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Abstract: Benign tumours comprise the majority of primary vertebral tumours, and these are often
found incidentally on imaging. Nonetheless, accurate diagnosis of these benign lesions is crucial,
in order to avoid misdiagnosis as more ominous malignant lesions or infection. Furthermore, some
of these tumours, despite their benign nature, can have localised effects on the spine including
neural compromise, or can be locally aggressive, thus necessitating active management. Haeman-
giomas and osteomas (enostosis) are the commonest benign tumours encountered. Others include
osteoid osteoma, osteoblastoma, fibrous dysplasia, osteochondroma, chondroblastoma, haeman-
gioma, simple bone cysts, aneurysmal bone cysts, giant cell tumours, eosinophilic granuloma and
notochordal rests. The majority of lesions are asymptomatic; however, locally aggressive lesions
(such as aneurysmal bone cysts or giant cell tumours) can present with nonspecific symptoms, such
as back pain, neurological deficits and spinal instability, which may be indistinguishable from more
commonly encountered mechanical back pain or malignant lesions including metastases. Hence,
imaging, including radiography, computed tomography (CT) and magnetic resonance imaging (MRI),
plays a critical role in diagnosis. Generally, most incidental or asymptomatic regions are conserva-
tively managed or may not require any follow-up, while symptomatic or locally aggressive lesions
warrant active interventions, which include surgical resection or percutaneous treatment techniques.
Due to advances in interventional radiology techniques in recent years, percutaneous minimally
invasive techniques such as radiofrequency ablation, sclerotherapy and cryoablation have played an
increasing role in the management of these tumours with favourable outcomes. The different types
of primary benign vertebral tumours will be discussed in this article with an emphasis on pertinent
imaging features.

Keywords: benign primary vertebral tumours; osteoma; osteoid osteoma; osteoblastoma; fibrous
dysplasia; osteochondroma; chondroblastoma; haemangioma; simple bone cyst; aneurysmal bone
cyst; giant cell tumour; notochordal rest; eosinophilic granuloma; MRI; CT

1. Introduction

Primary vertebral tumours are rare, and benign tumours constitute the majority of
these. It is estimated that the incidence of haemangiomas and osteomas, which were found
to be the most common primary tumours of the spine, is between 11% and 14% [1]. These
commonly seen benign lesions are often asymptomatic, diagnosed incidentally and do not
require any active intervention. Certain other types of lesions, albeit benign, can be locally
aggressive and, as such, warrant active management. The diagnosis of the latter can be
challenging, both due to their rarity as well as the nonspecific nature of presentation, most
commonly back pain [2].

Early detection and accurate diagnosis are important for effective management, partic-
ularly those lesions that have the potential to be locally aggressive. Imaging, particularly

Diagnostics 2023, 13, 2006. https://doi.org/10.3390/diagnostics13122006 https://www.mdpi.com/journal/diagnostics

https://doi.org/10.3390/diagnostics13122006
https://doi.org/10.3390/diagnostics13122006
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com
https://orcid.org/0000-0002-7377-028X
https://orcid.org/0000-0003-2882-6923
https://orcid.org/0000-0002-4379-1266
https://orcid.org/0000-0001-7998-2980
https://doi.org/10.3390/diagnostics13122006
https://www.mdpi.com/journal/diagnostics
https://www.mdpi.com/article/10.3390/diagnostics13122006?type=check_update&version=3


Diagnostics 2023, 13, 2006 2 of 23

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI), plays a crucial
role in diagnosis of these conditions, and having a sound understanding of the imaging
principles and characteristic features of different types of tumours is paramount both for
correct diagnosis and preventing misdiagnosis as malignant tumours or infection. In the
case of benign lesions, accurate and confident diagnosis on imaging can prevent the need
for unnecessary biopsy and intervention.

Treatment options depend on the extent and type of tumour, but in a broad sense,
the vast majority of lesions are conservatively managed and surgical resection is reserved
for highly locally aggressive lesions which may compromise adjacent neural structures.
Percutaneous minimally invasive interventions which are typically performed under image
guidance may play a role in the management of the latter types of lesions in some instances,
and include radiofrequency ablation, sclerotherapy and cryoablation. When active inter-
vention is required, this is further complicated due to the complex anatomy of the spine
and risk of damage to critical structures which are in close proximity, particularly the spinal
cord [3,4].

