Acc) Acc = (TP + TN)/(TP + TN + FP + FN) Measures the proportion of patients who are correctly
classified by the model.

F1 Score F1 = 2 TP/(2 TP + FP + FN) Measures the overall performance of the model in
identifying both positive and negative instances.

AUC-ROC The plot of the sensitivity against
(1-specificity)

Measures the ability of the model to discriminate
between patients with glaucoma and those without
the disease.

IoU/Jaccard index IoU = TP/(TP + FN + FP) Measures the overlap between the predicted and ground
truth segmentation masks.

DSC Coefficient (Dice) Dice = 2 TP/(2 TP + FP + FN) Measures the similarity between the predicted and
ground truth segmentation masks.

Absolute error (δ) δ = |CDRp − CDRg|
Measures the absolute error where CDRp and CDRg
denote the cup to disc ratio value for the prediction and
ground truth, respectively.

* TP: True Positive, FN: False Negative, TN: True Negative, FP: False Positive.

4. Glaucoma Detection

There are two primary tasks in which deep learning algorithms have played a vital
role in diagnosing retinal-based diseases: classification and segmentation. The classification
task involves the process of categorizing input images into different disease categories. On
the other hand, the segmentation task involves the process of identifying critical lesions
and significant biomarker areas from a given fundus image of a patient, which is used to
discover more details about the type and nature of retinal diseases. Several deep learning
models have been created and evaluated for these tasks [10,43,55]. Figure 7 depicts an
overarching deep learning framework for diagnosing retinal disease.
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4.1. Glaucoma Diagnosis

Glaucoma is a significant contributor to the irreversible loss of vision worldwide.
Scientists have dedicated their efforts to developing diverse deep learning models aimed
at identifying diseases from fundus images, similar to several other retinal ailments.
Table 4 outlines a list of the experimental findings for the deep learning-based diagnosis
of glaucoma.

Li et al. [26] proposed an “Attention-based AG-CNN” method that utilizes deep fea-
tures highlighted by the visualized maps of pathological regions to automatically detect
glaucoma. The guided back-propagation technique was used to locate small pathological
regions based on predicted attention maps, enabling the refinement of attention maps to
highlight the most important regions for glaucoma detection. This method has significant
potential for automated glaucoma detection and identification of pathological regions in
fundus images. Correspondingly, Wang et al. [56] trained deep models for glaucoma classi-
fication based on the transfer learning strategy of the VGG-16 and AlexNet architectures. In
addition, images of the optic nerve head were customized from different publicly available
datasets, which they divided into two subsets. One subset was augmented using various
data augmentation techniques such as random scaling, shearing, rotation, and flipping,
while the second subset of images was reconstructed by producing 3D topographical maps
of the ONH using shading information from 2D images. After that, the generated datasets
were evaluated for glaucoma classification and produced better performance than normal
CNN classification models.

In another work, Gheisari et al. [57] introduced a new method for improving the
accuracy of glaucoma classification by integrating the CNN frameworks of VGG16 and
ResNet50 with the RNN-LSTM model. To enhance the classification performance, the
proposed architecture combines static structural features with dynamic vessel features.
The LSTM-based RNN was used because of its capacity to select and retain pertinent
information from the image sequence in the hybrid module. To increase the accuracy of
the hybrid module of glaucoma classification, a fully connected layer was added at the
end of the network. On the other hand, Nayak et al. [58] suggested a new type of network
architecture called “ECNet” based on fundus images for effective glaucoma detection.
Convolutional, compression, ReLU, and summation layers form the basic structure of the
model to extract the significant disease features. A real-coded genetic algorithm (RCGA)
was used to optimize the learnable layer weights, as opposed to gradient-based algorithms,
which may lead to an overfitting problem, and thus, the need for a larger training dataset. A
variety of classifiers were used for the classification task, with RCGA and SVM producing
the best outcomes.

Additionally, Li et al. [59] proposed a deep learning approach for identifying glauco-
matous damage in fundus images using pre-trained ResNet101. To address the vanishing
gradient problem during training, skip connections between the layers were utilized. These
connections perform identity mapping without adding additional parameters or computa-
tional complexity. The authors also explored the integration of short medical history data
with fundus images, which resulted in a slight performance improvement in the model. Fur-
thermore, Hemelings et al. [60] proposed a novel model for glaucoma detection using deep
learning and active learning techniques. The model incorporates transfer learning from
ResNet-50 architecture and utilizes pre-processing techniques such as ROI extraction and
data augmentation. An active learning strategy through uncertainty sampling was utilized
to leverage uncertainty information from an unlabeled dataset to reduce the labeling cost.
Furthermore, the model generates interpretable heat maps to support decision-making. For
the same reason, Juneja et al. [61] introduced a new method called “GC-NET” for glaucoma
classification using retinal fundus images. Their approach involved three pre-processing
techniques, namely, image cropping, augmentation, and denoising, to eliminate irrelevant
details from the input images. They then utilized a 76-layer deep CNN-based model, which
included an ‘Add layer’ in every block to minimize data loss by combining the previous
block output with the next block output, except for the first and final blocks.
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On the one hand, Liu et al. [62] proposed a DL framework, “GD-CNN” for automatic
diagnosis of glaucoma using fundus images that was trained on a large dataset of positive
and negative cases from different sources. The network is based on the ResNet model and
the stochastic gradient descent optimizer for binary classification. To improve the general-
ization ability of the model, an online DL system was introduced in which ophthalmologists
iteratively confirmed the model’s classification results, whereby the confirmed samples
were used for fine-tuning before making new predictions. Moreover, Bajwa et al. [63]
proposed a two-stage cascade model for glaucoma screening. In the first stage, a heuristic
method based on regions with CNN (RCNN) was used for the extraction and localization
of OD from a retinal fundus image. This stage includes a sub-model using a rule-based
algorithm to generate semi-automated annotations for OD, used during the training of the
RCNN. In the second stage, a deep CNN was used to classify the extracted ROI images
into two classes: glaucoma and non-glaucoma.

Apart from this, Kim et al. [64] proposed a two-pronged approach for glaucoma
classification and localization. The first approach involves the glaucoma classification
phase using three different CNN architectures (VGGNet, InceptionNet, and ResNet) with
a variety of regularization techniques being used to increase the model’s generalization.
The ResNet-152-M network produced the best diagnostic results. The second approach
utilizes localization detection based on a weekly supervised method called “Grad-CAM”
to identify glaucoma regions in an input image without using any segmentation data. This
work also involved the development of a web-based application for locating and diagnosing
glaucoma in a limited medical setting. In another work, Hung et al. [65] proposed the use of
a pre-trained Efficient-Net-b0 as a base and incorporated additional patient features such as
age, gender, and high myopia for binary and ternary classification of glaucoma. The binary
classification sub-model task is to distinguish between glaucoma and the non-glaucoma
optic disc, whereas the ternary sub-model aims to classify input images into a healthy
optic disc, high-tension glaucoma, or normal-tension glaucoma. To avoid the possibility
of overfitting as well as increasing the model performance, pre-processing techniques are
applied first to the input images.

