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Abstract: This paper discusses the importance of investigating DR using machine learning and
a computational method to rank DR risk factors by importance using different machine learning
models. The dataset was collected from four large population-based studies conducted in India
between 2001 and 2010 on the prevalence of DR and its risk factors. We deployed different machine
learning models on the dataset to rank the importance of the variables (risk factors). The study uses a
t-test and Shapely additive explanations (SHAP) to rank the risk factors. Then, it uses five machine
learning models (K-Nearest Neighbor, Decision Tree, Support Vector Machines, Logistic Regression,
and Naive Bayes) to identify the unimportant risk factors based on the area under the curve criterion
to predict DR. To determine the overall significance of risk variables, a weighted average of each
classifier’s importance is used. The ranking of risk variables is provided to machine learning models.
To construct a model for DR prediction, the combination of risk factors with the highest AUC is
chosen. The results show that the risk factors glycosylated hemoglobin and systolic blood pressure
were present in the top three risk factors for DR in all five machine learning models when the t-test
was used for ranking. Furthermore, the risk factors, namely, systolic blood pressure and history of
hypertension, were present in the top five risk factors for DR in all the machine learning models
when SHAP was used for ranking. Finally, when an ensemble of the five machine learning models
was employed, independently with both the t-test and SHAP, systolic blood pressure and diabetes
mellitus duration were present in the top four risk factors for diabetic retinopathy. Decision Tree
and K-Nearest Neighbor resulted in the highest AUCs of 0.79 (t-test) and 0.77 (SHAP). Moreover,
K-Nearest Neighbor predicted DR with 82.6% (t-test) and 78.3% (SHAP) accuracy.

Keywords: diabetic retinopathy; ranking; risk factors; machine learning

1. Introduction

Diabetes mellitus (DM) is a metabolic syndrome with an increasing prevalence and
high mortality rate [1]. The prevalence of diabetes in people aged 20–79 years has increased
from 61.3 million in 2011 to 77 million today, and a further 77 million are pre-diabetic,
raising significant concerns about the public health burden of this condition [2,3]. By 2030,
it is estimated that approximately 101 million people in India will have diabetes [4–6].

Diabetic retinopathy (DR) is a common ocular complication of DM and is considered
one of the leading causes of vision loss and impairment in adults in the working-age
group [7,8]. According to a cross-sectional survey in England in 1990–1, the leading cause
of blindness was macular degeneration, which accounted for 49% of blind registrations,
and glaucoma was at 12%, and diabetes was at 4%. However, in the working-age group of
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16–64 years, diabetic retinopathy was attributed to 12% of blindness, while diabetes was
the most critical cause of blindness [9].

The number of people affected by diabetes-related retinal disease is 382 million world-
wide, and by 2025, that number is anticipated to rise to 592 million [10]. The estimated
prevalence of DR is around 34.6% (approximately 93 million individuals), and 10.2% have
an advanced stage of the disease [11]. According to the National Diabetes and Diabetic
Retinopathy Survey report 2015–2019, India has a DR prevalence of 11.8% in the population
aged above 50, and 10.6% of patients are at risk of losing vision [12].

As DR typically does not manifest symptoms until the disease has progressed, only
screening methods, such as a routine eye exam or retinal photography, can detect the
disease in its early stages. However, because of the increasing number of people diagnosed
with diabetes, systematic screening of all people with diabetes may be a big challenge.

DR is also predicted in the literature using deep learning systems. Developing deep
learning systems requires standardized grading of retinal images, which is often a challenge.
Though screening through retinal photographs is the gold standard, it is important to
identify the groups with the highest risk of developing DR so that photographic screening
can be prioritized, especially in populations with a high prevalence of diabetes. Therefore,
there is a need to look for systemic factors related to DR, which can play a key role as a
prescreening tool for DR.

