
Citation: Retson, T.A.; Eghtedari, M.

Expanding Horizons: The Realities of

CAD, the Promise of Artificial

Intelligence, and Machine Learning’s

Role in Breast Imaging beyond

Screening Mammography. Diagnostics

2023, 13, 2133. https://doi.org/

10.3390/diagnostics13132133

Academic Editors: Katja

Pinker-Domenig and Fernando

Collado-Mesa

Received: 2 May 2023

Revised: 6 June 2023

Accepted: 12 June 2023

Published: 21 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

diagnostics

Review

Expanding Horizons: The Realities of CAD, the Promise of
Artificial Intelligence, and Machine Learning’s Role in Breast
Imaging beyond Screening Mammography
Tara A. Retson * and Mohammad Eghtedari

Department of Radiology, University of California, San Diego, CA 92093, USA; meghtedari@health.ucsd.edu
* Correspondence: tretson@health.ucsd.edu

Abstract: Artificial intelligence (AI) applications in mammography have gained significant popular
attention; however, AI has the potential to revolutionize other aspects of breast imaging beyond
simple lesion detection. AI has the potential to enhance risk assessment by combining conventional
factors with imaging and improve lesion detection through a comparison with prior studies and
considerations of symmetry. It also holds promise in ultrasound analysis and automated whole breast
ultrasound, areas marked by unique challenges. AI’s potential utility also extends to administrative
tasks such as MQSA compliance, scheduling, and protocoling, which can reduce the radiologists’
workload. However, adoption in breast imaging faces limitations in terms of data quality and
standardization, generalizability, benchmarking performance, and integration into clinical workflows.
Developing methods for radiologists to interpret AI decisions, and understanding patient perspectives
to build trust in AI results, will be key future endeavors, with the ultimate aim of fostering more
efficient radiology practices and better patient care.

Keywords: artificial intelligence; breast imaging; study comparison; beyond mammography

1. Introduction

In the rapidly evolving field of medical imaging, artificial intelligence (AI) has emerged
as a powerful tool with the potential to revolutionize diagnosis, quantitative tasks, and
numerous aspects of clinical practice. Breast imaging has always been at the forefront of
embracing and incorporating technological advances in radiology, and AI is no exception.
The AI applications for mammography have been widely explored in both the research
and commercial realms, resulting, at times, in public fanfare. For example, in 2020 a paper
by McKinney et al., backed in part by Google, propelled breast imaging AI into the public
spotlight, as it showed that an AI algorithm could outperform radiologists in predicting
breast cancer on screening mammography [1]. Although most research and product
development in breast imaging have focused on cancer detection or density assessment
on screening mammography, a radiologist’s responsibilities extend beyond these tasks
to include various modalities and clinical and administrative duties. This review aims
to take a deeper look into the diversity of applications of AI towards breast imaging,
including ultrasound evaluation, comparison with prior studies, and the fusion of clinical
and imaging information for both diagnosis and risk assessment. In addition, we highlight
how AI can facilitate administrative tasks such as compliance with the Mammography
Quality Standards Act (MQSA), clinical scheduling, and protocoling, with the goal of easing
the non-interpretive workload of radiologists. This multifaceted subject is also not without
a necessary discussion of the limitations and challenges faced by AI implementation in
this sphere. By examining these diverse facets of AI applications in breast imaging, we
aim to provide an overview that will aid both clinicians and researchers in understanding
the current landscape and potential future directions in this field, as well as highlight how

Diagnostics 2023, 13, 2133. https://doi.org/10.3390/diagnostics13132133 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13132133
https://doi.org/10.3390/diagnostics13132133
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-0009-7733
https://orcid.org/0000-0002-4242-2637
https://doi.org/10.3390/diagnostics13132133
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13132133?type=check_update&version=1


Diagnostics 2023, 13, 2133 2 of 12

these AI-driven processes can augment both the accuracy and efficiency of technologists
and radiologists, leading to improved patient care.