However, Cho et al. [66] proposed ternary classification framework of glaucoma
stages based on an ensemble deep learning system. The system consists of 56 sub-models
created by combining two types of fundus images, seven image filters, and four CNN
architectures. A set of pre-processing techniques is first applied to the input images that
include data augmentation, resizing, and filtering. Based on the average probabilities of
all sub-models, the final classification decision is made, and the class with the highest
probability is chosen to be the output. Leonardo et al. [67] proposed the integration of
generative modeling and deep learning to improve the diagnostic performance of glaucoma
by converting low-quality images into better-quality images using U-Net-based generative
adversarial networks. Furthermore, the quality of the generated images was evaluated
using a pre-trained CNN (EfficientNetB0), where low-quality images were excluded, while
high-quality images were preserved. In addition, Alghamdi et al. [68] proposed employing
three CNN architectures based on transfer, supervised, and semi-supervised learning
techniques, where the three models were trained on public databases of fundus images
without applying any pre-processing or enhancement techniques to the selected data. First,
the transfer learning algorithm was applied to a limited dataset, and then semi-supervised
learning was applied to the labeled and unlabeled datasets. Finally, unsupervised learning
was applied with the supervised learning stage by using a 6-layer CNN autoencoder model
to extract the necessary features.

In comparison, Devecioglu et al. [40] employed heterogeneous “Self-Organized Opera-
tional Neural Networks (Self-ONNs)” as an alternative diagnosis system to address dataset
limitations and reduce the computing burden. For the purpose of evaluating the quality
of the proposed model in comparison to several other trained CNN models, it was found
that the proposed model produced superior performance compared to the benchmarked
models. Furthermore, Juneja et al. [69] proposed a classification system based on a modified
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Xception network to extract precise features from the optic disc and optic cup located in
the center of the retinal fundus image using fewer layers and larger filter sizes that enable
self-learning for diagnosing glaucoma at the early stages. In addition, the input images
are cropped and augmented to reduce the image size and computational time in order to
improve the performance of the proposed model.

Carvalho et al. [70] have proposed an automated system for diagnosing glaucoma
using retinal imaging, which is based on an adapted three-dimensional convolutional neural
network (3DCNN). In contrast to other methods, the proposed system does not require
optic disc segmentation masks. The system converts each two-dimensional input image
into four volumes that represent the red, green, blue, and gray levels using a specialized
technique that deeply extracts low-level features. The conventional VGG16 architecture is
modified to process the generated volumes, and it is found that a better performance is
achieved by increasing the number of layers. The gray-level images exhibit superior results
for glaucoma classification compared to the RGB channels. Moreover, Joshi et al. [41] have
presented a method for the early diagnosis of glaucoma using an ensemble of three pre-
trained convolutional neural network architectures based on transfer learning: ResNet50,
VGG16Net, and GoogLeNet. The proposed method employs pre-processed retinal fundus
images from both public and private databases to extract features using convolutional
neural networks. The extracted features then become the input to a classifier to categorize
the images as normal or abnormal using the maximum voting technique.

Apart from this, Almansour et al. [71] have designed a comprehensive deep learning
framework for the early detection of glaucoma by identifying morphological symptoms
“(peripapillary atrophy)” in retinal fundus images. The detection methodology was ex-
ecuted through two deep learning models that operate sequentially on both public and
local dataset images. The first model uses a mask region-based CNN (R-CNN) to local-
ize and crop the region of interest, which acts as a pre-processing technique to enhance
the performance of the framework. The second model employs three pre-trained CNN
algorithms, VGG-16, ResNet-50, and Inception-V3, to classify the presence of symptoms
(i.e., detect glaucoma) in the cropped regions. Aamir et al. [72] proposed a framework
for the detection and classification of glaucoma using retinal fundus images based on a
multi-level deep convolutional neural network “(ML-DCNN)” architecture. The proposed
framework consists of three stages. In the first stage, a pre-processing step is performed us-
ing an adaptive histogram equalization technique to reduce image noise. The pre-processed
images are then fed into the second stage, where a CNN detection network “DN-CNN”
based on feature learning is used to detect glaucoma. Finally, the detected samples are classi-
fied into three statistical levels (Early, Moderate, and Advanced) using a CNN classification
network that is dedicated to each level.

For the same reason, Islam et al. [73] proposed a classification framework for glau-
coma diagnosis using two distinct datasets derived from the cropped OD/OC in addition
to the segmented blood vessel dataset built using the U-Net architecture. The datasets
were pre-processed with multiple augmentation methods to increase the dataset size and
perform generalization. After that, four deep learning algorithms (EfficientNet, MobileNet,
DenseNet, and GoogLeNet) were applied to classify the images into two categories. The
EfficientNet b3 model offers the best performance for cropped fundus images. Moreover,
Liao et al. [74] proposed a deep learning framework for glaucoma detection that highlights
distinct areas identified by the network, providing a clinically interpretable view of the
disease. The framework includes a ResNet backbone network for feature extraction, multi-
layer average pooling to bridge the gap in information at different scales, and evidence
activation mapping for reliable diagnosis.

On the one hand, Sudhan et al. [75] have put forth a framework that is based on deep
learning techniques to achieve the tasks of segmentation and classification of glaucoma.
In their proposed approach, the commonly used U-Net architecture is employed for the
purpose of segmentation. Once segmentation is completed, a pre-trained DenseNet-201
architecture is employed to extract the features from the segmented images. Subsequently,
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a DCNN (Deep Convolutional Neural Network) architecture is utilized to classify the
images and identify glaucoma cases. Furthermore, Nawaz et al. [76] employed EfficientNet-
B0 to extract deep features from fundus images. These features were then fed into the
“Bi-directional Feature Pyramid Network” module of (EfficientDet-D0), which applies
bi-directional key point fusion iteratively on the extracted features. The resulting localized
area that contains the glaucoma lesion was then used to predict the presence of glaucoma.

In another study, Diaz-Pinto et al. [77] fine-tuned five deep learning models (VGG16,
VGG19, InceptionV3, ResNet50, and Xception) for glaucoma classification after pre-training
the models on ImageNet. The last fully connected layer of each model was replaced with a
global average pooling layer, followed by a fully connected layer with two nodes and a
SoftMax classifier. Their findings concluded that Xception achieved the best performance.
In the same way, Serte et al. [78] aimed to develop a glaucoma detection model that uses
graph-based saliency to crop the optic disc and remove irrelevant portions of fundus
images. The model then locates the optic disc and feeds it into a set of three powerful CNN
architectures: namely, AlexNet, ResNet-50, and ResNet-152.

Moreover, Jos’e Martinsa et al. [79] proposed a U-shaped architecture for jointly
segmenting the optic disc and optic cup, comprising four depth levels in the encoding
path with two depth-wise separable convolution blocks in each level. To enhance the
spatial context in the decoding path, skip connections were added at every depth level.
The encoder-to-decoder path transition was augmented with an ASPP module featuring
four parallel padded atrous convolutions. Furthermore, a classification network utilizing a
MobileNetV2 model as a feature extractor was developed to generate a confidence level
classifier to detect glaucoma. Correspondingly, Natarajan et al. [7] introduced “UNet-SNet”,
which is a new and effective two-stage framework for achieving high segmentation and
classification accuracies. In the first stage, a regularized U-Net is utilized as a semantic
segmentation network to perform optic disc segmentation. In the second stage, a glaucoma
detection model is implemented using a fine-tuned SqueezeNet CNN.

Table 4. Glaucoma diagnosis performance comparison.

