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Abstract: Background: Sleep apnea is a prevalent sleep-disordered breathing (SDB) condition that
affects a large population worldwide. Research has demonstrated the potential of using electrocar-
diographic (ECG) signals (heart rate and ECG-derived respiration, EDR) to detect SDB. However,
EDR may be a suboptimal replacement for respiration signals. Methods: We evaluated a previously
described ECG-based deep learning algorithm in an independent dataset including 198 patients and
compared performance for SDB event detection using thoracic respiratory effort versus EDR. We also
evaluated the algorithm in terms of apnea-hypopnea index (AHI) estimation performance, and SDB
severity classification based on the estimated AHI. Results: Using respiratory effort instead of EDR,
we achieved an improved performance in SDB event detection (F1 score = 0.708), AHI estimation
(Spearman’s correlation = 0.922), and SDB severity classification (Cohen’s kappa of 0.62 was obtained
based on AHI). Conclusion: Respiratory effort is superior to EDR to assess SDB. Using respiratory
effort and ECG, the previously described algorithm achieves good performance in a new dataset
from an independent laboratory confirming its adequacy for this task.

Keywords: electrocardiogram; ECG-derived respiration; respiratory effort; sleep-disordered breathing;
apnea; recurrent neural network

1. Introduction

Sleep-disordered breathing (SDB) forms a highly prevalent group of sleep disorders,
characterized by repeated cessation (apnea) or reduction (hypopnea) of respiratory airflow
during sleep [1]. Sleep apnea can be categorized as obstructive apnea when caused by
partial or complete obstruction of the upper airway, central apnea when there is a reduced or
absent respiratory drive from the brain stem, and mixed apnea when there is a combination
of the two [2]. SDB is linked to several relevant clinical outcomes, including cardiovascular
disease; neur×obehavioral impairments, such as sleepiness, fatigue, depressed mood, and
impaired memory and concentration; and metabolic dysfunction [2,3]. It is estimated
that approximately 13% of men and 6% of women aged 30–70 years have moderate-
to-severe SDB [4], with a considerable portion remaining undiagnosed [5]. The gold
standard for diagnosing SDB remains polysomnography (PSG), but this technique has
several limitations, such as the requirement for many and difficult to set up sensors,
high cost, and limited availability [6]. The utilization of home polysomnography has
mitigated some of these limitations; however, it remains a relatively complex and costly
methodology [7]. Consequently, it may not be ideal for longer-term monitoring in the
pre-diagnostic phase or for post-treatment evaluation of the effectiveness of SDB therapy.
Therefore, a more convenient and cost-effective screening method is needed.
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In 2000, the Computer in Cardiology Challenge released a task to classify one-minute
sleep epochs as either presenting or not apneic events, based solely on the electrocardio-
graphic (ECG) signal from a dataset containing 70 overnight recordings [8,9]. The publicly
available dataset used for this task was called the “Apnea-ECG database”. This challenge
triggered an important increase in research in this area, and since then, various methods
have been developed based on ECG signals, some employing ECG-derived respiration
(EDR), with many achieving promising results. For instance, Tripathy [10] used a kernel ex-
treme learning machine classifier on features extracted from the intrinsic band functions of
both heart rate variability (HRV or RR interval) and EDR signals and obtained a sensitivity
and a specificity for the detection of sleep apnea epochs of 78.02% and 74.64%, respectively.
Yang et al. [11] proposed a deep learning algorithm named 1-D squeeze-and-excitation
residual group network for OSA detection using HRV and EDR and achieved a sensitivity
of 87.6% and a specificity of 91.9%. Zarei and Asl [12] applied a GentleBoost classifier on
features from HRV and EDR and reached a sensitivity of 91.52%, a specificity of 94.36%, and
an accuracy of 93.26%. Although these very high detection performances could indicate
that the problem has been adequately resolved, it has been suggested that results obtained
exclusively on the Apnea-ECG database should be considered only as a starting point for
apnea detection research. With an insufficient variety of sleep pathologies and SDB severity,
models trained exclusively on this dataset are likely overfitted and might not generalize
well to new data that are more representative of population or clinical cohorts [13].