This review article aims to discuss the different types of primary benign tumours
of the vertebral column, with emphasis on the approach to imaging and distinguishing
imaging features. Discussion of secondary tumours, rare malignant varieties of some of
these tumours and lesions of infective aetiology will be excluded.

2. Imaging Modalities and Techniques

The imaging modalities and techniques have been previously discussed in an article
pertaining to primary malignant vertebral tumours, and the broad principles discussed are
identical to those utilized in the imaging of benign vertebral lesions.

3. Types of Lesions

The various types of primary benign tumours of the spine can be classified based on
the World Health Organisation (WHO) classification of bone tumours (Table 1).

Table 1. Classification and types of primary benign vertebral tumours.

Classification Tumour

Osteogenic tumours
Osteoma (enostosis)

Osteoid osteoma
Osteoblastoma

Chondrogenic tumours Osteochondroma
Chondroblastoma

Vascular tumours Haemangioma, including aggressive
haemangioma

Osteoclastic giant cell-rich tumours Aneurysmal bone cyst
Benign Giant cell tumour

Notochordal tumours Notochordal rest

Other mesenchymal tumours of bone Simple bone cyst
Fibrous dysplasia

Haematopoetic neoplasms Eosinophilic granuloma

3.1. Osteoma (Enostosis)

Osteoma, also known as a bone island or ivory osteoma, is one of the commonest
primary benign vertebral tumours, detected in approximately 14% of cadavers according to
one study [2] and present in 1.4% of the population according to another source [3]. While
they can be anywhere in the skeleton, osteomas have a propensity for the axial skeleton.
In the spine, they most frequently occur in the thoracic and lumbar spine and involve the
vertebral body [2]. They are developmental lesions (not present at birth), and histologically
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comprise dense cortical bone within the medullary cavity, usually adjacent to the cortex or
an endplate [2,3]. They are often identified incidentally and are asymptomatic.

These lesions present as densely sclerotic and well-demarcated lesions on imaging,
often 2–10 mm in size. They can have spiculated margins. Occasionally, they can be
larger, measuring 2–3 cm (termed giant bone islands), and some can also grow with
age. Multiple lesions are seen in about a fifth of cases, and while the vast majority are
sporadic, they can also occur in the setting of osteopoikilosis, an inherited sclerosing bone
dysplasia characterised by multiple osteomas; however, in osteopoikilosis, the lesions are
periarticular [5]. On radiographs and CT scans, these lesions appear markedly hyperdense
compared to the adjacent bone [3] (Figure 1). Measurement of the CT Hounsfield units
(HU) of these lesions can be helpful in distinguishing them from osteoblastic metastases
which may have a similar appearance. As a general rule, osteomas are denser, with mean
and maximum CT attenuation values of 1190 ± 239 HU and 1323 ± 234 HU, respectively,
and those of osteoblastic metastases are 654 ± 176 HU and 787 ± 194 HU, respectively [6].
A cut-off of 885 HU for mean attenuation has a 95% sensitivity and 96% specificity for
osteomas, and a cut-off of 1060 HU for maximum CT attenuation has a 95% sensitivity and
96% specificity according to one study, although it is by no means definitive [6].
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Figure 1. Sagittal CT demonstrating an osteoma of T12 vertebra (white arrow). Note the typical
sclerotic, hyperdense appearance with spiculated margins.

On MRI scans, the lesions are devoid of signal on T1 and T2 sequences, appearing
hypointense, lacking any surrounding marrow oedema and not demonstrating increased
diffusion restriction or contrast enhancement (Figure 2a,b).

They do not usually require any intervention or follow-up. While the majority remain
stable in size over time, approximately a third can increase in size.
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Figure 2. Sagittal T1 (a) and T2 (b) images demonstrating the same osteoma as Figure 1 (white
arrows). The low T1 and T2 signal is a typical feature.