Reference Dataset Camera ACC SEN SPE AUC F1

Li et al. [26]
Private—LAG Topcon, Canon,

Zeiss 0.962 0.954 0.967 0.983 0.954

RIM-ONE 0.852 0.848 0.855 0.916 0.837

Wang et al. [56]
DRIONS-DB, HRF-dataset,
RIM-ONE, and
DRISHTI-GS1

- 0.943 0.907 0.979 0.991 -

Gheisari et al. [57] Private Carl Zeiss - 0.950 0.960 0.990 0.961

Nayak et al. [58] Private Zeiss FF 450 0.980 0.975 0.988 - 0.983

Li et al. [59] Private Zeiss Visucam 500,
Canon CR2 0.953 0.962 0.939 0.994 -

Hemelings et al.
[60] Private Zeiss Visucam - 0.980 0.910 0.995 -

Juneja et al. [61] DRISHTI-GS and
RIM-ONE - 0.975 0.988 0.962 - -

Liu et al. [62] Private
Topcon,
Canon,
Carl Zeiss

- 0.962 0.977 0.996 -
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Table 4. Cont.

Reference Dataset Camera ACC SEN SPE AUC F1

Bajwa et al. [63] ORIGA, HRF, and OCT &
CFI - - 0.712 - 0.874 -

Kim et al. [64] Private - 0.960 0.960 1.000 0.990 -

Hung et al. [65] Private Zeiss Visucam, Canon
CR-2AF, and KOWA 0.910 0.860 0.940 0.980 0.860

Cho et al. [66] Private Nonmyd7, KOWA 0.881 - - 0.975 -

Leonardo et al.
[67]

ORIGA, DRISHTI-GS,
REFUGE, RIM-ONE (r1,
r2, r3), and ACRIMA

- 0.931 0.883 0.957 - -

Alghamdi et al.
[68] RIM-ONE and RIGA - 0.938 0.989 0.905 - -

Devecioglu et al.
[40]

ACRIMA - 0.945 0.945 0.924 - 0.939
RIM-ONE - 0.753 0.682 0.827 - 0.739
ESOGU - 1.000 1.000 1.000 - 1.000

Juneja et al. [69] - - 0.935 0.950 0.990 0.990 -

De Sales et al. [70] DRISHTI-GS and
RIM-ONEv2 - 0.964 1.000 0.930 0.965 -

Joshi et al. [41]
DRISHTI-GS, HRF,
DRIONS-DB, and one
privet dataset PSGIMSR

- 0.890 0.813 0.955 - 0.871

Almansour et al.
[71]

(RIGA, HRF, Kaggle,
ORIGA, and Eyepacs) and
one privet dataset
(KAIMRC)

- 0.780 - - 0.870 -

Aamir et al. [72] Private - 0.994 0.970 0.990 0.982 -

Liao et al. [74] ORIGA - - - - 0.880 -

Sudhan et al. [75] ORIGA - 0.969 0.970 0.963 - 0.963

Nawaz et al. [76] ORIGA - 0.972 0.970 - 0.979 -

Diaz-Pinto et al.
[77]

ACRIMA, DRISHTIGS1,
sjchoi86-HRF, RIM-ONE,
HRF

- - 0.934 0.858 0.960 -

Serte et al. [78] HARVARD - 0.880 0.860 0.900 0.940 -

Jos’e et al.
[79]

ORIGA, DRISHTI-GS,
RIM-ONE-r1,
RIM-ONE-r2,
RIM-ONE-r3,
iChallenge, and RIGA

- 0.870 0.850 0.880 0.930 -

Natarajan et al. [7]

ACRIMA - 0.999 1.000 0.998 1.000 0.998
Drishti- GS1 - 0.971 1.000 0.903 0.999 0.979
RIM-ONEv1 - 1.000 1.000 1.000 1.000 1.000
RIM-ONEv2 - 0.999 0.990 0.995 0.998 0.992

Islam et al. [73] HRF and ACRIMA - 0.990 1.000 0.978 0.989 -

Table 5 shows the summary of the review and investigation of the glaucoma diagnosis
systems developed in the selected studies.
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Table 5. Summary on glaucoma diagnosis systems.

Reference Dataset
Description Architecture Strengths Limitations

Li et al.
[26]

A private
dataset (LAG),
11,760 images

ResNet
The model consists of three subnets that
detect glaucoma using deep features from
visualized maps of pathological areas.

The model is complex
and requires complex
mathematical
operations.

Wang
et al. [56]

DRIONS-DB, HRF,
RIM-ONE, and
DRISHTI-GS 1),
686 images

VGG & AlexNet

The 3D topographic map of the ONH,
reconstructed using the shape from
shading method, offers improved
visualization of the OC and OD.

The model is complex
and resource- intensive.

Gheisari
et al. [57]

A private
dataset,
695 images

VGG &
ResNet &
RNN (LSTM)

Extraction of spatial and temporal data
from fundus videos is much more
accurate when CNN and RNN are used in
a single system.

Despite its high
accuracy, further
evaluation of a larger
heterogeneous
population is required.

Nayak
et al. [58]

A private
dataset,
1426 images

CNN
A feature extraction technique that uses a
meta-heuristic approach, requiring fewer
parameters for efficient feature learning.

The developed model
is incapable of
automatically detecting
different stages of
glaucoma.

Li et al. [59]
A private
dataset,
26,585 images

ResNet
Integrating fundus images with medical
history data slightly improves sensitivity
and specificity.

Bias was introduced by
subjective grading from
two groups, and
cropping the optic
nerve head region may
cause information loss.

Hemelings
et al. [60]

A private
dataset,
8433 images

ResNet

By combining transfer learning, careful
data augmentation, and uncertainty
sampling, labelling costs were reduced by
about 60%.

Considerations include
imbalanced data,
late-stage glaucoma
images, and primarily
Caucasian patients in
the models.

Juneja
et al. [61]

DRISHTI-GS and
RIM-ONE,
267 images

CNN
By using separable convolutional layers,
increasing filter size led to a more
accurate classification.

The model’s use of
manual cropping of the
optic disc leads to data
loss.

Liu et al.
[62]

A private
dataset,
241,032 images

ResNet

An online DL system was proposed that
updates the model iteratively and
automatically using a large-scale database
of fundus images.

The model’s
generalization ability
can be enhanced by
human–computer
interaction.

Bajwa et al.
[63]

ORIGA, HRF,
and OCT & CFI,
780 images

VGG16 & CNN

An automated disc localization model
was created using a semi-automatic
method for generating ground truth
annotations, facilitating classification.

The proposed network
struggles with learning
distinctive features to
classify glaucomatous
images in public
datasets.
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Table 5. Cont.

Reference Dataset
Description Architecture Strengths Limitations

Kim et al.
[64]

A private
dataset,
2123 images

VGGNet,
InceptionNet
& ResNet

A weakly supervised localization method
highlights glaucomatous areas in input
images. A prototype web app for
diagnosis and localization of glaucoma
was presented, integrating the predictive
model and publicly available.

Using an external
dataset produced lower
accuracy scores
compared to using the
dedicated dataset
during training in the
experiments.

Hung et al.
[65]

A private
dataset,
1851 images

EfficientNet

Evaluation methods differed based on
binary and ternary classifications, the use
of red-free and non-red-free photographs,
and the inclusion of high myopia
information.

Limitations include a
small number of cases,
a single ethnic
background, and the
exclusion of
pre-perimetric
glaucoma.

Cho et al.
[66]

A private
dataset,
3460 images

InceptionNet

Averaging multiple CNN models with
diverse learning conditions and
characteristics is more effective in
classifying glaucoma stages compared to
using a single CNN model.