Several factors, such as high blood pressure, postprandial hyperglycemia, albuminuria,
serum creatinine, glycosylated hemoglobin, and plasma glucose levels, are significantly
associated with the risk of DR [13–19]. Therefore, understanding the role of risk factors is
important for developing a strategy to improve global eye health. A previous study has
determined that diabetes patients older than 50 years with diabetes duration > 5 years and
systolic blood pressure > 140 mm Hg could be targeted to achieve optimal detection of
vision-threatening diabetic retinopathy [20].

Risk factors for DR have been identified using statistical techniques in the litera-
ture [21–27]. Moreover, the ranking of various risk factors for DR has not received much
attention in the literature. Ranking risk factors aims to streamline screening programs and
focus on the most important ones.

Clinical data on risk factors has been used in the literature to predict DR. In this
context, Cichosz et al. [28] used a linear classification model to predict which individuals
had diabetic retinopathy based on data obtained from the National Health and Nutritional
Examination Survey (NHANES, 2005–2008) [29] on the oral glucose tolerance test (OGTT),
FPG, or HbA1C, and retinal imaging. Using information regarding HbA1c, BMI, waist
circumference, age, SBP, urinary albumin, and urinary creatinine, they constructed a model
that predicts the presence of retinopathy with a negative predictive value of 99% and a
positive predictive value of 22%. Ogunyemi et al. [30] used clinical data from urban safety-
net clinics and public health data from the Centers for Disease Control and Prevention
(CDC) National Health and Nutrition Examination Survey to learn RUSBoost [31] and
AdaBoost [32] ensemble classifiers for predicting retinopathy. The results show that the
clinical dataset was not very good at predicting diabetic retinopathy. The best RUSBoost
ensemble had an accuracy of 73.5%, a sensitivity of 69.2%, a specificity of 55.9%, and an
AUC of 0.72 on cases that had never been seen before (the test data). Tsao et al. [33] built
a prediction model for the DR in type 2 diabetes mellitus using data mining techniques,
including Decision Trees, Support Vector Machines, Logistic Regressions, and Artificial
Neural Networks. The performance of Support Vector Machines was better than that of
the other machine learning algorithms. It achieved an accuracy of 79.5% and an AUC of
0.839 using a percentage split (i.e., the data set was divided into 80% as training and 20% as
a test).

As risk factors have been used to predict DR, it is important to screen significant risk
factors from the many presented in the dataset. There is no method to identify the top
risk factors for DR. The paper gives a novel approach to ranking risk factors to identify
the most significant ones. These risk factors could aid in developing a risk factor-based
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algorithm that can aid in the prescreening of DR. The algorithm can help as a prescreening
tool for detecting the need for using fundus photographs for identifying referable and
non-referable DR.

With a myriad of risk factors for most diseases, it is essential to identify the most
important ones, which can be fed to machine learning models for improved classification.
We have developed an algorithm for ranking the risk factors for diabetic retinopathy. We
have incorporated two techniques for ranking: first, statistical methods (using p-values)
and second, Shapley Additive Explanations (SHAP). Each of these two methods serves as a
validation for the other. Our proposed algorithm can potentially rank risk factors for any
other disease.

Our study also predicts DR using five machine-learning classification models, Deci-
sion Tree (DT), Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Logistic
Regression (LR), and Naive Bayes (NB). Finally, we have employed an ensemble of machine
learning models to predict DR.

The paper is organized as follows: Section 2 discusses materials and methods. Section 3
gives the results, followed by a Discussion in Section 4 and a Conclusion in Section 5.