3.2. Osteoid Osteoma

Osteoid osteomas (OOs) account for 10–14% of primary vertebral tumours. The
majority are seen the lumbar spine, followed by the cervical spine, thoracic spine and
sacrum. They have a particular predilection for the posterior elements, with 75–90% of
OOs occurring here [3,7]. It commonly affects a younger population, most patients being
under 30 years at presentation [3,7]. The classic presentation is back pain, particularly
nocturnal pain. It can also cause scoliosis, and when it does, the OO is usually located at
the concavity [8]. There may be radicular symptoms due to a local inflammation reaction
from the lesion irritating adjacent nerve roots [3].

Radiographs have a limited role in diagnosis. The presence of a lucent nidus sur-
rounded by sclerotic reactive bone is usually pathognomonic for OOs. A central sclerotic
dot may also be present. The nidus is typically <1.5 to 2 cm in diameter. These features
are best demonstrated via CT (Figure 3a,b). It is worth noting, however, that reactive
bone sclerosis surrounding the nidus is less of a feature in spinal OOs compared to those
occurring in the appendicular skeleton. On rare occasions, multiple niduses can be present.
MRI, while extremely sensitive, may be unable to identify the nidus due to the presence
of surrounding marrow oedema (Figure 4a,b), which can present a pitfall, as using MRI
alone may result in the lesion being misdiagnosed as an aggressive bone lesion or a stress
fracture. As such, a combination of both CT and MRI is useful. The nidus is typically of low
to intermediate T1 signal, variable T2 signal and may contain areas of pseudo-signal void
due to mineralisation. The nidus may also show variable enhancement in post contrast
imaging [3,7].

OOs can spontaneously resolve with medical management. Surgery has been used
for curative management; however, percutaneous radiofrequency ablation has been used
in recent times and has been shown to be an effective and safe alternative, with low
complication and recurrence rates and a reduction in hospitalisation [9,10]. The procedure
is best performed under CT guidance. Injection of air into the epidural space may be
beneficial during the procedure for neuroprotection to prevent damage to thecal sac [10]
(Figure 5).

3.3. Osteoblastoma

Osteoblastoma is a rare osteogenic tumour which is histologically similar to OO, the
main differences being that osteoblastomas are larger, measuring >1.5–2 cm, and unlike
OOs, they do not undergo spontaneous resolution and have the potential to be locally
aggressive and can extend beyond the cortex [3]. The demographics are similar to those
of OOs. They also have an affinity for the posterior elements [11], and commonly involve
the lumbar spine, followed by thoracic and cervical spines, with the sacrum being least
commonly involved [3]. Extension from the posterior elements into the vertebral body can
be seen in about a third of the cases [11]. Pain is the commonest symptom, and painful
scoliosis is a recognized presentation. Neurological symptoms can occur when there is
extraosseous extension impinging on neural structures [11].
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Figure 5. Axial CT image obtained during ablation of the osteoid shown in Figures 3 and 4. Note the
electrode placement (white arrow) with tip within the nidus. Air has been injected into the epidural
space for neuroprotection (black).

Imaging features can be non-specific. The lesions are typically lucent on radiographs
and CT (Figure 6). There can be variable ossification of the matrix, which can manifest
as intralesional calcification. The lesions can be expansile and may have a sclerotic rim.
Cortical destruction and extraosseous extension into the paravertebral region and spinal
canal are seen in more aggressive cases [11,12]. In MRI, osteoblastoma usually has a low to
intermediate T1 signal and an intermediate to high T2 signal (Figure 7a–c), and may show a
variable degree of enhancement with contrast. Due to associated significant inflammatory
response, it is also fairly common to see extensive surrounding soft tissue oedema on
fluid-sensitive sequences. Bone scintigraphy is also very sensitive, as these tumours show
avid uptake of Technetium-99 [11].

The mainstay of management involves surgical resection and curettage, and in the
case of high aggressive lesions, en-bloc resection may be performed, as these tumours have
a high rate of recurrence. In a proportion of selected cases, percutaneous image-guided
radiofrequency or cryoablation may be utilised [13]. As with OO ablation, neuroprotection
through injecting epidural air to prevent damage to the thecal sac can be beneficial [10].