More diverse data are
needed for a
generalized model, and
further studies are
necessary to adjust
weighted values per
model and improve
performance.

Leonardo
et al. [67]

ORIGA,
DRISHTI-GS,
REFUGE,
RIM-ONE (r1, r2,
r3), and ACRIMA,
3187 images

EfficientNet,
U-Net

Using GAN to improve quantitative and
qualitative image quality, and proposing a
new model to evaluate the quality of
fundus images.

Generative model and
quality evaluator were
trained with full
field-of-view images,
while lower
field-of-view images
are common in
different equipment
and datasets.

Alghamdi
et al. [68]

RIM-ONE and
RIGA, 1205 images VGG-16

Comparing the performances of three
automated glaucoma classification
systems (supervised, transfer, and
semi-supervised) on multiple public
datasets.

The proposed models
can only diagnose the
presence or absence of
glaucoma and cannot
classify the severity of a
specific retinal disease.

Devecioglu
et al. [40]

ACRIMA,
RIM-ONE, and
ESOGU,
5885 images

Self-ONNs

Self-ONNs show high performance in
glaucoma detection with reduced
complexity compared to deep CNN
models, especially with limited data.

The suggested model
does not include a
segmentation network.

De Sales
et al. [70]

DRISHTI-GS and
RIM-ONEv2,
556 images

VGG16

The use of 3DCNN resulted in high
accuracy and the production of 3D
activation maps, which provide additional
data details without the need for optic
disc segmentation or data augmentation.

It requires more
parameters compared
to 2D convolution,
making it
computationally more
expensive and
technically challenging.
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Table 5. Cont.

Reference Dataset
Description Architecture Strengths Limitations

Joshi et al.
[41]

DRISHTI-GS, HRF,
and DRIONS-DB
and one privet
dataset PSGIMSR,
1391 images

VGG &ResNet
& GooglNet

Ensembling pre-trained individual
models using a voting system can
improve the accuracy of the proposed
diagnosis model.

The proposed
framework does not
include the
segmentation of the OD
and OC, which could
potentially increase the
detection performance.

Almansour
et al. [71]

RIGA, HRF, Kaggle,
ORIGA, and
Eyepacs and one
privet
dataset,
3771 images

R-CNN & VGG

Proposing a two-step approach for early
diagnosis of glaucoma based on PPA in
fundus images using two localization and
classification models.

It uses a complex deep
learning system to
classify PPA versus
non-PPA; therefore, an
interpretable surrogate
model can be used.

Liao et al.
[74] ORIGA, 650 images ResNet

The proposed framework addresses the
issue of interpretability in deep
learning-based glaucoma diagnosis
systems by highlighting the specific
regions identified by the network.

Although the method
shows good accuracy, it
still suffers from the
problem of
high-resolution feature
maps being hard to
represent by the
proposed method.

Sudhan
et al. [75]

ORIGA,
650 images

U-Net &
DenseNet-201
and DCNN

This model can be useful for various
medical image segmentation and
classification processes such as diabetic
retinopathy, brain tumor detection, breast
cancer detection, etc.

The performance of the
proposed system can be
enhanced by solving
the imbalance issue by
improving the classifier
and reducing the
threshold.

Nawaz
et al. [76]

ORIGA,
650 images EfficientNet-B0

Proposing a robust model based on the
EfficientNet-B0 for key points extraction
to enhance the glaucoma recognition
performance while decreasing the model
training and execution time.

More robust feature
selection methods can
be implemented and
employed in deep
learning models to
expand this work to
other eye diseases.

Diaz-Pinto
et al. [77]

ACRIMA, DRISHTI
GS1, sjcho 86-HRF,
RIM-ONE, HRF,
1707 images

VGG16, VGG19,
InceptionV3,
ResNet50, and
Xception

The study evaluated five
ImageNet-trained CNN architectures as
classifiers for glaucoma detection and
found them to be a reliable option with
high accuracy, specificity, and sensitivity.

CNN models’
performance can
decrease when tested
on databases not used
in training, and varying
labeling criteria across
publicly available
databases can impact
classification results.

Serte et al.
[78]

HARVARD,
1542 images

AlexNet,
ResNet-50, and
ResNet-152

A graph theory-based technique is
recommended for identifying salient
regions in fundus images by locating
theptic disc and removing extraneous
areas, accompanied by an ensemble CNN
model to enhance classification accuracy.

A limitation of the
approach is the absence
of a segmentation
process prior to
classification, which
could potentially result
in less accurate
outcomes.
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Table 5. Cont.

Reference Dataset
Description Architecture Strengths Limitations

Jos´e et al.
[79]

ORIGA,
DRISHTI-GS,
RIM-ONE-r1,
RIM-ONE-r2,
RIM-ONE-r3,
iChallenge, and
RIGA, 3231 images

Multi-scale
encoder—
decoder
network and
Mobile Net

The newly created pipeline can enable
large-scale glaucoma screenings in
environments where it was previously
impractical because of its capability to
operate without an Internet connection
and run on low-cost mobile devices.

The dataset utilized in
this study poses some
challenges, including
imbalanced classes and
a limited number of
samples for deep
learning techniques.

Natarajan
et al. [7]

ACRIMA,
Drishti- GS 1,
RIM-ONEv1,
and RIM-ONEv2,
2180 images

SqueezeNet

A highly accurate, lightweight glaucoma
detection model has been introduced. The
model’s stages can be used separately or
with other models through transfer
learning for future ocular disorder
diagnosis and treatment frameworks.

The model only uses
deep features and does
not consider geometric
or chromatic measures
in the disc and cup
region, but the classifier
output does not
provide insights for
ophthalmologists.

Islam et al.
[73]

HRF and ACRIMA
and one privet
dataset BEH,
1188 images

U-Net,
EfficientNet,
MobileNet,
DenseNet, and
GoogLeNe

A new dataset for identifying glaucoma
with lower training time was developed
by segmenting blood vessels from retinal
fundus images using the U-Net model.

The accuracy of the
blood vessel
segmentation model is
slightly lower
compared to the
segmentation of the
optic cup and optic
disc.

4.2. Optic Disc/Optic Cup Segmentation

Several essential biomarkers utilized in diagnosing glaucoma include the Optic Disc
and Optic Cup. The cup-to-disc ratio is obtained by calculating the ratio of the diameter of
vertical cup diameter over the vertical disc diameter. Consequently, precise segmentation of
OD/OC has turned out to be crucial for glaucoma diagnosis, and a considerable amount of
research has been conducted in this regard. Recent studies centered on deep learning-based
segmentation of OD/OC are examined in the subsequent sections, and their corresponding
experimental outcomes are presented in Table 6.

Civit-Masot et al. [80] have proposed a diagnostic aid tool for glaucoma that employs
two independent sub-models to generate a diagnosis report for ophthalmologists. The first
sub-model utilized two generalized U-Net architectures to segment the optic disc and optic
cup independently by extracting their physical and positional characteristics. The second
sub-model used a pre-trained MobileNet-V2 architecture to directly classify the fundus
image without applying any segmentation network. The outputs of both sub-models were
combined to create a comprehensive report that was used to assist ophthalmologists in the
diagnosis process. In a similar manner, Pascal et al. [81] developed a multi-task DL model
for glaucoma diagnosis that uses a modified U-Net architecture with a pre-trained VGG-16
backbone. The model’s goal is to segment the OD and OC, to localize the fovea, and to
detect glaucoma based on retinal fundus images, all through a specialized optimization
scheme and additional skip connections between the encoder and decoder layers.