More recently, Olsen et al. [14] proposed a method based on heart rate and EDR
using recurrent neural network (RNN) for detecting SDB events (including hypopnea,
obstructive apnea, central apnea, and mixed apnea) on a large dataset including almost
10,000 recordings of various population cohorts. His model reached an overall sensitivity
of 70.9%, a precision of 73.4%, and an F1 score of 72.1%. However, there are studies
arguing that EDR might not be the best signal to measure respiratory activity for SDB
detection. Varon et al. [15] found that information is reduced when transferring from
respiration to heart rate during apnea and, as a result, the use of EDR as a surrogate of
respiration might in fact reduce the performance for SDB detection, in particular when
detecting hypopneas [16]. Sadr et al. [17] and Deviaene et al. [18] found a decreased apnea
detection performance using EDR compared to thoracic respiratory effort (RE) measured
with respiratory inductance plethysmography (RIP). Although the argument of developing
a model based solely on a single ECG sensor is attractive, RE or surrogates thereof are
among the most easily obtained signals using a variety of unobtrusive methods, such as
in-bed pressure sensor arrays [19], chest-worn accelerometers [20], and even wrist-worn
reflective photoplethysmography [21]. Notably, these sensing methods are notoriously easy
to use, relatively comfortable, and thus, suitable for deployment at home in longer-term
monitoring scenarios. Additionally, these sensors could also obtain the cardiac activity
extracted by these studies from ECG [22–24]. Therefore, combining ECG and RE would
most likely be advantageous for more accurate SDB monitoring.

The RNN-based algorithm proposed by Olsen et al. [14] was chosen for this study
as it shows promising results on large population cohorts, and because the EDR can be
easily replaced by RE to allow for a direct comparison. In addition, RNN can automatically
extract features from the signals, unlike in the other two studies [17,18] that compared
RE with EDR using manually engineered features extracted from the two signals. If these
features were originally developed for one sensing modality (i.e., RE), it is plausible that
they fail to fully capture the same information with the other (EDR), without necessarily
meaning that EDR is inadequate for the SDB detection task. By training an RNN directly
on either signal, we can let if fully exploit any available information on each modality.

In this study, we aimed to validate the deep RNN algorithm proposed by Olsen et al. [14]
in an independent clinical dataset and compare the performance obtained using EDR versus
using RE measured with RIP belts. The performance was evaluated in terms of SDB event
detection, apnea-hypopnea index (AHI) estimation, and SDB severity classification.
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2. Materials and Methods
2.1. Dataset

The dataset used in this study is a subset of the SOMNIA database [25]. We retrieved
198 subjects who were over the age of 18 and were not being treated with continuous airway
pressure therapy, without any selection requirements for body mass index (BMI), sex, or
AHI. All subjects in our dataset underwent routine PSG monitoring at the Kempenhaeghe
Center for Sleep Medicine, Heeze, the Netherlands, between June 2017 and November
2017. The dataset was manually annotated based on the full PSG by sleep technicians
using the 2015 AASM guidelines. In total, there were 198 subjects included with 121 male
and 77 female, an average age of 50.1 ± 14.8 years, an average BMI of 27.2 ± 4.8 kg/m2,
and an average AHI of 18.0 ± 18.4 events/hour. Among all signals from PSG, only ECG
and RE signals were used in this study. ECG signal was measured by electrodes from
Kendall (Ashbourne, Ireland) and RE signal was measured by RIP belts from Sleepsense
(Elgin, IL, USA).

2.2. Signal Pre-Processing and Segmentation

R-peaks were first detected from the ECG signals using a previously developed algo-
rithm, which is based on nonlinear transformation and a simple peak-finding strategy [26].
Subsequently, a post-processing algorithm based on the intersection of tangents fitted to the
slopes of the R-waves was applied to achieve precise localization of the QRS complexes and
to eliminate artifacts [27]. To address the presence of ectopic beats, the algorithm proposed
by Mateo and Laguna [28] was employed, which identifies abnormal beats by imposing
restrictions on the allowable acceleration or deceleration of the heart rate. The resulting
RR intervals were linearly interpolated and resampled at 4 Hz to obtain an RR time series.
Periods containing artifacts and ectopic beats were marked with a value of 0 to exclude
them from further analysis. The algorithm considered these as missing values and learned
how to handle them without the need of using a masking layer.