2. Material and Methods
2.1. Samples and Data Preprocessing

The sample dataset was collected from four large population-based studies con-
ducted in India between 2001 and 2010 on the prevalence of DR and its risk factors [34–37].
All methods were performed following the relevant guidelines and regulations. The
study was approved by the Institutional Review Boards of Madras Diabetic Research
Foundation, Chennai, India; Vision Research Foundation, Chennai, India; and Aravind
Eye Care System, Madurai, India. Informed consent was obtained from the participants
according to the Declaration of Helsinki before collecting the data. These studies had
patient-level data and included previously diagnosed and newly diagnosed diabetics. In
this study, we included data on people aged 40 and older to obtain uniform data for anal-
ysis. In the current study, the diagnosis of new diabetes was defined as FBS > 7 mmol/L
or >126 mg/dL at the time of initial screening. Age at presentation, duration of diabetes
(for known individuals with diabetes), gender, history of hypertension, obesity, cardio-
vascular disease (CVD), and smoking history were among the sociodemographic and
clinical parameters shared by all studies. The prevalence of the stages of DR is 1% prolif-
erative DR, 12.4% mild/moderate non-proliferative DR, 1.4% severe non-proliferative
DR, and 3.7% diabetic macular edema.

Data from all four studies was entered into a Microsoft Excel spreadsheet. The total
number of people with DR was 857, and those without DR were 3133. An ophthalmologist
provided a group of features contributing to the disease directly and indirectly. We call these
features risk factors, and our primary objective in this study is to rank these risk factors,
which include the history of hypertension status, insulin treatment status, systolic blood
pressure status, glycosylated hemoglobin (HBA1c) value, duration of diabetes mellitus,
fasting blood glucose, gender, body mass index, and age. Ordinal encoding is applied to
categorical risk factors to convert them into continuous risk factors as machine learning
models only understand numbers in data. Normalization was applied to continuous
risk factors so that the deviation of the variables did not affect classification or model
interpretation. Like previous medical data studies, we replaced the missing values with the
mode for binary data and the median for numerical data [38].

Ranking features can be done using Random Forests and Logistic Regression. If
Random Forests are used, equal importance is given to correlated features. Furthermore,
they give preference to features with high cardinality. Logistic regression assumes linearity
between the dependent variable and the independent variables. Moreover, it requires no
multicollinearity between independent variables. An independent two-sample t-test ranks
the risk factors according to their p values. A lower p-value denotes more importance.
Furthermore, Shapely additive explanations [39] are used, giving Shapely values a suitable
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measure of feature importance. The higher the Shapely value, the higher is the importance
of the feature. The coding was performed in Python using a Google Colaboratory notebook
with a CPU frequency of 2.30 GHz, 2 CPU cores, the Haswell CPU family, and 12 GB
of available RAM. The Python libraries used were sklearn, imblearn, numpy, pandas,
matplotlib, collections, and scipy. The purpose of using machine learning classification
models is to validate the t-test and SHAP-based rankings.

2.2. t-Test

A t-test (also known as the student’s t-test) is a tool for evaluating the means of one or
two populations using hypothesis testing. A t-test may be used to evaluate whether a single
group differs from a known value (a one-sample t-test), whether two groups differ from
each other (an independent two-sample t-test), or whether there is a significant difference in
paired measurements (a paired or dependent samples t-test). An independent two-sample
t-test ranks the risk factors according to their p values. A lower p-value denotes more
importance.

The t-test assumes that the independent samples of two populations have the same
variance and are normally distributed. As there are two samples from a population with
unequal variances, the t-test is reasonably robust to the violation of its first assumption. A
t-test repeated measure design yields small effects due to the small sample error. It also
results in the effective management of individual differences. One group is available for
testing, which may result in less data noise.

2.3. Shapley Values

Lloyd Shapely, in 1953 [40], proposed the concept of Shapley values, which numerically
evaluate the value of playing a game. It is important to interpret a model’s prediction
correctly. It provides an insight into how a model may be improved, engenders user trust,
and supports understanding the modeled process. The model itself is the best explanation
of a simple model. A simple explanation model is used for complex models, such as
ensembles or deep networks, as an interpretable approximation of the original model. In
multicollinearity, Shapley regression values are feature importances for linear models. The
method requires the model to be retrained on all feature subsets S ⊆ F, where F is the set of
all features. It assigns to each feature an importance value that represents the effect on the
model prediction, including that feature. To compute this effect, a model fS∪{i} is trained
with that feature present, and another model fS is trained with the feature withheld. Then,
from the two models, predictions are compared with the current input fS∪{i}(xS∪{i}) − fS(xS),
where xS represents the values of the input features in the set S. The preceding differences
are computed for all possible subsets S ⊆ F\{i} because the effect of withholding a feature
depends on other features in the model. The Shapley values are then computed and used
as feature attributions. They are a weighted average of all possible differences:

