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Abstract: Transcranial doppler (TCD) ultrasound is a non-invasive imaging technique that can be
used for continuous monitoring of blood flow in the brain through the major cerebral arteries by calcu-
lating the cerebral blood flow velocity (CBFV). Since the brain requires a consistent supply of blood to
function properly and meet its metabolic demand, a change in CBVF can be an indication of neurologi-
cal diseases. Depending on the severity of the disease, the symptoms may appear immediately or may
appear weeks later. For the early detection of neurological diseases, a classification model is proposed
in this study, with the ability to distinguish healthy subjects from critically ill subjects. The TCD
ultrasound database used in this study contains signals from the middle cerebral artery (MCA) of 6
healthy subjects and 12 subjects with known neurocritical diseases. The classification model works
based on the maximal blood flow velocity waveforms extracted from the TCD ultrasound. Since the
signal quality of the recorded TCD ultrasound is highly dependent on the operator’s skillset, a noisy
and corrupted signal can exist and can add biases to the classifier. Therefore, a deep learning classifier,
trained on a curated and clean biomedical signal can reliably detect neurological diseases. For signal
classification, this study proposes a Self-organized Operational Neural Network (Self-ONN)-based
deep learning model Self-ResAttentioNet18, which achieves classification accuracy of 96.05% with
precision, recall, f1 score, and specificity of 96.06%, 96.05%, 96.06%, and 96.09%, respectively. With
an area under the ROC curve of 0.99, the model proves its feasibility to confidently classify middle
cerebral artery (MCA) waveforms in near real-time.

Keywords: transcranial doppler ultrasound; middle cerebral artery; Self-ONN; signal classification

1. Introduction

Non-invasive disease detection techniques are considered to be more convenient
compared to invasive diagnostic procedures. Ultrasound is one of the most common
non-invasive imaging techniques, and owing to its efficacy, low cost, and zero radiation
hazard, it is considered the safest imaging modality [1]. The most common uses of diag-
nostic ultrasound involve fetal heart monitoring in pregnant women and observation of
abdominal organs and heart valves. Pulsed doppler ultrasound is an imaging technique
where short bursts of ultrasonic waves are applied to the insonation area for imaging the
movements of the respective organs, especially for the measurement of blood flow through
the blood vessels [2]. Owing to the brain’s inability to store energy, consistent blood flow is
essential for keeping up with the metabolic demands of the brain and supporting cerebral
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function [3,4]. This implies that an alteration in cerebral blood flow velocity can be an
indication of a disruption in the systemic flow caused by any neurological disorder [5].

Doppler ultrasound is a low-cost, non-invasive diagnostic tool commonly used to
diagnose a wide spectrum of neurocritical disorders [6,7]. Primarily, the diagnosis is
made by measuring the change in blood flow velocity [7-9]. Transcranial doppler (TCD)
ultrasonography, which operates on the same concept as doppler ultrasound, can be a
useful indication for diagnosing neurological diseases such as artery stenosis and occlusion
in patients by observing a change in the blood flow velocity profile in the relevant arteries.
For TCD scans, the basal arteries are used to quantify blood flow [10].

1.1. Related Work

Transcranial doppler ultrasound (TCD) is a non-invasive tool widely used for the
detection of neurological diseases [7,10]. Using a high-frequency ultrasound signal, blood
flow velocities in the major basal arteries, including the middle cerebral artery (MCA) and
internal carotid artery (ICA), are measured. In recent years, the potentials of deep learning
and neural networks are being explored for the efficient detection of arterial diseases from
doppler spectrograms. Ubeyli and Giiler developed a technique for detecting abnormalities
in the ophthalmic artery (OA) and the internal carotid artery (ICA) by decomposing the
signals using wavelet transform to express them in time—frequency format [11]. Using the
Levenberg-Marquardt (LM) optimization technique on a Multilayer Perceptron (MLP) net-
work, they achieved classification accuracies of 95.52% and 97% for OA and ICA disorder,
respectively [11]. Seddik and Shawky [12] described a cost-effective screening approach for
carotid artery disorders. They extracted different signal features from the frequency spec-
trogram after pre-processing for noise elimination. The classification accuracies achieved
for normal and occlusion patterns were 91.67% and 95.85%, respectively, using the MLP
classifier [12]. Wavelet transform-based spectral analysis of the doppler signal from ICA
was conducted in [13] using a technique similar to [11]. An MLP was trained with LM
optimization for stenosis and occlusion detection. The model achieved accuracies of 96%,
96.15%, and 96.30% for healthy subjects, subjects with arterial stenosis, and subjects with
blood vessel occlusion, respectively [13]. An intima—media thickness-based plaque identifi-
cation technique for early detection of stroke was reported by [14]. They trained an MLBPN
with LM optimization to classify ultrasound images of the carotid artery and achieved an
accuracy of 89.43%. Uguz proposed a classification algorithm based on the Learning Vector
Quantization Neural Network (LVQ NN) for classifying ICA doppler data [15]. The Burg
autoregressive spectrum was utilized to derive power spectral density (PSD) characteristics.
LVQ NN achieved a classification accuracy of 97.91% using the five-fold cross-validation
method.