The EDR signal was obtained using the phase-space reconstruction method proposed
by Janbakhshi and Shamsollahi [29], and it was also resampled at 4 Hz to have the same
sample frequency as the RR signal. Regarding the RE signal measured with RIP, for
consistency, we also resampled the raw signal to 4 Hz, followed by a high-pass filter with
a cut-off frequency of 0.05 Hz applied to eliminate low-frequency noise [30]. During the
resampling step, high-frequency (>2 Hz) noise was also removed.

Afterwards, we segmented all signals into 5-minute segments with a 2-minute overlap,
resulting in a data shape of 1200 × 1 per segment. Each segment of signal was normalized
using “soft” min-max normalization, where the minimum value was set to the 5th percentile
and the maximum value to the 95th percentile. Segments at the beginning and end of
the recording, where the lights were turned on, were excluded from the analysis. For
each segment, two different combinations of signals (either RR and EDR, or RR and RE)
were used to form an input shape of 1200 × 2 for model fitting and for inference. Each
combination was achieved by directly concatenating segments from the two different
signals. The network was trained to autonomously learn the underlying relationship
between the two inputs.

2.3. Deep Learning Architecture

We endeavored to replicate the RNN-based algorithm described by in [14], henceforth
referred to as “Olsen’s algorithm”. The architecture is detailed in Table 1 and Figure 1 and is
composed of three blocks. The first two blocks are employed for feature extraction and share
an identical structure. Each block comprises two layers of bidirectional gated recurrent units
(GRU) to capture temporal dependencies in the time series, a batch normalization layer to
mitigate the internal covariate shift, a max-pool layer to reduce the output dimensionality,
an activation layer with rectified linear unit (ReLU) activation, and a dropout layer to
prevent overfitting. The last block consists of a dense-connected layer using the ReLU
activation function and a dense-connected layer with the sigmoid activation function



Diagnostics 2023, 13, 2146 4 of 15

to generate the output, which corresponds to a value between 0 and 1, indicating the
probability of an SDB event at 1 Hz.

Table 1. General deep learning architecture used for training a SDB event detection model (same as
Olsen’s algorithm [14]).

Layer Type Kernel Size Stride Output Dimension–Explicit

Input layer - - (B, 1200, 2)

Block1

Bidirectional GRU 128 1 (B, 1200, 128 × 2)
Bidirectional GRU 128 1 (B, 1200, 128 × 2)

Batch normalization - - (B, 600, 256)
Max-pool - 2 (B, 600, 256)

ReLU - - (B, 600, 256)
Dropout (50%) - - (B, 600, 256)

Block2

Bidirectional GRU 128 1 (B, 600, 128 × 2)
Bidirectional GRU 128 1 (B, 600, 128 × 2)

Batch normalization - - (B, 600, 256)
Max-pool - 2 (B, 300, 256)

ReLU - - (B, 300, 256)
Dropout (50%) - - (B, 300, 256)

Block3

Dense 512 1 (B, 300, 512)
ReLU - - (B, 300, 512)
Dense 1 (B, 300, 1)

Sigmoid - 1 (B, 300, 1)
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During training, we used the Adam optimizer with a learning rate of 0.001 and a
weight decay of 0.0001. The model was initialized using a robust initialization scheme [31],
and a batch size of 128 was selected. Furthermore, in contrast to Olsen’s algorithm, we
included kernel regularization to counteract overfitting and employed sample weighting
(label 0:1, label 1:10) to account for the imbalance in our dataset. The training was termi-
nated when the evaluation loss did not improve for more than 20 training epochs to further
avoid overfitting. No underfitting was observed, as both the training and the validation
performance achieved high accuracy on the classification task at hand.

The objective of the algorithm was to detect all SDB events including hypopneas,
obstructive apneas, central apneas, and mixed apneas. Each target vector corresponded to a
5-minute segment with a resolution of 1 s, resulting in a vector length of 300 s. Each second
was assigned a value of 1 if it belonged to an SDB event and 0 if not. During the training
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phase, the model was trained using input segments to generate their corresponding target
vectors. The patterns for distinguishing between normal and abnormal breathing were
learned by the model. Similar to the training process of Olsen’s algorithm, no additional
techniques were employed. In this work, we trained two distinct models for SDB event
detection. The first model used RR and EDR as inputs (RR + EDR), while the second model
used RR and RE (RR + RE).