ϕi = Σ
|S|!(|F| − |S| − 1)!

|F|! [fS∪{i}(xS∪{i})− fS(xS)] (1)

S ⊆ F\{i}

Shapely values are a unified measure of feature importance. These are solutions to
Equation (1) as they are the Shapley values of a conditional expectation function of the
original model. The higher the Shapely value, the higher is the importance of the feature.

SHAP is used because it has a solid theoretical foundation in game theory. Further-
more, among the feature values, the prediction is fairly distributed. Moreover, SHAP
has a fast implementation for tree-based models. Although Shapley value computation
requires exponential time complexity, machine learning applications employ Shapley value
approximation methods, such as Monte Carlo permutation sampling, which approximates
Shapley value in linear time [41–43].
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2.4. Method Design

The data was divided into an 80% training and 20% test set. Synthetic Minority Over-
sampling Technique (SMOTE) [44] was applied to the training data as the oversampling
method to generate synthetic data in the minority class for solving the class imbalance
problem. Following this, the proposed algorithm (Algorithm 1), as shown below, was
applied to generate the weights for the risk factors using a t-test and SHAP independently.

Algorithm 1: Ranking of Risk Factors.

Begin
Input: Set of risk factors (R = R1, R2, R3 . . . , RN)
1. for each risk factor, Ri do
2. Apply independent sample t-test to Ri and calculate its p-value. A lower p-value

denotes more importance.
3. Apply SHAP to each model, namely, SVM, DT, KNN, LR, and NB, to calculate the Shapley
value of Ri for each model. A higher Shapely value denotes higher importance.
4. end for
5. Sort the risk factors in step 2 in increasing order of their p-values.
6. Sort the risk factors in step 3 in decreasing order of Shapely values.
7. The sorted risk factors are the risk factors R1, R2, R3 . . . , RN ranked independently

using a t-test and SHAP.
8. The weights of risk factors R1, R2, R3 . . . , RN are set based on the ranking results. For a

risk factor Ri with rank order r, its weight is set as d − r, where d is the number of
risk factors.

9. Set the previous cross_val_score as prev_AUC = 0
10. for each i in the N (number of risk factors) ranked with the t-test and SHAP do
11. for each model j in M(SVM, DT, KNN, LR, and NB) do
12. Calculate the cross_val_score for the risk factor i as curr_AUC
13. if prev_AUC ≥ curr_AUC
14. Remove the risk factor from the ranked order and set its weight to

zero.
15. else prev_AUC = curr_AUC
16. end for
17. end for
18. return Weights assigned to Risk factors for all models in the t-test and SHAP.
Output: Weights assigned to risk factors for all models in the t-test and SHAP.
End

The ensemble weights across all five models, namely, K-Nearest Neighbor (KNN) [45],
Decision Tree (DT) [46], Support Vector Machine (SVM) [47], Logistic Regression [48], and
Naive Bayes [49] are computed for both t-test and SHAP. The above steps are repeated three
times to enhance robustness. An average is computed to arrive at the final model weights
(for both the individual model and the ensemble case). As can be seen from Figure 1, the
weights are sorted in decreasing order of importance for each model in the t-test and SHAP
to generate the ranking of risk factors. The ranked risk factors are added individually to
compute the best combination of risk factors producing the highest AUC metric to predict
DR separately using a t-test and SHAP.

The t-test is used because it is robust to the violation of its assumption that the inde-
pendent samples of two populations have the same variance and are typically distributed.
SHAP is used in the algorithm because it has a solid theoretical foundation and fairly
distributes the prediction among the feature values.