3.4. Fibrous Dysplasia

Fibrous dysplasia (FD) is a fibro-osseous lesion of the bone characterised by meta-
plastic replacement of the medullary component with fibrous tissue and irregular osteoid
formation, and commonly presents in the second to third decades [14]. It can be monostotic
or polyostotic and can be seen in association with several syndromes. FD is extremely rare
in the spine, with only a few cases reported in the literature, and when it does occur, it is
more commonly associated with polyostotic disease with concurrent involvement of the
appendicular skeleton [3,14]. The thoracolumbar spine is most commonly affected [14]. Pre-
sentation ranges from asymptomatic to symptomatic, with symptoms including backpain,
spinal deformity and neurological symptoms.
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FD can have a variable degree of intralesional ossification and cystic degeneration,
which determines the imaging characteristics. The characteristic appearance is the presence
of intralesional ossification with a ‘ground-glass’ matrix, which is best demonstrated in
CT [3,15]. It can also present as a lytic expansile lesion with a preserved thin cortical
shell (Figure 8a,b). MRI characteristics of fibrous dysplasia are variable, typically showing
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signal intensity that is intermediate to low on T1-weighted images and intermediate to
high on T2-weighted images, the degree of T2/fluid signal being contingent on the degree
of ossification and cystic degeneration (Figure 9a,b), with higher fluid signal seen in
the presence of cystic change. Involvement of an adjacent vertebra or rib is also a useful
diagnostic clue. CT-guided biopsy may be required for confirmation in cases where imaging
is equivocal.
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this can appear lytic with thin peripheral cortical shell.

Treatment depends on the presence of symptoms. Surgery may be required to correct
deformities, prevent pathologic fracture, and resect symptomatic lesions. Very rarely,
malignant transformation, usually into osteosarcoma, can occur [14].

3.5. Osteochondroma

Osteochondromas are the commonest benign bone lesion [16], most commonly occur-
ring in the long bones. Multiple osteochondromas are usually associated with Hereditary
Multiple Exostosis (HME). Only 3–4% of osteochondromas occur in the spine, although
this may rise to as high as 9% with HME [17,18]. The majority of spinal osteochondromas,
approximately 50%, occur in the cervical spine [18].

The morphology of osteochondroma can be best visualized using MR. The osseous
component is continuous with the bone marrow and will exhibit the same signal character-
istics as the adjacent bone marrow. The cartilaginous cap usually returns high T2 signal
as it is comprised of hyaline cartilage, although this may be variable if the cap becomes
calcified (Figure 10). Cartilage is frequently lined with a thin low-signal line representing
the intact perichondrium [19]. Osteochondromas may also be identified in CT due to the
characteristic sessile or pedunculated osseous component (Figure 11a,b). The cartilage cap
will only be visible in CT when calcified. Appearance on bone scintigraphy is variable; the
presence of uptake cannot differentiate between endochondral ossification or malignant
transformation [20].
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Figure 9. Sagittal T1 (a) and STIR (b) images showing fibrous dysplasia of thoracic and lumbar
vertebrae (white arrows). The lesions have intermediate to low T1 and intermediate to high T2 signal.

Osteochondromas are usually asymptomatic. Symptoms frequently arise due to mass
effect on adjacent structures. Hence, spinal osteochondromas can be particularly trouble-
some. Numerous case reports have been published due to compression from osteochondro-
mas; complications remain very rare, but multiple case reports of radiculopathy [16], central
cord compression [21], vertebral artery compression/occlusion [22] and dysphagia [23,24]
have been published. In a study by Jackson et al., out of 227 patients with HME, only
8 patients were found to have spinal osteochondromas, only 1 of which was symptomatic.
Notably, pelvic and rib osteochondromas were associated with spinal lesions [25].