2.4. Performance Evaluation

The dataset was split into training, validation, and testing sets using a stratified
random split approach. First, all subjects were categorized into four SDB severity groups
based on their AHI (normal: AHI < 5, mild: 5 < AHI < 15, moderate: 15 < AHI < 30, severe:
AHI > 30) [32]. Next, approximately 25% of the subjects from each severity group were
randomly selected for the testing. Similarly, around 75% and 25% of the remaining subjects
from each group were included in the training and the validation set, respectively. This
resulted in 114, 35, and 49 subjects separated between the training, validation, and testing
sets, respectively. The training set was used to fit the model, while the validation set was
used for early stopping and deriving the decision threshold. The test set was held out
exclusively for evaluating the classifier. Table 2 shows the characteristics of the participants
and corresponding data used for training, validation, and testing sets after splitting. The
imbalance of different classes and the variety of subjects are also shown in this table.

Table 2. Participant demographics, and characteristics of training, validation, and testing sets.

Training Validation Testing

Male/Female 63/51 23/12 35/14

Age (years) 49.7 ± 14.9
(range: 18–86)

51.5 ± 13.4
(range: 24–73)

50.0 ± 15.5
(range: 21–79)

BMI (kg/m2)
27.0 ± 4.5

(range: 20.0–40.8)
27.1 ± 4.6

(range: 18.6–45.2)
27.6 ± 5.4

(range: 19.9–43.4)

AHI (events/hour) 17.5 ± 17.0
(range: 0–70.6)

19.2 ± 21.0
(range: 0.2–108.4)

18.2 ± 19.4
(range: 0–102.6)

AHI < 5 (count) 28 8 12

5 < AHI < 15 (count) 38 12 17

15 < AHI < 30 (count) 27 8 11

AHI > 30 (count) 21 7 9

Number of hypopneas (count) 92.6 ± 88.2
(range: 0–475, total: 10,560)

89.8 ± 73.8
(range: 1–251, total: 3143)

92.8 ± 81.1
(range: 0–303, total: 4546)

Number of obstructive apneas
(count)

9.6 ± 21.4
(range: 0–168, total: 1094)

14.6 ± 53.6
(range: 0–315, total: 511)

11.0 ± 26.2
(range: 0–160, total: 537)

Number of central apneas
(count)

5.7 ± 15.0
(range: 0–99, total: 652)

14.0 ± 42.7
(range: 0–249, total: 489)

9.5 ± 26.2
(range: 0–158, total: 464)

Number of mixed apneas
(count)

3.4 ± 12.2
(range: 0–104, total: 385)

6.9 ± 27.0
(range: 0–160, total: 242)

9.2 ± 37.8
(range: 0–254, total: 453)

Number of segments 19,760 6043 8425

Number of label 0 (seconds) 5,445,189 1,643,358 2,302,014

Number of label 1 (seconds) 482,811 169,542 225,486

Notes: 1.Statistics present subject mean ± standard deviation, and between parenthesis, range. 2. For different
ranges of AHI, the table indicates the number of participants in the corresponding AHI range. 3. The total number
of events (indicated between parenthesis), counts the aggregated totals, summed across all subjects. 4. Number of
label 1 and label 0 are calculated after segmentation.
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To provide a comprehensive analysis of the performance, we evaluated the algorithm
in terms of SDB event detection, AHI estimation, and SDB severity classification. To
assess the performance of SDB event detection over the entire night, the segment-based
outputs pertaining to the same night were concatenated to generate a continuous output
series of a whole night for each subject. Specifically, the central 3-minute interval within
each 5-minute segment was concatenated, while the first and the last minute of each
segment were excluded from evaluation to ensure adequate context awareness for each
detection [14]. Detected SDB events were obtained by combining the consecutive seconds
with probabilities exceeding a specified threshold, while periods with probabilities below
the threshold were considered as non-SDB.