2. How Did We Get Here?
2.1. The Realities of Computer-Aided Detection

As we discuss the scope of AI breast imaging applications, it is important to appreciate
the historical context that led to the current landscape. Breast imagers have always been
connected with cutting-edge efforts to use technology for the enhancement of cancer detec-
tion. A notable milestone along this pathway was when the Food and Drug Administration
(FDA) approved the first computer-aided detection (CAD) software for screening mam-
mography in 1998, the R2 Technology ImageChecker M1000 [2]. This technology ushered
in a new era in the field. The ImageChecker M1000 worked by using a laser digitizer to
convert mammography films into 6k × 6k pixel grey-scale digital images, which were then
processed by a machine learning algorithm operating on a PC-based processor. This early
machine learning architecture comprised two parallel processing algorithms specifically
designed to detect (1) calcifications (defined as a minimum of three bright spots reaching
a predefined threshold), and (2) masses (objects larger than calcifications with centers of
radiating lines and borders defined by gradient changes). The network was trained on only
several hundred cases of known breast cancer and normal mammograms, encompassing
a mix of calcifications and masses. The ImageChecker M1000 needed approximately six
minutes to analyze the four views of a standard screening mammogram [2,3]. Following
the approval for CAD reimbursement in 2002, its use in screening mammography rapidly
became standard, with 83% of practices using CAD by 2012 [4].

Despite early excitement surrounding CAD algorithms, with some suggesting that
CAD would outperform radiologists or act as a second reader for screening studies, enthu-
siasm diminished as the limitations of CAD emerged. A critical concern with traditional
CAD was its high false-positive rates, leading to increased diagnostic studies [5], which, in
turn, resulted in unnecessary further testing and patient anxiety. Further, CAD systems
frequently provided results without the ability to explain how they arrived at those con-
clusions, and without offering a quantitative measure of suspicion, making it opaque and
difficult for clinicians to understand or trust the results. This likely contributed to limited
efficacy and a lack of radiologist engagement, with a study by Mahoney showing that
radiologists found CAD markings easy to dismiss in up to 88% of cases [6]. Later studies
also showed that CAD did not actually impact cancer detection rates and that practicing
radiologists rarely altered their opinions based on CAD [7].

2.2. The Promises of AI and Its Advancements over Traditional CAD

Nearly 25 years after the initial CAD applications, a new generation of AI-based
computer-aided detection is revolutionizing the field of radiology and breast imaging in
particular. Conventional CAD approaches to breast cancer identification rely on a software
programmer to define specific and detailed rules and instructions to perform a task. In con-
trast, several types of artificial intelligence called machine learning (ML) or deep learning
(DL) employ numerous examples, often numbering in the hundreds or thousands to “learn”
how to perform a task without explicit instructions. For instance, consider the task of mark-
ing suspicious areas of calcifications on a mammogram. In conventional programming, one
must define the exact imaging features of calcifications in terms of shape and pixel intensity
to enable the program to identify pixels of calcification versus those of normal tissue. The
accuracy of such a program depends on the programmer’s ability to define and describe the
imaging features. In contrast, the ML approach does not require definitions of suspicious
or normal features to be pre-defined in the coding. Instead, the programmer writes an
algorithm to analyze examples of normal tissue and examples of calcifications, allowing
the algorithm to determine which features it will use to differentiate the two. Although ML
techniques were first developed in the 1980s, they experienced a dramatic recent increase
in popularity due to several major and related changes in computer science. Foremost,
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computing power has become exponentially more affordable and accessible over the past
decade. This has enabled algorithm architectures to grow more complex, in turn, allowing
them to take on increasingly nuanced problems. Concurrently, the increased computing has
facilitated the use of substantially larger data sets, with ML algorithms now being trained
on thousands or tens of thousands of images. By expanding the breadth and quantity of
training images an algorithm can learn to make increasingly refined distinctions, much
like a radiology resident improves by seeing a multitude of cases during their training. In
this vein of continuous improvement the proficiency of AI has drastically exceeded the
performance of traditional CAD techniques, approaching or exceeding the accuracy of
radiologists at various tasks in mammography including lesion detection [1,8,9]. AI is also
gaining increasing traction for a role as a digital second reader [10,11], with some studies
proposing the use of AI to sort confidently negative studies for worklist reduction [12,13].