The cartilaginous cap can degrade into a secondary chondrosarcoma with reported
frequencies of approximately 1%; in HME, this may rise to as high as 9% due to the higher
number of lesions [20] (Figure 12a–c). Hence, new pain in the context of HME should be
promptly investigated with MR. Multiple cut-offs for cartilage cap thickness have been
proposed, ranging between 1.5 cm and 3 cm. Bernard et al. found that a cut-off of 2 cm
was 100% sensitive and 98% specific for MR in their cohort [26]. Additionally, in MR,
chondrosarcoma exhibits septal enhancement in addition to peripheral enhancement [27]
as well as earlier enhancement [28]. To the best of our knowledge, contrast-enhanced
assessment has not been widely adopted.
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3.6. Chondroblastoma

Vertebral chondroblastomas are exceedingly rare. The largest case series from the
Mayo clinic notes that only 9 out of 856 chondroblastomas at their institution occurred in
the spine [29]. By 2017, only 30 cases have been published in the literature [30].

Chondroblastomas classically affect the epiphysis of an immature skeleton. When
occurring in the vertebra, the lesions often arise later in life—the mean reported age at
diagnosis is 31.9 years [31]. Radiologically, chondroblastomas are inseparable from other
lesions. Chondroblastomas are osteolytic, but otherwise, appearances are highly variable.
Reported cases include aggressively appearing lesions with a soft-tissue mass [31] as well
as non-expansile lytic lesions [32]. The presence of calcification is variable with reported
cases ranging from pronounced to subtle [29], which can appear similar to chondrosarcoma.
Secondary aneurysmal bone cyst formation and adjacent bone marrow oedema may also
be present. Lesions are vascular and enhance after contrast administration [30]. Treatment
is surgical, but recurrence is frequent, with reports ranging from 10% [30] to greater than
40% [29]. Percutaneous radiofrequency ablation can also be performed in some instances.

3.7. Haemangioma

Haemangioma constitutes the most common primary benign tumour of the spine,
identified in 11% of spines post mortem [33]. They commonly involve the vertebral
body, and involvement of the posterior elements is rare [34]. Approximately half of them
involve the thoracic spine, while the latter occur in the cervical and lumbar spine. Sacral
involvement is rare. They are hamartomatous lesions comprising thin-walled vessels
and sinuses lined by endothelium interspersed within the trabecular bone and contain
fat [34]. The lesions are often asymptomatic and identified incidentally. Only a minority
of them, approximately 1%, are symptomatic, with the commonest presentation being
back pain, and sometimes may be attributed to pathological fracture in the case of large
haemangiomas [3,33]. Those that have paraspinal or posterior element involvement, or
a lack a large fatty stroma are most likely to be symptomatic. Rarely, haemangiomas can
be expansile, resulting in enlargement of the affected vertebra and causing compression
of neural structures, an entity known as aggressive haemangioma [3]. These are most
commonly seen in the thoracic spine.

Conventional haemangiomas have a classical appearance on imaging, which enables
confident diagnosis. In CT, they appear as lesions confined to the vertebral body, and
have a vertically oriented thickened trabecualae (termed the ‘corduroy sign’ due to its
resemblance of a corduroy fabric) with a honeycomb appearance, best appreciated on
sagittal imaging, and cause rare fraction of the bone (Figure 13b). In axial CT, this appears
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as foci of trabecular bone interwoven between the fatty marrow and vascular lacunae,
giving rise to a ‘polka dot’ pattern [3] (Figure 13a).
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Figure 13. Axial (a) and sagittal (b) CT images demonstrating a lumbar vertebral haemangioma
(white arrows). Note typical ‘polka dot’ appearance on axial image, and the ‘corduroy’ pattern on
sagittal image.

Typically, haemangiomas are hyperintense on both T1 and T2/fluid-sensitive se-
quences in relation to the vertebral marrow, owing to their high fat content and slow
vascular flow (Figure 14a,b). The areas of trabecular thickening appear as multiple lines
and dots of signal voids on sagittal and axial imaging, respectively. Contrast is often not
required for diagnosis, but if given, the lesions show enhancement [3]. Atypical haeman-
giomas, which can be highly vascular and contain little fat, may demonstrate some unusual
signal patterns, with low to intermediate T1 signal. Chemical shift imaging with in-phase
and opposed-phase sequences is also a useful adjunct in diagnosis and distinguishing
from malignant lesions. While not a definitive feature, a signal intensity drop of >20% on
the opposed phase imaging, suggesting presence of significant intralesional fat, favours a
haemangioma (Figure 15a–c) [35].