A true positive (TP) event was defined as the first detected event that overlapped with
an annotated SDB event. Events that did not overlap with or were not the first detected
event that overlapped with an SDB event were considered as false positive (FP) events. A
false negative (FN) event was an SDB event for which no overlap was found any detected
event. The threshold used to detect SDB events was selected based on the maximum F1
score over all SDB events on the validation set. Concretely, we applied a threshold from
0.004 to 0.996 with a step of 0.004 on the SDB event detection results from the validation
set and computed the corresponding F1 scores. The threshold with the maximum F1
score was selected to compute the results for the testing set. Note that our TP definition
was stricter than that of Olsen et al. [14] since we considered only the first overlapped
event as TP, whereas they reported all detected events as TPs if they overlapped with any
ground truth SDB event. This can lead to an overestimation of the number of TPs and
consequent underestimation of FP. The discrepancy between the two definitions can be
observed in Figure 2, where a hypothetical scenario is presented as an illustrative example
to underscore the contrasting interpretations. In addition, and in contrast with the study
by Olsen et al. [14], we did not find any benefit in eliminating short events or combining
close events into a single event.
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Figure 2. An illustrative example of a hypothetical scenario of counting TP, FP, and FN with four
ground truth SDB events (SDB1, SDB2, SDB3, and SDB4) and four detected/predicted events (Pre1,
Pre2, Pre3, and Pre 4) using (a) rules by Olsen et al. [14] and (b) rules used in this work. In this
example, Pre2 is counted as a TP according to Olsen’s rules, while it is considered as an FP in this
study; SDB3 is considered correctly detected according to Olsen’s rules, but it is treated as an FN
based on our rules.

SDB event detection performance was evaluated by calculating the sensitivity, preci-
sion, and F1 score per subject in the testing set and after aggregating the detection results
from all test subjects. Additionally, the detection rate (sensitivity) of different types of SDB
events was computed. When evaluating the results, we only counted SDB events detected
during sleep (as scored based on PSG). Event probabilities output by the model during
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wake periods were set to zero. Using total sleep time, also obtained from the PSG scoring,
we computed the AHI (total number of detected SDB per night divided by total sleep time).

For AHI estimation, a Bland–Altman analysis between the estimated AHI (AHIest)
and reference (AHIref) is presented. AHIref was derived from the ground truth SDB events
annotated from PSG. In addition, scatter plots (i.e., estimated versus reference values), the
corresponding Spearman’s correlation coefficient R, and the intraclass correlation coefficient
(ICC) [33,34], using two-way random-effects model for measuring the agreement between
two scorings, are provided. Because most patients in our cohort did not have a very large
AHI value (>30) and the correlation analysis can be very sensitive to just a few large values,
we also calculated correlation coefficients for subjects with an AHI less than 30.

Furthermore, we evaluated our method in SDB severity classification, separating
between normal (AHI < 5), mild (5 < AHI < 15), moderate (15 < AHI < 30), and severe
(AHI > 30), based on the estimated AHI values. Confusion matrix, accuracy, and Cohen’s
Kappa were computed based on these canonical thresholds and computed with near bound-
ary double-labeling (NBL) [30,31]. NBL was used to mitigate overly negative evaluations
of SDB severity caused by AHI values very close to the SBD severity boundaries. With
NBL, when the AHI of a subject (according to the PSG reference) is close to the boundary
between two SDB severity classes, the subject is assigned to both possible reference classes.
If the subject were classified (with our algorithm) as either of the two possible reference
SDB severity classes, it is considered in agreement with the reference. For example, a
subject with an AHI value of 5.1 is assigned to both the normal and mild classes, and the
classification result will be considered correct if the subject is classified as either normal
or mild. In this study, we used the near boundary zones from Pee et al. [35], originally
determined by limiting SDB severity disagreement probability of two human PSG scorings
on the same dataset to 33%.

Moreover, to gain insights into the impact of age and BMI on the performance, we
computed the Spearman’s correlation coefficient (R) between the error of AHI (|AHIref–
AHIest|) and age and BMI. Additionally, we analyzed the detection rate (sensitivity)
in different sleep stages and body positions to explore their association with the event
detection performance.