The total number of ML research projects in radiology has increased exponentially
over the last decade. When searching PubMed using the keywords “Radiology Machine
Learning”, there were 713 results in 2010, compared to 30,814 results in 2022 (Figure 1).
Many of these research endeavors have shown excellent results in an artificial or lab testing
environment. AI has promised to revolutionize radiology and the larger field of medicine;
even with the drastic increase in ML studies and products, implementation has been slower
than the initial hype suggested. The year 2020 brought ML applications for radiology,
and particularly screening mammography, into the public spotlight. Several papers were
released within a short timeframe, one from Google’s DeepMind and one from New York
University, showing that an AI application is now able to outperform a radiologist at the task
of cancer identification on mammography [1,14]. While the research findings were more
nuanced than the resulting inflammatory headlines the field was arguably forever changed,
and both researchers and companies sought to integrate ML into real-world clinical practice.
Currently, the American College of Radiology’s Data Science Institute hosts the AI central
website, which aggregates a listing of FDA-cleared radiology products. At the time of
article preparation, 126 radiology products are FDA-approved, 22 of which are related to
breast imaging. In 2016, the first breast-imaging product was cleared with a steady increase
in programs and a shift towards more diagnostic applications in subsequent years, with
eight products cleared in 2021 and four products in 2022 (https://aicentral.acrdsi.org/,
(accessed on 18 March 2023).
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3. Applications for Lesion Detection beyond Mammography: Towards
Breast Ultrasound

With the rapid pace of new research and products in radiology AI applications, it is
important to consider the diverse array of modalities and the unique challenges they present.
The transition from research to clinical practice involves not only technical hurdles but an
understanding of the real-world application. One such area is ultrasound imaging. While
mammography generates a uniform set of images with highly regulated positioning and
imaging parameters, ultrasound images may be significantly influenced by sonographers in
positioning, measurements, and imaging characteristics. Sonographers examine the target
area or lesion in real time, adjusting the frequency and gain and varying the transducer’s
angle, deciding on the most representative images of the region of interest. Consequently,
there is a possibility for conscious or unconscious bias to result in an alteration in machine
parameters that may affect the echogenicity and appearance of an image or lesion. As a
result, a solid mass may unintentionally appear as a cyst or subtle nuances might be lost.
When training an ultrasound model using retrospective data it is important to consider that
the captured images may only represent a portion of the data used to make a final clinical
decision, unintentionally biasing the algorithm.

Automated whole breast ultrasound (ABUS) serves as an alternative to static ultra-
sound images or cines. This technique has gained attention for its accessibility, enabling
breast cancer screening for women who may not otherwise have access to mammography.
Moreover, there is evidence that supplemental screening with ultrasound could detect
occult cancers, particularly in those with dense breasts [15]. ABUS generates a uniform set
of images of the entire breast and saves all images to PACS. This large amount of uniformly
acquired images offers an opportunity for more objective AI models compared to manual
sonography where an algorithm is applied to selected ultrasound images saved at the
sonographer’s discretion. A study by Hejduk et al. showed AI as having a comparable
effectiveness at lesion identification on ABUS as radiologists, with an AUC of 0.91 [16].
However, a study by Brem et al. showed that the addition of ABUS to screening mam-
mography increased cancer detection but also increased false positives [17]. By imaging
the entire breast, benign lesions that may not otherwise be evaluated, such as cysts or
fibroadenoma-like masses, may prompt workup, increasing patient anxiety. Further, with
the potential to generate several hundred images per study ABUS is often viewed as time
consuming. Algorithms may help decrease these barriers to ABUS implementation as
AI-based solutions have shown promise to both increase detection and decrease reading
time [15,18]. An article by Van Zelst et al. showed that CAD software provided by Qview
Medical Inc. (Los Altos, CA, USA) can be used to increase the cancer detection rate of a
radiologist interpreting ABUS images, and another study by Yang et al. found that both
the performance and reading time of ABUS images can be improved by using AI-based
software [15,19].

4. Obtaining More Information from the Same Images: Radiomics and
Radiogenomics Advancements

Radiomics serves as a natural progression from the large volumes of uniform, three-
dimensional imaging data provided by modalities such as ABUS and MRI. As an emerging
field in medical imaging radiomics involves the extraction and analysis of quantitative fea-
tures from medical images such as texture, shape, and intensity. Features can be correlated
with variables such as patient clinical information, pathology, and molecular subtyping
to create predictive or diagnostic models. When genetic information is integrated this is
referred to more specifically as radiogenomics. In the analysis of breast cancer, features
from imaging data are studied to improve diagnosis, prognostic modeling, and person-
alized treatment planning, with the aim of identifying subtle lesion changes that may be
missed by visual inspection alone. For example, radiogenomics applications in ultrasound
have been explored, with b-mode and vascular features correlating to several upregulated
or downregulated genes [20]. Another study by Ha et al. examined postcontrast breast
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tumors on MRI and found that an algorithm could use imaging features to predict the
genetic analysis-derived recurrence score at an AUC of 0.92, a finding that can determine
the need for adjuvant chemotherapy [21]. A full review of this dynamic field is outside
the scope of this broader-aiming manuscript, and dedicated discussions of radiomics and
radiogenomics applications in greater depth can be found with reviews, such as Bitencourt
et al., Satake et al., and Pesapane et al. [22–24].