One of the issues with the existing literature on the topic is that the majority of the
literature focuses on doppler ultrasound taken from the carotid artery. Since cerebral
arteries transport blood to deeper parts of the brain, ultrasound pictures of the middle
cerebral artery have significant clinical significance [4]. Mei et al. [16] provide a similar
study in which they evaluated TCD images captured from the middle cerebral artery. The
CNN VGG16 model was utilized to classify the images into the stenosis and non-stenosis
groups. They reported a classification accuracy of 80%, with a sensitivity of 84% and a
specificity of 86%. Individual and Recurrent Neural Networks (RNNs) were utilized to
classify the MCA doppler signal and data from other basal arteries in [17]. However, the
model achieved accuracy ranging between only 71.1% and 75.89% for MCA ultrasound
signals. Li et al. created a neural network-based system for detecting arterial stenosis [18].
They have utilized a synthetic peripheral pulse wave-based dataset that represents varying
degrees of vascular stenosis. The disadvantage of their model, however, was that it was
greatly dependent on stenosis severity. For less severe stenosis, the model’s accuracy is
weak, rendering it unreliable for early diagnosis of stenosis.
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1.2. Motivation

TCD signals are typically corrupted with speckle noise and motion artefacts since the
quality of the signal depends heavily on the skill set of the operator [8,19]. Therefore, signal
reconstruction techniques [20] or other noise reduction methods [21,22] can be employed
to enhance the signal quality. For this reason, the successful classification of a variation
in blood flow velocity requires the utilization of a signal-processing method that is both
efficient and reliable. Owing to the efficiency and reliability of computer-aided detection
and classification techniques, these are preferred over other detection techniques [23].

The unique morphologies of TCD waveform acquired from different subjects can be a
significant indication of the presence of any neurological conditions [8]. This justifies our
approach of categorizing TCD waveform being a classification problem. Biomedical signal
classification using a decision-based algorithm [24,25] and deep learning [26-28] approach
is gaining the attention of researchers for various tasks. Recent studies have proposed sev-
eral approaches to address the TCD waveform classification problem [23,29-31]. However,
the problem domain is still a work in progress due to the lack of comprehensiveness of the
results. The use of neural networks is a significant method for signal processing, especially
when it comes to the classification of TCD ultrasound waveforms [11,31-33].

By employing a deep learning model, signal classification can be made easy and
reliable and be used in a clinical setting. With this in mind, we have designed a study that
will contribute to the medical field as follows:

e Anovel TCD ultrasound waveform classification system that incorporates cerebral
blood flow velocity (CBFV) waveform estimation, data cleaning and segmentation, and
classification for classifying data from doppler ultrasounds in both healthy subjects
and intensive care unit subjects.

e  Two novel SelfONN architectures, (a) a 1D version of ResNet18 and (b) a 1D version
of ResNet architecture with a multiheaded attention layer, have been proposed for 1D
binary classification, where TCD ultrasound can be used to identify ICU (in this study,
“ICU” is an umbrella term used for representing MCA waveforms from hydrocephalus,
traumatic brain injury, and intraparenchymal or subarachnoid hemorrhage patients)
patients from healthy subjects by analyzing the maximal cerebral blood flow velocity
(CBFV) waveforms.

This paper is organized into five sections and the rest of the paper is organized as
follows. Section 2 elaborates on the methods and materials used along with the experimen-
tal setup. The experimental results and discussion are presented in Section 3. Section 4
presents the concluding remarks and finally, Section 5 discusses the limitations and future
scopes of this study.