Apart from that, Shanmugam et al. [82] proposed a glaucoma recognition model
that uses deep learning-based segmentation to estimate the cup-to-disc ratio and fed the
resultant segmentation mask to a random forest classifier to classify fundus images into
either glaucoma or normal categories. Their model employs a modified U-Net called “Au-
Net” to segment the OD and OC, which are used to estimate the CDR values. Moreover,
Cheng et al. [83] developed a “Disc-aware Ensemble Network (DENet)” for glaucoma
screening. Their proposed network represents fundus image information at both global



Diagnostics 2023, 13, 2180 20 of 33

and local levels, combining four sub-models: ResNet for direct image classification, U-Net
for disc area segmentation, probability screening from the segmented disc area, and polar
transformation to improve segmentation accuracy. These four outputs were combined to
provide the final screening result.

Furthermore, Sreng et al. [84] proposed a two-stage deep learning framework for
glaucoma screening using a combination of various convolutional neural networks. The
first stage segmented the OD area using a modified DeepLabv3+ architecture based on
five network configurations. The second stage used eleven pre-trained CNNs to extract
the OD area features utilizing three ways: transfer learning, support vector machine, or
a hybrid of transfer learning and support vector machine. On the one hand, Yu et al. [85]
proposed a glaucoma detection model that uses a modified U-Net architecture with pre-
trained ResNet34 as the backbone for segmenting the OD and OC. The segmentation
process occurs in two stages, a conventional U-Net is first used to segment the ROI before a
modified U-Net is used to obtain more accurate segmentation outputs for the OD and OC
in the second stage. Additional post-processing techniques were also applied to calculate
the vertical diameter CDR.

Similarly, Natarajan et al. [86] proposed a glaucoma detection framework using a
combination of pre-processing, segmentation, and classification techniques. The images
were pre-processed using CLAHE and then segmented into super-pixels (ROI) using only
the green channel information. The modified kernel fuzzy C-means algorithm was applied
for accurate detection of the OD and OC. A set of GLCM features was extracted from the
last segmentation stage, which were then fed to the VGG16 classifier to determine the
stage of the glaucoma disease. Moreover, Ganesh et al. [87] developed a DL model called
“GD-Ynet” for optic disc segmentation and binary glaucoma classification. The model
is based on a modified U-Net architecture that uses inception modules instead of basic
convolutional layers to extract low-level features. The proposed model uses contextual
features of activation maps to capture the ROI and perform optic disc segmentation. Then,
aggregated transformations are used to perform binary classification for glaucoma detection
from the detected optic disc.

Furthermore, Juneja et al. [88] proposed the Glaucoma Network (G-Net), which is a
deep convolutional neural network framework for glaucoma diagnosis from retinal fundus
images. G-Net also used a modified U-Net architecture with two separate CNNs working
together to segment the (OD) and (OC), which is then used as the input to calculate the
CDR. The input images are pre-processed and cropped, and only the red channel is utilized
for OD segmentation, while all three channels of RGB are used for OC segmentation. The
resultant data is augmented before it is fed to G-Net to detect glaucoma using the calculated
CDR. For the same reason, Veena et al. [89] proposed a framework for glaucoma diagnosis
also using two separate CNN models to accurately segment the optic cup and optic disc;
these two pieces of information are also used to determine the CDR ratio. The models
each have 39 layers of CNN to extract a greater set of features with the aim of reducing
feature inconsistency. The images are pre-processed using morphological operations to
improve the contrast level, Sobel filter for feature extraction, and Watershed algorithm for
optic nerve localization. The resultant output is then inputted to both models to calculate
the CDR.

In another work, Tabassum et al. [90] proposed a “Dense Cup Disc Encoder-Decoder
Network” to segment the OD and OC without performing any localization or pre-/post-
processing methods. The encoder facilitates feature reuse, and the decoder allows informa-
tion reuse, thereby reducing the need for feature upsampling and lowering the number of
network parameters without sacrificing the performance. Moreover, Liu et al. [91] proposed
a deep separable convolution network with a dense connection as its core, complemented
by a multi-scale image pyramid to enhance the network capacity. Image morphology was
also used for post-processing the segmentation outcomes, and the optic disc’s center was
localized using a CNN and Hough circle detection. A high-precision segmentation network
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was then trained using the extracted region of interest to accurately segment the optic disc
and cup.

Furthermore, Nazir et al. [92] proposed a deep learning approach for the automated
segmentation of the optic disc and optic cup from retinal images using a customized
Mask-RCNN model. They applied a data augmentation technique by adding blurriness
variations to increase the data diversity and generate the ground truth annotations. The
authors incorporated the “DenseNet-77” model at the feature computation level of Mask-
RCNN to compute a broader range of key points, enabling more precise localization of the
OD and OC regions across various sample conditions. In addition, Rakhshanda et al. [93]
employed a pixel-wise semantic segmentation model to identify the optic disc and optic
cup using an encoder–decoder network. Augmented data are combined with the existing
training data, which are then processed by a VGG-16 network to generate a set of feature
vectors for OD, OC, and background classification. The segmentation outcomes are then
utilized to calculate the CDR, which assists in the diagnosis and analysis of glaucoma.

On the one hand, Wang et al. [94] proposed an asymmetrical segmentation network
that combines U-Net with a novel cross-connection subnetwork and decoding convolutional
block for OD segmentation. The network also employs multi-scale input features to mitigate
the impact of consecutive pooling operations. The integration of these features enhances
the network’s ability to detect morphological variations in the respective regions-of-interest,
while minimizing the loss of important features in the images. Similarly, Kumar et al. [95]
proposed a novel approach for generating precise and accurate ground truth data by
incorporating morphological operations. The U-Net architecture of 19 CNN layers with
encoder and decoder blocks is utilized to discern spatial features. As a result, the model
managed to improve the prediction performance of the optic disc region with greater
precision and accuracy.

For the same reason, Panda et al. [96] proposed a glaucoma diagnosis deep learning ap-
proach for segmenting the optic disc and optic cup in fundus images with a limited number
of training samples. This approach employs post-processing techniques, residual learning
with skip connections, patch-based training, and other techniques to produce smoother
boundaries and an even more accurate cup-to-disc ratio. Furthermore, Fu et al. [97] pro-
posed a data-driven deep learning technique that employs the use of a U-Net architecture
to segment the optic disc in abnormal retinal fundus images. The method employs the
use of model-driven probability bubbles to determine the precise position of the optic disc
and eliminate interference from light lesions, which eventually improves segmentation
accuracy. Similarly, Zhao et al. [98] introduced a simplified approach that improves the
accuracy of segmentation of fundus images, reduces the number of parameters, and reduces
processing time by employing attention U-Net architecture and transfer learning, whereby
the attention gate is placed between the encoder and decoder to put more emphasize on
selected target regions.