5. Integrating Information
5.1. Fusing Clinical Data and Imaging

Much like the multifaceted analysis of radiomics, a mammographer’s role requires
the synthesis of many factors beyond images. Mammographers rarely look at imaging in
isolation; rather, they adopt a more holistic approach, considering a patient’s clinical infor-
mation alongside imaging to render a diagnosis. In contrast, most commercially available
software, particularly current CAD applications, analyze images without incorporating
clinical information or risk models. The concept of software that integrates clinical infor-
mation is rapidly gaining traction in other fields of radiology, with studies that integrated
imaging and medical records doubling between 2020 and 2021 [25]. Although currently
most common in the study of neurological disorders, the successful fusion of image data
with non-imaging data was demonstrated in basal cell carcinoma detection by Kharazmi
et al., pulmonary embolism detection by Huang et al. (2020), and prostate cancer detection
on MRI images fused with the level of prostate-specific antigen by Reda et al. [26–28].

Three different strategies known as early fusion, joint fusion, and late fusion, are
described in several reviews, including Huang et al. and Mohsen et al. [25,28]. The
optimal approach and the most important information from images and clinical data will
be determined by the specific task, with the intuitive integration of clinical information
poised to enhance algorithmic performance and improve clinical care. Mohsen et al.’s.
review highlights the overall success of fusion strategies, with fusion studies outperforming
single-modality approaches when applied to the same tasks [25]. For instance, in a study
by Reda et al. the integration of clinical information with imaging was able to achieve 94%
accuracy in diagnosing prostate cancer, compared to 88% accuracy when analyzing the
imaging data alone [27].

5.2. Information from Prior Studies

Screening mammography is intended to be performed multiple times throughout
a patient’s lifetime, with at least one comparison mammogram often available for inter-
pretation in clinical practice. In fact, one study observed that over 90% of their exams
included a comparison film [29]. Most radiologists interpret mammograms within the
context of comparison with a prior, allowing them to discern static lesions versus evolving
changes, and increasing their confidence in the assessment. However, some evidence
suggests that prior imaging may increase the callback rate due to physiologic and normal
positional changes between mammograms that may appear suspicious simply due to their
difference in appearance between studies. For example, a study from Yankasas et al. [29]
demonstrated that when comparison mammograms were available and had an apparent
change, there was an increase in the false-positive interpretation rate. However, others
have shown that prior imaging allows radiologists to identify more subtle changes that
may represent the early stages of cancer development, resulting in increased sensitivity. A
study by Hayward et al. showed a reduced recall and increased cancer detection rate when
multiple prior mammograms were available [30], and a study by Burnside et al. showed a
decrease in false positives, with the detection of cancer occurring at an earlier stage [31].

Much like prior imaging may enhance the capabilities of human radiologists, incor-
porating prior imaging has been proposed to improve the performance of AI. Several
approaches to this challenge exist, with a newer type of AI network demonstrating a high
level of success in comparing two medical images to determine similarities or differences
between them [32]. This network architecture is novel for its use of two parallel and iden-
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tical networks to analyze the features of comparison images separately (for example, the
current image and the prior image), before adding an additional component that compares
between the two. Investigators have recently employed such networks in medical tasks,
such as determining osteoarthritis progression on sequential knee radiographs [32] and for
retinopathy grading [33]. Within breast imaging, several recent articles, including a review
by Loizidou et al., and a few commercial products have emerged that specifically utilize
temporal changes in medical images for better diagnosis [34]. For instance, Bai et al. com-
pared several different types of AI networks for cancer classification, finding that the best
performance was achieved with a model capable of image comparisons [35]. Using a differ-
ent novel technique based on image subtraction, a study by Loizidou et al. demonstrated
99% accuracy in distinguishing masses from normal tissue in their dataset [34].