On the contrary, aggressive haemangiomas may lack the typical fatty signal changes
seen in conventional haemangiomas, and appear hypointense on T1 sequences, and may
have an extraosseous soft tissue component (Figures 16 and 17a–c). Enhancement may
be seen. These may present a diagnostic challenge, as the lesions can be mistaken for
a malignant entity. In very rare circumstances, secondary lesions can occur within a
typical haemangioma, such as the presence of an atypical (low-fat) haemangioma within
a typical haemangioma, or a metastatic deposit within a haemangioma, which can give
rise to unusual signal patterns (Figure 18a–d). These are termed collision lesions and can
present a diagnostic challenge. In these instances, biopsy may be required for definitive
confirmation [36]. Vertebroplasty can be performed for painful haemangiomas.

While conventional haemangiomas usually do not require any management or follow-
up, aggressive haemangiomas may require active management due to them being symp-
tomatic and local mass effects. Management options include surgical resection, radiother-
apy, embolization and percutaneous ablation [37].
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Figure 15. Sagittal out-of-phase (a), in-phase (b) and STIR (c) images of a sacral lesion. Regions of
interest have been marked on the lesion. On the in-phase image the mean signal is 184 U, on the
out-of-phase image the signal is 55 U. This shows that there is significant dropout (>20%) indicating a
large amount of fat in the lesion and is therefore likely to be benign. The lesion turned out to be a
sacral haemangioma.
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Figure 17. Sagittal T2 (a), STIR (b) and axial T2 (c) images showing an aggressive haemangioma of a
thoracic vertebra (white arrows). The osseous destruction and extra osseous soft tissue component is
well demonstrated on MRI.

3.8. Simple Bone Cyst

Simple bone cysts (SBC) are extremely rare in the spine, with only very few reported
cases [38]. The commonly occur in the first and second decades of life [39]. The cervical and
lumbar spine are most commonly affected, and they mainly involve the vertebral body or
spinous process. Although the lesions themselves are asymptomatic, they can predispose
to vertebral fracture and collapse, which can give rise to symptoms.

In CT and MRI, they appear as well-defined cystic lesions within the vertebra. In
MRI, the lesion follows normal fluid signal, hypointense on T1 and hyperintense on fluid-
sensitive sequences [3] (Figure 19a–c).
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Due to their rarity, a definitive consensus does not exist with regard to management
approach. While the cysts themselves are indolent and can be conservatively managed,
surgical curettage and bone grafting may be considered due to risk of fracture and to
preserve spinal stability [38].
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3.9. Aneurysmal Bone Cyst

Aneurysmal bone cysts (ABCs) are the third commonest benign bone tumour and
frequently (up to 30%) occur in the vertebral column. There is a particular predilection for
lumbar vertebrae and posterior elements [40]. The majority of primary ABCs occur in the
first two decades; a secondary ABC should be considered in older patients [40]. Most ABCs
have been shown to contain cytogenetic abnormalities in keeping with true neoplasms,
and while rare cases of malignant transformation have been reported, these are rare and
perhaps controversial [41].

ABCs are expansile and thin the adjacent bone cortex, while also expanding it, often
giving a “balloon”-like lucent appearance. ABCs can be locally aggressive. Focal cortical
destruction with extension beyond the cortex is frequent [42]. In CT, ABCs demonstrate
a narrow zone of transition (Figure 20c). The capsule and septa demonstrate contrast
enhancement. Thin, bony septations may be present, but any osteoid formation must be
assumed to be secondary due to telangiectatic osteosarcoma until proven otherwise [43].
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Figure 20. Sagittal T2 (a), coronal STIR (b) and axial CT (c) images of a cervical vertebral aneurysmal
bone cyst (white arrows). The expansile lytic appearance on CT and multicystic appearance with
fluid levels on MRI are typical features.

ABCs are often identified on plain film, appearing as an expansile lucent lesion. The
“absent pedicle” sign is a non-specific sign of a posterior element lesion, which can be
present in posterior element ABCs. There can be a risk of pathological fracture.