Another attention-based network was suggested by Hu et al. [99] through an encoder–
decoder-based segmentation network that includes a multi-scale weight-shared attention
module and a densely linked depth-wise separable convolution module to address the
issues brought on by differences in acquisition devices. The multi-scale weight-shared
attention module, which is located at the top layer of the encoder, integrates both multi-scale
OD and OC feature information using both channel and spatial attention processes. The
densely connected depth-wise separable convolution module is integrated as the output
layer of the network. Moreover, Baixin et al. [100] introduced a semantic segmentation
model named the “Aggregation Channel Attention Network”, which relies heavily on
contextual data. The model uses an encoder–decoder framework where a pre-trained
DenseNet sub-model is included in the encoding layer and feature information from
various resolutions is included in the decoding layer, which is subsequently integrated with
an attention mechanism. The network can maintain spatial information using high-level
characteristics to direct low-level features. To further improve network efficiency, the
classification framework is also strengthened by means of cross-entropy information.
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Furthermore, Shankaranarayana et al. [101] introduced a deep learning model for
estimating retinal depth from a single fundus image by employing a fully convolutional
network topology with a dilated residual inception block to perform multiscale feature
extraction. A new pre-trained strategy called pseudo-depth reconstruction was proposed
to take control over the problem of insufficient data for depth estimation. This study made
another contribution by introducing a fully convolutional guided network to perform
semantic segmentation based on a multi-modal fusion block that extracts the features from
two separate modalities. Furthermore, Bengani et al. [102] proposed an encoder–decoder
deep learning model that employs semi-supervised and transfer learning techniques to
segment the optic disc in retinal fundus images. In order to extract features from unlabeled
images, an autoencoder reconstructs the input images and applies a network constraint. The
transfer learning technique is used to transform the pre-trained model into a segmentation
network, where it is fine-tuned using ground truth labels. In the same way, Wang et al. [103]
presented a patch-based output space adversarial learning context that can perform the
segmentation for the optic disc and optic cup simultaneously. The approach employs
a lightweight segmentation network and unsupervised domain adaptation to address
domain shift challenges. The framework uses a patch-based approach for fine-grained
discrimination of local segmentation details. The segmentation network combines the
designs of DeepLabv3+ and MobileNetV2 to extract multi-scale discriminative context
features while minimizing the computational burden.

Table 6. Segmentation performance comparison of the reviewed related papers.

Reference Dataset OD/OC ACC SEN SPE PRE AUC IoU/Jacc F1 DSC δ

Civit-
Masot et al.
[80]

DRISHTI-GS
OD 0.880 0.910 0.860 - 0.960 - - 0.930 -
OC - - - - - - - 0.890 -

RIM-ONEv3
OD - - - - - - - 0.920 -
OC - - - - - - - 0.840 -

Pascal et al.
[81] REFUGE

OD - - - - 0.967 - - 0.952 -
OC - - - - - - - 0.875 -

Shanmugam
et al. [82] DRISHTI-GS

OD 0.990 0.870 0.920 - - - - - -
OC 0.990 0.860 0.950 - - - - - -

Fu et al.
[83]

SCES
OD

0.843 0.848 0.838 - 0.918 - - - -
SINDI 0.750 0.788 0.712 - 0.817 - - - -

REFUGE

OD

0.955 - - - 0.951 - - - -

Sreng et al.
[84]

ACRIMA 0.995 - - - 0.999 - - - -
ORIGA 0.90 - - - 0.92 - - - -
RIM–ONE 0.973 - - - 1 - - - -
DRISHTI–GS1 0.868 - - - 0.916 - - - -

Yu et al.
[85]

RIM–ONE
OD - - - - - 0.926 - 0.961 -
OC - - - - - 0.743 - 0.845 -

DRISHTI–GS1
OD - - - - - 0.949 - 0.974 -
OC - - - - - 0.804 - 0.888 -

Natarajan
et al. [86] DRIONS OD/OC 0.947 0.956 0.904 0.997 - - - - -

Ganesh
et al. [87] DRISHTI-GS OD 0.998 0.981 0.980 0.997 - 0.995 -

Juneja et al.
[88] DRISHTI-GS

OD 0.959 - - - - 0.906 0.935 0.950 -
OC 0.947 - - - - 0.880 0.916 0.936 -

Veena et al.
[89] DRISHTI -GS

OD 0.985 - - - - 0.932 0.954 0.987 -
OC 0.973 - - - - 0.921 0.954 0.971 -
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Table 6. Cont.

Reference Dataset OD/OC ACC SEN SPE PRE AUC IoU/Jacc F1 DSC δ

Tabassum
et al. [90]

DRISHTI-GS
OD 0.997 0.975 0.997 - 0.969 0.918 - 0.959 -
OC 0.997 0.957 0.998 - 0.957 0.863 - 0.924 -

RIM-ONE
OD 0.996 0.973 0.997 - 0.987 0.910 - 0.958 -
OC 0.996 0.952 0.998 - 0.909 0.753 - 0.862 -

Liu et al.
[91]

DRISHTI-GS
OD - 0.978 - 0.978 - 0.957 - 0.978 -
OC - 0.922 - 0.915 - 0.844 - 0.912 -

REFUGE
OD - 0.981 - 0.941 - 0.924 - 0.960 -
OC - 0.921 - 0.875 - 0.807 - 0.890 -

Nazir et al.
[92] ORIGA

OD 0.979 - - 0.959 - 0.981 0.953 - -
OC 0.951 - - 0.971 - 0.963 0.970 - -

Rakhshanda
et al. [93] DRISHTI–GS1

OD 0.997 0.965 0.998 - 0.996 - - 0.949 -
OC 0.996 0.944 0.997 - 0.957 - - 0.860 -

Wang et al.
[94]

MESSIDOR
OD

- 0.983 - - - 0.969 - 0.984 -
ORIGA - 0.990 - - - 0.960 - 0.980 -
REFUGE - 0.965 - - - 0.942 - 0.969 -

Kumar
et al. [95]

DRIONS-DB
OD

0.997 - - - - 0.983 - - -
RIM-ONE - - - - - 0.979 - - -
IDRiD - - - - - 0.976 - - -

Panda et al.
[96]

RIM-ONE
OD - - - - - - - 0.950 -
OC - - - - - - - 0.851 -

ORIGA
OD - - - - - - - 0.938 -
OC - - - - - - - 0.889 -

DRISHTI–GS1
OD - - - - - - - 0.953 -
OC - - - - - - - 0.900 -

Fu et al.
[97]

(DRIVE,
Kaggle,
MESSIDOR,
and NIVE)

OD

- - - - 0.991 - - - -
- - - - - - - - -
- - - - - - - - -
- - - - - - - - -

X. Zhao
et al. [98]

DRISHTI-GS
OD 0.998 0.949 0.999 - - 0.930 - 0.964 -
OC 0.995 0.877 0.998 - - 0.785 - 0.879 -

RIM-ONEv3
OD 0.996 0.924 0.999 - - 0.887 - 0.940 -
OC 0.997 0.813 0.999 - - 0.724 - 0.840 -

Hu et al.
[99]

RIM-ONE-r3
OD - - - - - 0.917 - 0.956 -
OC - - - - - 0.724 - 0.824 -

REFUGE
OD - - - - - 0.931 - 0.964 -
OC - - - - - 0.813 - 0.894 -

DRISHTI-GS
OD - - - - - 0.950 - 0.974 -
OC - - - - - 0.834 - 0.900 -

MESSIDOR OD - - - - - 0.944 - 0.970 -
IDRiD OD - - - - - 0.931 - 0.964 -

Shankarana-
rayana et al.
[101]

ORIGA OD/OC - - - - - - - - 0.067
RIMONE r3 OD/OC - - - - - - - - 0.066
DRISHTI–GS1 OD/OC - - - - - - - - 0.105

Bengani
et al. [102]

DRISHTI GS1 OD 0.996 0.954 0.999 - - 0.931 - 0.967 -
RIM-ONE OD 0.995 0.873 0.998 - - 0.882 - 0.902 -

Wang et al.
[103]

DRISHTI-GS OD/OC - - - - - - - - 0.082
RIM-ONE-r3 OD/OC - - - - - - - - 0.081

Table 7 shows the summary of the review and investigation of the OD/OC segmenta-
tion systems developed in the selected studies.
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Table 7. Summary on OD/OC segmentation systems.