In addition to comparing across time points, radiologists also consider similarities and
differences between the right and left breast when analyzing a study. Organ symmetry has
been effectively employed in image analysis of other body regions, such as the mastoid
air cells for detection of mastoiditis [18]. The integration of breast symmetry information
in the academic literature is still evolving, however. A study by Shimokawa et al. demon-
strated the early promise of this technique, where a network comparing the symmetry of
bilateral breasts improved cancer detection compared to more traditional neural network
approaches [36].

5.3. Challenges to Information Integration: Interoperability and Data Security

The incorporation of patient clinical information with imaging and ability to compare
with prior studies are not without challenges. A significant obstacle lies in the lack of
interoperability among healthcare data systems. For example, to consider a patient’s
cancer history an algorithm may need permission to access the medical record, which
is likely a separate application from a different company. Inconsistencies also exist in
terminologies, measurement units, and data entry formats, or may need to be derived from
natural language in provider notes. The scope of information an algorithm has access to
also raises concerns for data privacy and security, as each new integration offers another
potential source for data breaches or hacks. A healthcare data breach costs upwards
of USD 6.5 million on average, making security an ethical and financial concern [37].
Addressing these challenges has the potential to improve patient care and diagnosis but
will necessitate a multifaceted approach that includes standardized data formats and
enhanced data management protocols.

6. A New Way to Derive Risk Assessment Models

Building on the integration of clinical information with imaging data is the advance-
ment of breast cancer risk models. Enhanced risk assessment models could improve patient
care by identifying vulnerable populations and promoting the targeted utilization of lim-
ited or expensive resources, such as MRI and genetic testing. Perhaps the most popular
of the current risk assessment models is the Tyrer-Cuzick (TC) model, which integrates
personal and family history to produce both 10-year and lifetime risk scores. In a recent
multinational study, Yala et al. leveraged an algorithm to analyze both the conventional
risk factors from the TC guidelines alongside information from mammographic images,
finding that this algorithm was able to outperform TC in identifying both high-risk patients
and individual 5-year risk [38].

Other studies have sought to predict risk using imaging alone. For example, Saha et al.
examined features of background parenchymal enhancement on MRI as a marker for
risk assessment algorithmically, finding that their multivariate model was able to identify
patients who developed cancer with an AUC of 0.70 [39]. Additionally, Portnoi et al.
compared a single image from screening MRIs to a logistic regression model that used
more traditional risk factors for predicting 5-year risk, comparing both to the current TC
models [40]. They discovered that the image-based model had the highest performance at
an AUC of 0.64, while the logistic regression model and the TC model performed at AUCs
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of 0.56 and 0.49, respectively. These findings underscore the potential for AI-driven risk
assessment models capable of integrating an increasing number of inputs to make more
accurate predictions and better identify high-risk patients.

7. Reducing the Clinical Workload, and the Importance of Bringing Patients into
the Discussion

The uses of AI in breast imaging also extend beyond diagnostic applications to address
challenges in the clinical workflow. Although not currently implemented in clinical use,
several studies have proposed AI for workload reduction through two primary mecha-
nisms that involve changing the way cases are presented to the radiologist: (1) removing
negative/normal cases from the worklist and (2) prioritizing abnormal cases that require
prompt attention. For instance, an algorithm could analyze all screening mammography
exams and automatically report those considered confidently normal, allowing radiologists
to concentrate on more nuanced cases or complex diagnoses. In mammography, several
groups have conducted retrospective simulations to assess workload reduction potential.
Early studies demonstrated moderate benefits, with work by Rodreguez-Ruiz et al. show-
ing a 17% reduction in studies while missing 1% of true positives, and work by Yala et al.
showed no change in radiologist specificity and sensitivity while eliminating 19.3% of
exams [13]. As algorithms have continued to improve, more recent research involving
larger populations has shown the potential for more significant benefits. For example, a
study by Shoshan et al. reported a workload reduction of 40%, with noninferior sensitivity
and decreased recall rate [41]. Similarly, a large European study by Sharma et al. revealed
a reading time reduction of nearly 45% while also reducing recalls [42]. By eliminating a
portion of the normal exams, workload reduction algorithms have the potential to help
address radiologist shortages and the potential to reduce the time patients spend waiting
for anxiety-provoking results.