3. Results
3.1. SDB Event Detection

Table 3 shows the SDB event detection results including the mean and standard
deviation (SD) obtained across all test subjects as well as the aggregated results of all events
from the test subjects. The results show that the model trained based on RR and RE data
outperformed that based on RR and EDR data. Specifically, the model employing RR + RE
achieved an average sensitivity of 62.6 ± 26.7%, precision of 50.4 ± 23.6%, and F1 score
of 0.529 ± 0.241 as well as a pooled sensitivity of 77.4%, precision of 65.2%, and F1 score
of 0.708. In contrast, the model utilizing RR + EDR exhibited lower performance across
all metrics. Table 4 presents the pooled SDB event detection rate of different SBD types
(hypopneas, obstructive apneas, central apneas, and mixed apneas). Consistent with the
results shown in Table 3, using RE instead of EDR improved the detection rate for all SDB
types. Notably, the detection rate of hypopneas was much lower than the other three
types of SDB, indicating the difficulty of detecting hypopneas from ECG (and RE) signals,
consistent with the findings in other studies [14,36,37].
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Table 3. SDB event detection results using models trained from different signals (RR + EDR and
RR + RE) with and without PSG sleep information.

Sensitivity (%) Precision (%) F1 Score

RR + EDR mean ± SD 53.2 ± 25.6 41.6 ± 25.0 0.437 ± 0.234
pooled 65.5 56.5 0.607

RR + RE mean ± SD 62.6 ± 26.7 50.4 ± 23.6 0.529 ± 0.241
pooled 77.4 65.2 0.708

Table 4. Detection rate or sensitivity of different SDB types (results were pooled over all subjects).

SDB Event Type Total Number of Events
Detection Rate (%)

RR + EDR RR + RE

Hypopnea 4546 59.9 72.4

Obstructive apnea 537 81.9 94.4

Central apnea 464 78.7 90.5

Mixed apnea 453 89.0 94.7

Furthermore, for the model with RR + RE, we found a non-significant Spearman’s
correlation of 0.212 (p = 0.14) between the error in the number of detected events (i.e., true
positives plus false positives) minus the number of actual events according to the ground
truth and the reference AHI.

3.2. AHI Estimation

Figure 3 shows the Bland–Altman analysis and scatter plots of AHI estimation results
in the test set. The 95% limits of agreement between AHIest and AHIref for RR + RE was
−3.16 ± 12.09, lower than that for RR + EDR (−2.82 ± 16.23). Combing RR and RE yielded
a higher correlation than using RR and EDR, achieving a correlation coefficient R = 0.922
(p < 0.0001) for all test subjects and R = 0.923 (p < 0.0001) for test subjects with AHI < 30.
Consistently, RR + RE exhibited a higher ICC of 0.939 (95% confidence interval: 0.87–0.97)
between AHIest and AHIref compared to RR + EDR, which had an ICC of 0.894 (95%
confidence interval: 0.81–0.94).
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3.3. SDB Severity Classification

The SDB severity classification results were derived based on AHI. Confusion matrices
with and without NBL are presented in Figure 4. Without NBL, using RR + RE improved
the classification results with normal, mild, and moderate SDB. After applying NBL, only
the classification for the moderate class improved. Table 5 summarizes the performance
of SDB severity classification (accuracy and Cohen’s Kappa) with and without NBL. In
general, RR + RE demonstrates better performance than RR + EDR. The best performance
was achieved by RR + RE with an accuracy of 0.857 and a Kappa of 0.81 with NBL.
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Table 5. Overall accuracy and Cohen’ Kappa of SDB severity classification based on AHI with and
without NBL.

RR + EDR RR + RE

Without NBL

Accuracy 0.612 0.714

Cohen’s Kappa 0.49 0.62

With NBL

Accuracy 0.776 0.857

Cohen’s Kappa 0.70 0.81

3.4. Inpacts on Performance from Age, BMI, Seelp Stage, and Body Position (RR + RE)

The correlation coefficient was R = 0.256 (p < 0.1) between age and AHI error and
R = 0.342 (p < 0.05) between BMI and AHI error. Regarding the impact of sleep stage on
sensitivity (Supplementary Table S1), we observed that sensitivity is lower in N3 (0.448)
compared to REM (0.757), N1 (0.784), and N2 (0.772). In terms of body position (Supple-
mentary Table S2), sensitivity was found to be lower in the prone position (0.634) compared
to the right (0.738), supine (0.804), and left (0.781) position.
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4. Discussion

We aimed to evaluate a previously published ECG method for detection of sleep
disordered breathing in an independent dataset of 198 patients obtained from a clinical
database. In addition, we compared the proposed use of EDR versus the use of RIP belt-
derived respiratory effort in terms of SDB detection, AHI estimation, and the SDB severity
classification performance.