Reference Dataset
Description Architecture Strengths Limitations

Civit-Masot
et al. [80]

DRISHTI-GS, and
RIM-ONE v3,
136 images

U-Net,
Mobile Net

The implementation used a
lightweight MobileNet for
embedded model deployment,
and a reporting tool was created to
aid physicians in decision-making.

There is a need to train models
using larger datasets from both
public and private sources.

Pascal et al.
[81]

REFUGE, 1200
fundus images

U-Net
(VGG)

The study employs a single DL
architecture and multi-task
learning to perform glaucoma
detection, fovea location, and
OD/OC segmentation with
limited resources and small
sample sizes.

The use of shared models
requires additional effort from
experts, and obtaining
pixel-wise annotations of
objects for segmentation and
fovea location is more time
consuming and expensive.

Fu et al.
[83]

ORIGA, SCES, and
SINDI, 8109 images

U-Net
ResNet

A segmentation-guided network is
employed to localize the disc
region and generate screening
results, while a pixel-wise polar
transformation enhances deep
feature representation by
converting the image to the polar
coordinate system.

Despite using a complex
ensemble system consisting of
multiple layers and
transformations for glaucoma
detection, the results are not as
high as simpler algorithms that
produce better outcomes.

Sreng et al.
[84]

REFUG, ACRIMA,
ORIGA,
RIM–ONE,
and
DRISHTI–GS1,
2787 images

DeepLabv3+
(Mobile Net)
AlexNet, Google
Net,
InceptionV3,
XceptionNet,
Resnet,
ShufieNet,
SqueezeNet,
MobileNet,
InceptionResNet,
& DenseNet

The proposed framework employs
five deep CNNs for OD
segmentation, eleven pretrained
CNNs using transfer learning for
glaucoma classification, and an
SVM classifier for optimal
decision-making.

The study used high-quality
images, emphasizing the need
for a representative dataset
with co-morbidities and
low-quality images. In
addition, the proposed
segmentation method is
limited to OD only, and further
development is required to
segment both OD and OC for
improved classification
accuracy.

Yu et al.
[85]

ORIGA,
RIM–ONE,
and
DRISHTI–GS1,
882 images

U-Net
(ResNet) ReNeXt
(ResNet)

The proposed
segmentation/classification model
uses a pre-trained network for fast
training and a morphological
post-processing module to refine
the optic disc and cup
segmentations based on the largest
segmented blobs.

Model performance is
impacted by low-quality
images and severe disc
atrophy, requiring training on
images with less perfect
quality and pathological discs
with atrophy to improve
segmentation.

Natarajan
et al. [86]

DRIONS,
2311 images MKFCM VGG

This research employs Modified
Kernel Fuzzy C-Means (MKFCM)
clustering for optimal clustering of
retinal images, achieving accuracy
even in noisy or corrupted input
images.

Data augmentation can
improve algorithm
performance, making it
applicable to various glaucoma
retinal diseases, including
cases where healthy images are
misclassified as mild or
glaucomatous.
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Table 7. Cont.

Reference Dataset
Description Architecture Strengths Limitations

Ganesh et al.
[87]

ACRIMA,
DRISHTI-GS,
RIM-ONEv1,
REFUGE, and
RIM-ONEv2,
1830 images

U-Net
(inception)

The proposed system integrates
segmentation and classification
within a single framework and
utilizes inception blocks in the
encoder and decoder blocks of the
GD-YNet to capture features at
multiple scales.

The ResNeXt block
architecture is restricted by
assuming a cardinality value
of 32, and the encoder–decoder
paths have basic inception
modules with
dimension-reduction
capabilities, which is another
limitation.

Juneja et al.
[88]

DRISHTI-GS,
101 images U-Net

The proposed architecture utilizes
two neural networks in tandem,
with the second network building
upon the processed output of the
first. This concatenated network
achieves superior accuracy with
reduced complexity.

The proposed system only
outputs the CDR and does not
provide information about the
severity level of the disease.

Tabassum
et al. [90]

DRISHTI-GS,
RIM-ONE,
and
REFUGE,
660 images

U-Net
(CDED-Net)

The proposed encoder–decoder
design is computationally efficient
and eliminates the need for
pre/post-processing steps by
reusing information in the decoder
stage and using a shallower
network structure.

The algorithm has limitations
that require further research
and testing with diverse data.
Additionally, its effectiveness
in diagnosing other retinal
diseases needs to be verified.

Liu et al.
[91]

DRISHTI-GS and
REFUGE,
1301 images

U-Net
(DDSC-Net)

The network uses a deep separable
convolution network with dense
connections and a multi-scale
image pyramid at the input end.

The model may not provide
consistent results for fundus
images captured by different
devices and institutions,
indicating a generalization
issue.

Nazir et al.
[92]

ORIGA,
650 images Mask-RCNN

The proposed method accurately
segments OD and OC regions in
retinal images for glaucoma
diagnosis, even with image
blurring, noise, and lighting
variations.

The proposed model, based on
R-CNN, could be improved by
incorporating newer deep
learning techniques such as
EfficientNet.

Rakhshanda
et al. [93]

RIM–ONE v3, and
DRISHTI–GS1,
260 images

encoder–decoder
Network &
VGG16

The study combines semantic
segmentation and medical image
segmentation to enhance
performance and reduce memory
usage and training/inference
times.

Semantic segmentation has a
limitation in that it cannot
distinguish between adjacent
objects, such as OD and OC.

Wang et al.
[94]

MESSIDOR,
ORIGA, and
REFUGE,
1970 images

Multi-scale
encoder—
decoder network,
(Modified
U-Net)

The proposed network uses
multiple multi-scale input features
to counteract pooling operations
and preserve important image
data. Integration via element-wise
subtraction highlights shape and
boundary changes for precise
object segmentation.

Limitations include the
model’s sensitivity to object
boundaries and small image
sizes used in experiments due
to GPU memory constraints.
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Table 7. Cont.

Reference Dataset
Description Architecture Strengths Limitations

Kumar et al.
[95]

BinRushed,
Magrabia,
MESSIDOR,
DRIONS-DB,
RIM-ONE,
and IDRiD,
1839 images

U-Net

The study utilized a modified
U-Net architecture with 19 layers
and implemented ground truth
generation to improve the model’s
training and testing procedures.

Transfer Learning or GANs
can potentially reduce the time
required to build the model.

Panda et al.
[96]

ORIGA, RIM–ONE,
and DRISHTI–GS1,
882 images

Residual DL

The proposed technique has the
potential to assist doctors in
making highly accurate decisions
regarding glaucoma assessment in
mass screening programs
conducted in suburban or
peripheral clinical settings.

Incorporating post-processing
techniques to obtain the
segmentation output adds an
extra step that increases the
model’s complexity.