Let N be the number of risk factors, and K be the number of machine learning models.
The algorithm proposed that employs the t-test has a time complexity of O(N2logN + N × K)
and that using a SHAP has a time complexity of O(K × N2log N), assuming a linear ap-
proximation in the Shapley evaluation method.
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3. Results
3.1. Ranking

Algorithm 1 was applied to the dataset after performing SMOTE, initially using a
t-test and then SHAP as a ranking measure. It can be inferred from Table 1 that risk factors,
such as glycosylated hemoglobin and systolic blood pressure, were found to be the top
three risk factors for diabetic retinopathy in all machine learning (ML) models when using
a t-test for ranking. Furthermore, it can be inferred from Table 2 that risk factors, such
as systolic blood pressure and history of hypertension, were found to be among the top
five risk factors for diabetic retinopathy in all machine learning models using SHAP for
ranking. Table 3 shows that when an ensemble of five models were used, risk factors, such
as systolic blood pressure and duration of diabetes mellitus, were found to be in the top
four risk factors for DR in both the t-test and SHAP-based rankings.

Table 1. Ranking of risk factors using t-test and SMOTE with various ML models.

SNo. Decision Tree SVM KNN Logistic Regression Naive Bayes

1 glycosylated hemoglobin glycosylated
hemoglobin

glycosylated
hemoglobin glycosylated hemoglobin glycosylated

hemoglobin

2 diabetes mellitus
duration systolic blood pressure systolic blood pressure body mass index body mass index

3 systolic blood pressure diabetes mellitus
duration fasting plasma glucose systolic blood pressure systolic blood pressure

4 fasting plasma glucose insulin treatment history of hypertension gender gender

5 history of hypertension fasting plasma glucose insulin treatment age diabetes mellitus
duration

6 insulin treatment history of hypertension diabetes mellitus
duration insulin treatment age

7 gender gender gender fasting plasma glucose insulin treatment

8 body mass index body mass index body mass index history of hypertension fasting plasma glucose

9 age age age diabetes mellitus duration history of hypertension

Table 2. Ranking of risk factors using SHAP and SMOTE with various ML models.

SNo. Decision Tree SVM KNN Logistic Regression Naive Bayes

1 diabetes mellitus
duration systolic blood pressure glycosylated

hemoglobin systolic blood pressure systolic blood pressure

2 glycosylated hemoglobin fasting plasma glucose systolic blood pressure history of hypertension fasting plasma glucose

3 systolic blood pressure history of hypertension fasting plasma glucose insulin treatment history of hypertension

4 fasting plasma glucose insulin treatment history of hypertension diabetes mellitus duration insulin treatment

5 history of hypertension diabetes mellitus
duration insulin treatment gender diabetes mellitus

duration

6 insulin treatment gender diabetes mellitus
duration glycosylated hemoglobin gender

7 gender glycosylated
hemoglobin gender body mass index glycosylated

hemoglobin

8 body mass index body mass index body mass index fasting plasma glucose body mass index

9 age age age age age

3.2. Classification Performance

Tables 4 and 5 show the results for the sensitivity, specificity, AUC, and accuracy of the
five individual classifiers using ensemble weights for DR prediction in the t-test and SHAP.
All the models achieved sensitivity ranging from 0.55 to 0.76, specificity ranging from 0.59
to 0.84, AUCs ranging from 0.71 to 0.79, and accuracy ranging from 64.3% to 82.6%. Out
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of the five machine learning classifiers, in terms of sensitivity, Naive Bayes performed the
best, with a value of 0.76 in the t-test and SHAP. Regarding specificity, KNN performed the
best, with a value of 0.84 in the t-test and 0.8 in SHAP. In terms of AUC, while using a t-test,
DT and KNN resulted in the highest AUC value of 0.79 with associated risk factors, such
as glycosylated hemoglobin and systolic blood pressure. Similarly, with SHAP, DT and
KNN resulted in the highest AUC of 0.77 with associated risk factors, such as systolic blood
pressure, history of hypertension, diabetes mellitus duration, insulin treatment, fasting
plasma glucose, and glycosylated hemoglobin. KNN achieved the best accuracy of 82.6%
in the case of the t-test and 78.3% in the case of SHAP. The AUC and accuracy of the DT
and KNN of the t-test and SHAP are shown in Figure 2a,b,d,e. The receiver operating
characteristic (ROC) curve for all models of the t-test and SHAP is shown in Figure 2c,f.