Despite the perceived benefit to radiologist workflows, the decision to rely on an
algorithm for risk assessment or final patient diagnosis must ultimately consider several
factors. Foremost among these is the level of patient comfort with reduced or absent input
from a physician. The understanding of patient opinions regarding medical AI remains
limited, and the landscape of AI and its integration into daily life continue to evolve. A
recent meta-review by Young et al. highlighted the paucity and variability of existing
studies, finding that studies examining patient attitudes were often of varying quality and
were subject to selection bias [43]. Despite their overall conclusion that patients generally
had a positive view of AI tools, they observed that many still prefer an element of human
supervision. A breast-imaging-specific study by Lennox-Chugani [44] from England found
an overall positive patient perception of using AI to read screening mammograms, with
50% of patients of screening age feeling positively and, interestingly, a slightly lower level
of trust among women under screening age at 45%. The feasibility of a fully AI-based
diagnosis, even for normal screening exams, should prioritize patient-centeredness and
foster harmony among patients, radiologists, and administrators. Moreover, this group of
stakeholders should be aware that opinions about AI-based diagnosis may change over
time and maintain adaptability to ensure the best possible patient safety and comfort.

8. Reducing the Administrative Workload
8.1. Automating MQSA and General Quality Assurance

The potential of AI extends further into areas traditionally viewed as administrative,
such as quality assurance tasks. Enacted in 1992, the Mammography Quality Standards Act
(MQSA) mandates facilities to audit medical outcomes with the objective of establishing
uniform quality standards in screening mammography. To maintain certification, MQSA
requires the periodic submission of sample images to demonstrate service quality, which
facilitates a comparison between an individual clinic’s performance and national-level
statistics. The implementation of this audit has been shown to improve screening and
diagnostic quality, with the short-interval performance feedback proving beneficial to both
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radiologists and technicians [45]. However, the MQSA audits necessitate the collection of
a significant amount of information and the selection of appropriate images may be very
time consuming, resulting in an increased administrative workload for radiologists and
technologists. AI solutions have been proposed to assist with identifying images for MQSA
submission, thereby reducing the administrative burden on breast imaging clinics. While
there is a paucity of academic literature on this topic, several products have already entered
this domain to help radiologists to streamline the process of acquiring data for EQUIP and
other administrative workflows. It is noteworthy to mention that such applications for
AI are relatively new, and only a limited number of products are commercially available
to help radiology offices comply with MQSA and EQUIP regulations. As such, there are
limited data on the actual performance and reliability of such products in clinics.

Beyond MQSA requirements, ensuring the quality of mammographic images is critical
for accurate diagnoses. Poor-quality mammograms can have a significant impact on patient
care, increasing radiation dose and delaying cancer detection [46]. While breast imaging
phantoms can help guarantee the technical quality of mammographic equipment, human
factors play a role in assuring the quality of the final image. Breast positioning has been
identified as a leading cause of poor-quality images, with positioning errors contributing
to misdiagnosis or missed detection of cancers [47,48]. ML-based solutions have been
proposed to perform real-time quality control on acquired images, reducing the need for
a technical repeat before the patient leaves the screening appointment. These types of
solutions could track the performance of individual technologists, identifying areas for
performance improvements, such as adequate compression or positioning, and allowing
for continued and prompt feedback.

Although limited academic research has been conducted in this area, several compa-
nies have commercial products designed to automate quality-control tasks. For instance,
Volpara Health reports a product that assesses factors such as position and compression
on screening mammograms [49], CureMetrix, Inc has developed a product that aims to
analyze a longitudinal set of studies from an institution to provide individualized quality
statistics [50], and Densitas Health has a product for evaluating mammograms to flag poor-
quality images and benchmark performance [51]. It is anticipated that additional products
will continue to be developed that automatically ensure and maintain high-quality imag-
ing, ultimately enhancing patient care and reducing the risk of misdiagnoses or delayed
cancer detection.