MR appearances are defined by the classical fluid–fluid level appearances secondary
to blood products in cysts of varying size (Figure 20a,b). The ABC should be surrounded
by low signal in keeping with adjacent capsules. Peritumoral oedema may be present.
Portions of the tumour may appear solid; the solid portions and septations enhance. Rarely,
the ABC may appear entirely solid; solid ABCs are of intermediate T1 and T2 signal with
a narrow zone of transition and no identifiable fluid–fluid levels nor septations. Of note,
only 12 cases of solid spinal ABCs have been reported in the literature [44].

Similar to other benign vertebral lesions, symptoms are usually secondary to pressure
on adjacent structures, including the spinal cord and vertebral arteries [45]. The usual
treatment is surgical with excision or curettage [46]. Selective embolization has also shown
to be effective in cases with a definite diagnosis and no pre-existing complications [47,48].
CT-guided sclerotherapy is also an effective and minimally invasive alternative to surgical
treatment [49].

3.10. Notochordal Tumours

Benign notochordal tumours of the spine, also known as notochordal rests, repre-
sent residual foci of embryonic notochordal tissue. In the majority of cases, the rests are
microscopic and thus occult on imaging. A small minority can be identified on imaging.
The majority of these lesions are asymptomatic and incidentally identified [50]. A small
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proportion of patients may present with back pain and/or coccydynia. While the lesions
arise from the same entity that gives rise to chordoma, these lesions are histologically
distinct from each other. The lesions are fairly common and identified in up to 20% of
autopsies according to one study [51]. Due to their embryonic origin, they usually occur
in the vertebral bodies in the midline, usually adjacent to the endplate. Diffuse vertebral
involvement may be present. The distribution is similar to that of chordomas, and hence is
most likely seen in the sacrum.

In CT, mild vertebral sclerosis or trabecular thickening can be seen, but occasionally
can be lytic (Figure 21a,b). In MRI, they have low T1 and high T2 signal (Figure 22a–c). The
lesions do not enhance with gadolinium contrast. Importantly, the bone configuration is
usually maintained without expansion or destruction; however, some lesions may appear
lytic with a narrow zone of transition. Unlike with chordoma, no soft tissue component is
present. Biopsy may be required for definitive confirmation [51,52].
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They do not usually warrant any intervention unless they cause significant pain, in
which case surgical resection may be considered. Some authors have suggested periodic
imaging follow-up in conservatively managed cases, due to a potential yet debatable risk
of malignant transformation into chordoma [52].



Diagnostics 2023, 13, 2006 18 of 23

3.11. Giant Cell Tumour (Benign Variant)

Giant cell tumours (GCTs) involve the spine in 7% of cases, and the vast majority (90%)
involve the sacrum. They account for 9–15% of all primary spinal tumours. Peak incidence
is during the third and fourth decades of life [3]. It is the most aggressive primary benign
tumour of the spine, with a high recurrence rate. Their locally aggressive nature means
patients commonly experience pain and neurological symptoms due to spinal cord and
neural compression. A small subset of GCTs can be malignant; however, the benign forms
which comprise the majority will be the focus of this discussion. Imaging features, however,
can be very similar among the two types.

On imaging, they present as mixed cystic and solid expansile lesions, and usually
involve the vertebral body. In CT, they appear lucent with thin peripheral shell of bone
(Figure 23a,b); the cystic components tend to be multiloculated and this gives rise to a
characteristic ‘soap bubble’-like appearance. In MRI, the tumour itself shows intermediate
to low signal intensity on both T1 and T2 (Figure 24a–d), the latter usually being due to the
presence of fibrosis and haemosiderin from repeated haemorrhage. Secondary aneurysmal
bone cyst change is a common finding, and fluid–fluid levels can be appreciated via MRI.
The soft tissue components are best appreciated in MRI and demonstrate enhancement.
Surrounding marrow oedema is often seen on STIR. Vertebral collapse and extraosseous
soft tissue extension are also common features [3,53].
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lesions typically appear lytic with thin peripheral shell of bone.

Due to their high rate of recurrence, management can be challenging. A range of man-
agement options are currently employed, including curettage; surgical resection, including
en-bloc resection; cryoablation and also medical treatment with Denosumab. Despite their
benign nature, GCT can metastasise to lungs in 3–7% of cases, and screening with CT chest
is prudent [54].