Table 3. Ranking of risk factors using an ensemble of ML models.

SNo. t-test + Ensemble Shapely + Ensemble

1 glycosylated hemoglobin systolic blood pressure

2 systolic blood pressure history of hypertension

3 body mass index diabetes mellitus duration

4 diabetes mellitus duration insulin treatment

5 gender fasting plasma glucose

6 age glycosylated hemoglobin

7 insulin treatment gender

8 fasting plasma glucose body mass index

9 history of hypertension age

Table 4. Metrics for ranking using a t-test using ensemble weights (Support Vector Machines (SVM),
K-Nearest Neighbors (KNN), and Area under the ROC Curve (AUC)).

t-test

Model Sensitivity Specificity AUC Accuracy

Decision
Tree 0.6 0.83 0.79 0.779

SVM 0.72 0.66 0.75 0.711

KNN 0.58 0.84 0.79 0.826

Logistic Regression 0.68 0.65 0.71 0.657

Naive Bayes 0.76 0.59 0.73 0.668

Table 5. Metrics for ranking using Shapely additive explanations (SHAP) using ensemble
weights (Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and Area under the ROC
Curve (AUC)).

SHAP

Model Sensitivity Specificity AUC Accuracy

Decision
Tree 0.64 0.78 0.77 0.753

SVM 0.72 0.66 0.75 0.747

KNN 0.55 0.8 0.77 0.783

Logistic Regression 0.68 0.65 0.71 0.66

Naive Bayes 0.76 0.59 0.73 0.643
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4. Discussion

In this study, we propose an algorithm for ranking risk factors to predict DR. Systolic
blood pressure was consistently found to be among the top risk factors using the t-test,
SHAP, and ensemble methods. The sensitivity, specificity, and AUC values for the t-test
and SHAP are very close to each other, which validates our two methods (using the t-test
and SHAP) for ranking risk factors. In the case of the t-test, DT and KNN resulted in the
highest AUC value of 0.79 with associated risk factors, such as glycosylated hemoglobin
and systolic blood pressure. Similarly, with SHAP, DT and KNN resulted in the highest
AUC value of 0.77 with associated risk factors, such as systolic blood pressure, history of
hypertension, diabetes mellitus duration, insulin treatment, fasting plasma glucose, and
glycosylated hemoglobin. Comparing the risk factors for AUC, it can be inferred that
systolic blood pressure and glycosylated hemoglobin seem to be the critical risk factors for
predicting DR.

This study uses two techniques to rank the risk factors: the t-test and SHAP. SHAP
and t-tests take fundamentally different approaches to evaluate the significance of a feature.
SHAP values are derived from cooperative game theory and evaluate the contribution of
each feature to a specific instance’s prediction. In contrast, t-tests are a statistical method for
testing hypotheses that compares the means of two groups. These distinct methodologies
can result in varying conclusions regarding the significance of a feature. SHAP values can
detect complex interactions between features that a t-test might overlook. In isolation, the
t-test may indicate that HbA1c is significant, but in the context of other features and their
interactions, SHAP values may indicate that HbA1c is not as significant. This may result
from confounding variables, multicollinearity, or other intricate feature interactions. A
t-test’s results can be sensitive to sample size and variation. The t-test might mistakenly
identify HbA1c as a significant factor when it is not due to a lack of statistical power
resulting from a small sample size or high variability. In contrast, SHAP values may be
more resilient in such circumstances. While age is consistently at the bottom, systolic blood
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pressure and diabetes mellitus duration are consistently at the top of the ranking in all the
models using the t-test and SHAP.