8.2. Clinical Scheduling and Protocoling

Extending beyond the realm of imaging, AI’s efficiency can also be employed to
streamline other areas of clinical operation. Several commercial AI applications have
been developed to assist with clinical scheduling, aiming to optimize equipment and
staff utilization. For example, algorithms have been developed to assess patient risk
factors and predict the amount of time needed for a surgical case, thus enabling more
accurate scheduling and utilization of operating rooms [52]. In radiology, scheduling
applications may also focus on protocoling studies, such as MRIs, that have the potential to
be performed differently based on the clinical scenario. Protocolling studies are essential
but time-consuming and are estimated to take up to 6% of a radiologist’s time [53,54]. A
study by Trivedi et al. used natural language processing (NLP), a type of machine learning,
to assign contrast to musculoskeletal MRI protocols, and a study by Brown and Marotta
used NLP to protocol brain MRIs, with both showing 83% accuracy [55,56]. A broader
simulation study by Kalra et al. used NLP to protocol general CT and MRI studies, finding
that nearly 70% of case protocols could be successfully automated [53]. As more advanced
language models (such as large language models including ChatGPT) become available
for study, complex clinical questions may be even better understood and translated by AI
into their relevant imaging parameters. Reducing this workload could not only save time
but potentially minimize interruptions and help ensure that a consistent and appropriate
modality is being utilized to address the clinical question.
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Appointment scheduling algorithms have also been developed, often based on the
likelihood of a patient missing an appointment. This allows the schedulers to “overbook”
or schedule multiple patients for the same appointment times with the expectation of
attrition or cancelations. However, studies in other medical fields have found that AI
scheduling may inadvertently contribute to healthcare disparities. For example, in one
study, socioeconomic biases were inherent in the algorithm training data, resulting in some
patients having inappropriately longer wait times [57]. ML applications are ultimately a
reflection of their training data, and understanding that ML applications may perpetuate
human biases is important to ensure that vulnerable populations are receiving equitable
care. Multiple studies have underscored the imperative for a cautious and ethical approach
towards creating AI models, with a clear focus on enhancing data diversity to ensure
equitable health outcomes for all populations. For example, Mema and McGinty discussed
the potential for AI to reduce health disparities in breast cancer care and highlight the need
for active clinician engagement to reduce biases, Agarwal et al. discussed bias sources
and proposed mitigation strategies in AI for healthcare, and Halamka et al. discussed
discrimination relating to surgical care and proposed ways AI may help [58–60].

9. The Limitations of AI, and Carrying Its Promises into the Future

AI has already begun to revolutionize medical imaging; however, like with any
emerging technology it is not without limitations or growing pains. One present concern
is the quality and standardization of data used to train AI algorithms. Although larger
public datasets are becoming more accessible for applications, such as cancer detection
on mammography, many companies and researchers must create their own datasets for
applications, such as scheduling or comparisons with prior studies. Typically, companies
select their own set of testing data and submit their results to the FDA for approval. Without
high-quality training data, an algorithm may face issues with generalizability outside its
developing institution or may perpetuate unintentional biases present in its training set.
Further, quality tools for benchmarking performance remain underdeveloped in medical
AI applications, requiring a consumer to rely on testing results provided by a company or
researcher without the ability to directly compare the results between studies or companies
on the same datasets.

Careful consideration must be paid to the role of an AI application within a clinical
workflow, evaluating whether it slows the workflow (e.g., waiting times for an image to be
processed) or increases analysis time for radiologists, particularly at the implementation
and integration phases. These factors are particularly important when considering the
IT infrastructure of an organization, which may vary in age or be costly and difficult to
upgrade and integrate into. The interpretability of AI-based decision making is another
important consideration, as healthcare providers may be liable for the end result and may
not trust an AI tool if its workings are opaque or difficult to understand. Finally, updates
and maintenance of an AI algorithm must be considered to ensure optimal performance
over time, accounting for potential changes due to software updates or population drift.

In the future, AI applications hold the potential to address many challenges faced in
the clinical practice of medical imaging. While lesion identification remains an essential
task in breast imaging, particularly in the context of a shortage of mammographers, AI has
the potential to streamline aspects of the breast radiologist workflow and improve patient
care. For example, with the advent of advanced language processing and generation tools
such as ChatGPT, AI could assist in evaluating years of patient histories and summarizing
them meaningfully. Patient data could also be integrated from multiple sources, including
electronic health records, lab results, and imaging studies, providing physicians with a more
comprehensive view of a patient’s health and enabling clinicians to make more informed
decisions. AI could also be utilized to automatically generate draft reports, reducing the
time needed for documentation. These AI applications have the potential to significantly
enhance the efficiency and accuracy of medical imaging, ultimately leading to more efficient
and effective radiologists and improved patient care.
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