We found that the implementation of the algorithm using RR and EDR on our dataset
actually yielded lower performance compared with the previous study. Specifically, the
overall F1 score dropped from 0.721 to 0.607, and the correlation decreased from 0.910 to
0.904, along with a decline in other metrics. This outcome can be attributed to several factors.
First, our dataset is considerably smaller in size than the dataset used in the study by Olsen
et al. [14]. It is possible that their model could have learned more SDB-related information
from the larger dataset, leading to better performance. Second, the subject distribution in
the two datasets differed. Our stratified, random splitting method ensured that the training
and test datasets had similar distribution of subjects in terms of SDB severity. However, the
test dataset in the previous study only included 50 “normal” subjects with AHI smaller
than 5, which accounted for just 5.2% of the entire test dataset. In contrast, the percentage
of subjects with a normal AHI in our testing set was 30.6%. Misdetections seem to occur
more on subjects with a smaller AHI than those with a larger AHI.

Regardless, we observed that incorporating some modifications in the model, in-
cluding sample weighting and kernel regularization, improved performance in our study.
We expect that further adjustments may improve generalizability to other, independent
datasets, a necessary requirement before such algorithms are implemented in (clinical)
practice. In any case, the algorithm’s adequacy to this task remains evident: despite the
different nature of the dataset used, where ours comprised a clinical, as opposed to a
population cohort in the original study, performance remained relatively high.

In comparison to the studies [10–12] described in the Introduction, which demon-
strated highly promising performance, the results of this study appear slightly lower.
Notably, these studies made use of the Apnea-ECG dataset, which is known to yield supe-
rior performance compared to other datasets. This assertion is supported by the findings of
Papini et al. [13], who observed a significant decline in performance (sensitivity <55%, false
detection rate >40%) when applying algorithms trained on the Apnea-ECG dataset (with
sensitivity >85% and false detection rate <20%) to alternative databases encompassing a
broader spectrum of apneic events and other sleep disorders. Similarly, Yang et al. [11]
reported a decrease in all evaluation metrics when validating their method on a different
dataset (from accuracy 90.3%, sensitivity 87.6%, and specificity 91.9% to 75.1%, 61.1%, and
80.8%, respectively). This aspect was one of the considerations that led to our selection of
the study conducted by Olsen et al. [14], as it relied on a dataset comprising large popu-
lation cohorts. In contrast to the Apnea-ECG dataset, the dataset utilized in the present
study was collected in real-world conditions in principle providing a more representative
sample. Additionally, it should be noted that while the aforementioned studies focused on
segment classification with or without SDB events, our results are based on the detection
of actual SDB events; this stricter criterion also contributes to the observed differences
in performance.

The AHI estimation performance demonstrates great promise despite the inter-subject
variability, with an achieved ICC value of 0.939. This level of agreement is comparable
to the AHI agreement observed across 10 scorers in PSGs (ICC 0.984; 95% confidence
interval: 0.977–0.990) [38] and the AHI agreement across 9 scorers in home sleep testing
data (ICC 0.96; 95% confidence interval: 0.93–0.99) [34]. These results highlight the strong
concordance between our AHI estimation and established scoring methods, indicating the
reliability of the approach.

We found that the using RE in combination with RR signals yielded better performance
in all tasks compared to using only ECG-based signals (i.e., RR and EDR). There could
be several reasons to explain this improvement. EDR is derived from heartbeat intervals,
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and thus, it has a low sampling rate (e.g., approximately 1 Hz for an average heart rate
of 60 beats per minute). We speculate that this may result in missing high-frequency
components of respiration that are informative to detect SDB events. Additionally, it has
been demonstrated that in general EDR yields a relatively poor approximation of the
respiratory waveform or morphology [15]. Using EDR, it might be hard to capture, for
example, increased breathing effort after apnea or hypopnea events.

Although the use of an additional modality next to ECG might sound less appealing
since it represents an increase in the number of sensors, it is relevant to remark that
this is amongst the more easily acquirable, with unobtrusive methods. In fact, recent
developments in physiological sensing suggest that both the RR and the RE time series
used as the input can both be accurately measured from bed sensors [19,22], chest-worn
accelerometers [20,23,39], or even wrist-worn PPG sensors [21,24]. In contrast, EDR is
ECG-specific and likely not easily obtainable with other sensing modalities. On the other
hand, including other signals like blood oxygen saturation and airflow, which obviously
hold potential to offer valuable additional information, is helpful but remains challenging
to obtain reliably when utilizing unobtrusive methods.