We can infer from Tables 1–3 that age is the least significant risk factor as it was ranked
among the last five risk factors by all machine learning models and the ensemble model.
The current literature shows the effect of age on the severity of DR is unclear and varies
with the population being studied [36]. While Stratton et al. reported that old age impacts
the progression of DR [50], other studies identified younger age as a risk factor [51–53].
Therefore, it is likely that the risk of DR may be present irrespective of age; hence, screening
should be performed in all age groups.

Although age was not on the list of the top risk factors in this analysis, we did find
that duration of diabetes was one of the top four risk factors employing ensemble models
of five classifiers. The duration of diabetes is related to the patient’s exposure time to
other DR-related risk factors. It should, therefore, be of prime importance while targeting
screening towards DR. Previous studies have shown that DM duration may be the most
important independent risk factor for DR [54–56].

There were few investigations on the risk stratification of DR based on ML and
risk factors. Azizi-Soleiman et al. [57] reported a model for detecting DR in Iranians
using outpatient clinical data. The logit model obtained an AUC of 0.760 by training
on the data of 1782 patients (without cross-validation) using backward elimination as
a feature selection strategy. Tsao et al. [33] divided the clinical data of 536 Taiwanese
patients into training and validation sets (80:20 ratio) and tested how well the four models
(Support Vector Machine, Decision Tree, Artificial Neural Network (ANN), and Logistic
Regression) could detect DR. They found that the Support Vector Machine performed the
best, with an AUC of 0.839. According to Yao et al. [58], an Artificial Neural Network
with back propagation outperformed Logistic Regression in DR detection with AUCs of
0.84 and 0.77, respectively. Population-based data are more pertinent to the reality of DR
screening programs than hospital-based data [59]. Our study applied machine learning
(ML) techniques to population-based data and demonstrated their utility for DR detection.
Moreover, we have proposed two techniques to rank the risk factors: the t-test and SHAP,
which validate each other, obtaining AUCs of 0.79 and 0.77, respectively.

The first limitation of the study is that only a subset of the risk factors suggested by
the current literature were considered. There is scope for a larger set of risk factors to
be considered to identify the top risk factors that can aid in initial screening for referable
DR in populations where ophthalmologists are scarce. Second, it was not possible to
evaluate risk factor rankings for each form of retinopathy separately in the present study.
The classification of risk factors refers to the risk of diabetic retinopathy, regardless of
its severity.

Our study has shown that ML technology successfully ranks important risk factors in
large-scale epidemiological studies. Previous studies have demonstrated the vital role of
ML in other medical fields, such as T2DM, obesity, and heart failure [60–62]. Our results
confirm the excellent performance of ML in predicting diabetic retinopathy. This is the first
study that evaluates the importance of risk factors using various ML methods with data
from the Indian population and checks the risk factors for diabetic retinopathy.

5. Conclusions

The study aims to reflect the importance of ranking risk factors to find their relevance
to DR. We have proposed two techniques to find the relative contributions of risk factors
to the presence of DR. In both cases, age contributed the least and systolic blood pressure
contributed the most among the nine risk factors considered for the study. Thus, validating
both of our proposed techniques, KNN achieved the best accuracy of 82.6% in the case of
the t-test and 78.3% in the case of SHAP to predict DR. A subset of risk factors given by
ophthalmologists was considered in the study. Furthermore, other risk factors, such as
demographics, lifestyle, family history, living standards, and ethnicity, need to be explored
in further studies as part of the future scope of this work. These risk factors could aid
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in developing a risk factor algorithm for DR and aid in the prescreening of DR. The
algorithm can be a prescreening tool using fundus photographs to identify referable and
non-referable DR. The study can also be extended using images and top risk factors to
predict DR. Moreover, the ranking of risk factors for non-proliferative/proliferative DR or
diabetic macular edema and whether the ranking would change with the development of
macular edema or proliferative DR could be a potential future study.
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