3.12. Eosinophilic Granuloma

Eosinophilic granuloma (EG) is a localised form of Langerhan’s cell histiocytosis (LCH)
and typically affects children under the age of 10 years but is occasionally seen in young
adults. About 15% of solitary EGs involve the spine. Patients typically present with pain,
which may be exacerbated by pathological fracture [3].
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EGs usually involve the vertebral body with preservation of the posterior elements.
Thoracic spine is the commonest site of involvement, followed by the lumbar and cervical
spine. In half the cases, only a single vertebra is affected. Pathological collapse is common.
Vertebra plana is a characteristic feature, although this is only seen in about 40% of cases.
Radiographs and CT demonstrate a lucent lytic lesion with bone destruction. An extra-
osseous soft tissue component may be seen. MRI signal characteristics are non-specific,
with lesions typically being hypo- to isointense on T1 and hyperintense on T2 and STIR
sequences (Figure 25a,b). There is often diffuse enhancement in post contrast imaging [3,55].

EGs have an excellent prognosis, particularly when solitary. The majority of lesions
resolve via fibrosis in 1–2 years. However, surgical excision may be necessary when there
are local compressive effects or when symptoms persist. Radiotherapy, chemotherapy and
percutaneous ablation are also used [56].
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4. Conclusions

Imaging plays a critical role in the detection and characterization of primary benign
neoplasm of the spine. CT and MRI are the main modalities used, and understanding the
characteristic imaging features of these lesions is important in the interpretation of these
images (Table 2).

Table 2. A summary of the pertinent and typical CT and MRI features of the aforementioned primary
benign vertebral tumours.

Type of Tumour CT Features MRI Features

Osteoma
Dense sclerotic lesion.

Hounsfield density >885 a helpful
indicator but not definitive.

T1 and T2, STIR hypointense due
to sclerosis.

Osteoid osteoma
Lucent nidus, usually 2–10 mm.
May be surrounded by sclerotic

rim.

Surrounding marrow oedema on
fluid sensitive sequences (best
seen on STIR). Nidus can be

occult on MRI.

Osteoblastoma

Expansile lucent lesion.
Sclerotic rim.

Bone destruction.
Variable intralesional ossification.

Low to intermediate T1 signal and
intermediate to high T2 signal.

Surrounding soft tissue oedema,
extra osseous soft tissue

component.

Fibrous dysplasia Ground glass matrix.
Cystic areas can appear lytic.

Low on T1 and intermediate to
high on T2.

Cystic areas are hyperintense on
T2 and STIR.

Osteochondroma Lesion continuity with cortex and
medulla. Cartilage cap

Chondroblastoma
Osteolytic lesion.

Variable intralesional calcification
(chondroid matrix)

Extraosseous soft tissue
component
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Table 2. Cont.

Type of Tumour CT Features MRI Features

Haemangioma Honey comb appearance.
‘Corduroy’ and ‘polka dot’ signs.

Usually T1 and T2 hyperintense
due to fat content.

Signal drop out >20% on out of
phase chemical shift imaging.

Simple bone cyst Well defined lucent rim with
narrow zone of transition.

Fluid signal lesion. May have
some internal haemorrhage (high

T1 signal).

Aneurysmal bone cyst Expansile lytic lesion with
internal bone septations.

Fluid—fluid levels within the
cysts, high T1 signal within

layering fluid content due to
haemorrhage.

Benign notochordal
tumour

Midline lesion in the body.
Sclerosis or trabecular thickening
typically, but lysis can be present.

Low T1 and high T2 signal. No
enhancement.

Giant cell tumour

Mixed cystic and solid expansile
lesions, with thin peripheral bony

shell.
‘Soap bubble’ appearance.

Secondary ABC change is
common, with fluid—fluid levels.

Intermediate to low signal
intensity on both T1 and T2.

Enhancing soft tissue component.

Eosinophilic
granuloma

Lucent lytic lesion, with bone
destruction.

Vertebra plana.

Non-specific appearance, with
low T1 and high T2 signal.

Diffuse enhancement.
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