Based on our findings, we observed a correlation between AHI error and age as well
as BMI. Higher age and BMI were associated with an increased AHI error. However, it is
important to note that this correlation might be influenced by AHI severity, as age and BMI
are known to be correlated with AHI severity. In Figure 3, we can observe that higher AHIs
are associated with a higher AHI error. Nonetheless, further investigations are warranted
to establish and validate the influence of age and BMI on AHI error. Regarding the lower
sensitivity observed during the N3 stage, it is likely attributed to the limited number of
events observed in N3, which poses difficulties for our model to effectively learn from
them, resulting in a lower sensitivity. In terms of body position, although the percentages
of different types of SDB events vary, we found consistent sensitivities in the right, supine,
and left positions. The lower sensitivity observed in the prone position may be attributed
to the same reason that causes the lower sensitivity in N3. It is worth emphasizing that
further research is required to dive deeper into these relationships, confirm the findings, and
provide a comprehensive understanding of the factors influencing AHI error and sensitivity.

It is important to note that the detection rate for hypopneas was lower compared to
other SDB types (see Table 4), consistent with the findings by Olsen et al. [14], which is one
limitation of this method. After inspecting the results, we found that the correctly detected
SDB events were longer than the missed SDB events (Supplementary Figures S1 and S2),
and the average length of hypopnea was shorter than that of obstructive apnea and mixed
apneas in our dataset (Supplementary Figure S3). Thus, the event length might be one
reason why hypopneas had a lower detection rate, as longer apneas and hypopneas usually
correspond to greater changes in HRV [40].

An important limitation of the study is that the sleep–wake information used for
providing the SDB event detection results and compute AHI was directly retrieved from
the PSG scorings of sleep stages. For practical use, an automatic sleep–wake identification
algorithm is required for a fully-fledged SDB assessment system.

Future work could follow multiple directions. We could investigate the reasons
underlying the superior performance of RE signals compared to EDR in detecting SDB.
Additionally, there is potential in studying and developing methods to improve hypopnea
detection rates, for example, by exploring improvements of the deep learning algorithm
by adding attention mechanism or transformers. The method should be further validated
with larger datasets that contain a wider spectrum of apneic events, additional sleep
disorders, and additional somatic comorbidities. Another area of exploration could be the
development of a fully automated method for estimating AHI by integrating sleep–wake
identification with the SDB detection method.

Finally, to enable actual real-world applications, two important elements should
be investigated. First, there is clearly sufficient information in cardiac and respiratory
activity measured with ECG and RIP belts to accurately assess SDB severity. However,
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it is necessary to evaluate whether surrogate measures of cardiac and respiratory effort
obtained with other sensors yield a comparable performance. Second, it would be relevant
to investigate whether the computational requirements needed for this method would
be adequate for implementation in modern architectures, embedded in the monitoring
devices, or as part of cloud-based services.

5. Conclusions

In this paper, we implemented a previously described state-of-the-art ECG-based deep
learning algorithm for SDB detection in an independent clinical dataset and proved the
generalizability and robustness of the method. In addition, we investigated the advantage
of using RE measured using RIP belts and compared the performance between models
using EDR versus RE, showing that RE is superior for automatic SDB assessment. Results
also indicate that, even with the addition of RE signals, the detection rate for hypopnea
events is lower, and additional efforts are needed to improve hypopnea detection.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/diagnostics13132146/s1, Figure S1: Boxplot illustrating
the event length distribution for detected and missed SDB events of all types in the testing set,
utilizing RR and EDR as inputs (m stands for median). Figure S2: Boxplot illustrating the event
length distribution for detected and missed SDB events of all types in the testing set, utilizing RR and
RE as inputs (m stands for median). Figure S3: Boxplot illustrating the event length distribution of
various types of SDB events in the testing set; Table S1: Sensitivity of SDB event detection in different
sleep stages with RR and RE as inputs. Table S2: Sensitivity of SDB event detection in different body
positions with RR and RE as inputs.
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