Fu et al.
[97]

DRIVE, Kaggle,
MESSIDOR, and
NIVE,
11,640 images

U-Net

The proposed method combines a
data-driven U-Net and
model-driven probability bubbles
to locate the OD, resulting in a
more robust joint probability
approach for localization, ensuring
effectiveness.

This paper’s scope is limited to
interactions between the
model-driven probability
bubble approach and the deep
network’s output layer,
without covering deeper
interactions in hidden layers.

Zhao et al.
[98]

DRIONS-DB and
DRISHTI-GS,
211 images

U-Net with
transfer
learning

The proposed algorithm can
effectively segment OD/OC in
fundus images, even with only a
small number of labels. While
providing fast segmentation, the
method also maintains a relatively
high level of accuracy.

Compared to existing
algorithms used for
comparison, the proposed
method demonstrates an
OD/OC segmentation
accuracy that is only slightly
lower by less than 3%.

Hu et al.
[99]

REFUG,
MESSIDOR,
RIM-ONE-r3,
DRISHTI-GS, and
IDRiD, 2741 images

Encoder-
decoder

The proposed model effectively
handles issues caused by domain
shifts from different acquisition
devices and limited sample
datasets, which may result in
inadequate training.

The proposed model did not
address the issue of the
blurred boundary between the
OD and OC.

Baixin
et al. [100]

MESSIDOR and
RIM-ONE-r1,
1369 images

U-Net

The proposed method enhances
semantic segmentation with
channel dependencies and
integrates multi-scale data into the
attention mechanism to utilize
contextual information.

The suggested method did not
perform as well as previous
methods, possibly due to
factors such as network design,
data pre-processing, and
hyperparameter adjustment.

Shankarana-
rayana et al.
[101]

ORIGA, RIMONE
r3, and
DRISHTI–GS1,
910 images

Encoder
decoder

The proposed pretraining scheme
outperforms the standard
denoising autoencoder. It is also
adaptable to different semantic
segmentation tasks.

Although increasing the batch
size during training may
enhance the performance of
the proposed models, it was
not feasible in the study due to
system limitations.
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Table 7. Cont.

Reference Dataset
Description Architecture Strengths Limitations

Bengani
et al. [102]

DRISHTI GS1,
RIM-ONE, and
Kaggle’s DR,
88,962 images

Encoder-
Decoder

This model trains quickly and has
a small disk space requirement
compared to other models that
exhibit similar performance.

The study did not experiment
with any method to train the
autoencoder and segmentation
network simultaneously.

Wang
et al. [103]

DRISHTI-GS
dataset,
RIM-ONE-r3, and
the REFUGE,
1460 images

DeepLabv3+ and
MobileNetV2

It proposed a new segmentation
network with a
morphology-aware loss function
to produce accurate optic disc and
optic cup segmentation results by
guiding the network to capture
smoothness priors in the masks.

No domain generalization
techniques were used in this
study to address the problem
of retraining a new network
when the image comes from a
new target domain.

5. Research Gaps, Recommendations and Limitations
5.1. Research Gaps

Glaucoma detection is a crucial task in the field of ophthalmology, as early detection
can prevent blindness. In general, the reviewed articles successfully designed an automated
system to diagnose glaucoma using retinal images. However, there are still some research
gaps in the existing systems, as illustrated in Table 8.

Table 8. Research gaps.

Process Gap

Datasets

Private datasets pose limitations in research, as they hinder accurate
assessment by making it challenging to compare the results of different
datasets. Moreover, some methods may utilize unsuitable datasets, leading
to authors generating private ground truths.

Enhancement

Image enhancement algorithms can cause artifacts and distortions, making
the image unusable. In addition, parameter selection is subjective and can
vary depending on the application and preference; however, these
techniques can also be computationally expensive.

Localization

Using only the bright circular region principle for localizing the optic disc
in retinal fundus images is inaccurate due to other bright areas in the
image. Some methods also require manual intervention, such as manual
annotation of the disc area and its radius.

Segmentation

Typically, when using the same segmentation method for both the optic
disc and optic cup, the results for the latter are not as satisfactory. This is
due to disregarding the relationship between different parts of the retina in
most of the proposed methods.

Classification

The accuracy of separating different parts of the retina depends heavily on
the extracted features, which are crucially dependent on several
parameters. However, most methods only consider a few of these
parameters, and large datasets are also required for optimal network fitting.
Unfortunately, such datasets are not readily available for glaucoma
patients, as the training procedures are time-consuming.

5.2. Future Recommendations

To analyze the retina, researchers normally follow several steps that depend on the
research objective and the proposed techniques. The researchers may include some objec-
tives that include enhancement, localization, segmentation, or classification. Enhancement,
localization, and segmentation tasks are usually implicit steps in a classification module.
For a glaucoma diagnosis system, feature extraction and classification are the most neces-
sary steps, while the other steps can be optional depending on the proposed algorithm.
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Additionally, researchers often explore modifications and variations of the architectures
used to further enhance the performance of glaucoma diagnosis. ResNet and GoogLeNet
have shown promising performance for glaucoma diagnosis; however, the specific architec-
ture choice may depend on the dataset and research context. The fundamental processes
and essential observations for glaucoma diagnosis are outlined as follows:

1. Pre-processing is crucial for effective analysis;
2. Annotating a diverse set of labels is more important than having a large quantity

of annotations;
3. Performance can be improved through fine-tuning and augmentation techniques;
4. Complex features can be captured by applying deeper neural networks;
5. Sufficient training data is critical for producing a high-accuracy system;
6. Additional loss functions can be integrated to prevent overfitting in specific domains;
7. Multi-scale CNN can also provide better feature extraction through various

scale strategies;
8. Medical expertise is valuable for understanding the underlying structure of diseases.

5.3. Limitations of the Study

The reviewed studies have a common limitation due to the same source of develop-
ment databases. Nevertheless, the reviewed works are fairly diverse and are representative
samples of the chosen sources. However, an intelligent eye disease screening and diag-
nosing system for various diseases should be integrated, not limited to glaucoma only.
Furthermore, analyzing research activities that use deep learning methods for the diagnosis
of these critical retinal diseases may not necessarily reflect the views and responses of the
broader research community.

6. Conclusions

In the field of healthcare, digital image processing and computer vision methods are
employed for disease screening and diagnostic purposes. Among the various eye disorders,
glaucoma is one of the chronic conditions that can result in irreversible loss of vision because
of damage to the optic nerve. Color fundus imaging is a good imaging modality for medical
image analysis, whereby the deep learning models have been extensively researched for
the automated diagnosis systems. This review presents a process-based approach to deep
learning in glaucoma diagnosis that discusses publicly available datasets and their ground
truth descriptions. Some datasets comprise high-quality images taken in a controlled
environment, while others have images captured in diverse environmental conditions,
which can steer deep model behavior towards practical applications. Combining datasets
can be used to train a robust model for real clinical implementation. Pre-processing
techniques, such as image augmentation and filtering, are generally able to improve
disease-relevant feature extraction. Different backbones of deep models have been explored
for classification and segmentation tasks that also include different learning paradigms,
such as ensemble and transfer learning techniques, in order to improve the proposed
model performance. The deep learning approach has shown good performance for retinal
disease diagnosis and has even surpassed expert performance in some cases. However,
integrating DL models into clinical practice remains a big future challenge due to limited
data, interpretability needs, validation requirements, and trust-building. To tackle this,
efforts have focused on improving data quality, enhancing interpretability, establishing
protocols, and addressing ethical concerns through transparency and bias mitigation.
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