2. Materials and Methods

This study uses a range of different techniques for data pre-processing and classifica-
tion of healthy subject and ICU patient data. This section presents a detailed discussion of
the step-by-step procedure followed during the study. The overall procedure is summa-
rized in Figure 1. The data-acquisition process is completed in the literature [9] and the
other processes are investigated in this study.
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Figure 1. A graphical representation of a novel TCD ultrasound waveform classification system.

2.1. Overview of the Dataset

This study uses a transcranial doppler (TCD) ultrasound dataset collected from
IEEE Dataport (https:/ /ieee-dataport.org/open-access/transcranial-doppler-ultrasound-
database-philips-cx50-ultrasound-system, accessed on 3 April 2023), which was provided
by Wadehn et al. [9]. The dataset comprises healthy subject data as well as data from
patients with known neurocritical disorders. Table 1 contains the overview of the dataset,
and the detailed protocols for clinical data collection can be found in [9,34].

Table 1. Overview of the dataset used in this study.

Healthy ICU
Number of subjects 6 12
Intraparenchymal
remoriage by deephals
(TBI)
Age group 25-45 years 23-74 years
Number of recordings 16 30
;felle(:) ;rg:ilg juration of all 2h 2 h 40 min
Targeted arteries MCA MCA, ICA
gleilzasi)i Ct{;l]rgeted artery used in MCA MCA
Ultrasound system Philips CX-50 with a 1.75 MHz transducer (55-1)
Field of view 90°
US probe placement Temporal region and the M1 segment of the MCA
Blow flow direction for MCA Towards the probe
Blood flow velocity for MCA Positive

2.2. Signal Extraction

To acquire the transcranial doppler (TCD) ultrasound signals, the segments of the
MCA were insonated with short pulses of ultrasound waves with a carrier frequency of
1.75 MHz. The ultrasound pulses were reflected from the moving red blood cells and
captured by the transducer as TCD echo signals. Wadehn et al. proposed a flow velocity
estimation algorithm that takes the TCD ultrasound signals and returns a 1D maximal flow
velocity waveform [9]. Using STFT (short-time Fourier transform), envelope tracking, and
some post-processing, the TCD spectrogram was transformed into a 2D spectrogram. A
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black-and-white image of the spectrogram was created using an envelope tracing algorithm
also developed by the same author. When the spectrogram was binarized, the speckle
noise was eliminated using a 2D median filter with a kernel size of 0.03 s (horizontally) and
5cm s~ ! (vertically). The maximal flow velocity envelope was detected via an adaptive
threshold method due to the overlap between the signal-carrying portion and the noise of
the black-and-white spectrogram [35]. The maximal flow velocity envelope is traced on
a time sample basis employing two physiological sanity checks, which were determined
from the signal quality index. Different stages of signal extraction are shown in Figure 2.
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Figure 2. The outputs of the signal extraction process in the top-down view: (a) grayscale TCD
spectrogram, (b) black-and-white spectrogram, and (c) envelope signal.

2.3. Manual Data Annotation

In this investigation, we used the technique provided in [9] to extract MCA doppler
ultrasound signals from TCD ultrasound images. Several artefacts and signal cuts of
varying lengths were found in the retrieved data. After removing the signal segments
containing signal cuts, the remaining signals were segmented in 1024 segment lengths at a
sampling frequency of 217 Hz.

Afterwards, these segments were manually annotated by human supervision. The
segments were annotated into two categories, clear segments and noisy segments, and
Figure 3 represents four samples from the Healthy and ICU classes. The signal portions
that have no visible artefacts or distortions were categorized as Clear Signals. Some cor-
rupted segments with NaN values, plane lines, or no sign of physiological information
were eliminated from the dataset during manual annotation. From the remaining signal
portions, the cleanest or negligible distortions were labelled as Corrupted Signals. A total of
5468 segments were created from the Healthy and ICU classes during the segmentation pro-
cess with 1024 segment lengths. For the Healthy class, the numbers of clear and corrupted
segments were 1501 and 152, respectively, whereas they were 1742 and 2090 for the ICU
class, respectively. Details of dataset segmentation and labelling can be seen in Figure 4.
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Figure 3. Representative segments of clear and corrupted signals across the Healthy and ICU classes.
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Figure 4. Details of data segmentation before and after data cleaning. From left to right, (a) a graphical
representation of the number of segments across binary classes before data cleaning, (b) the graphical
representation of clear and corrupted data numbers across the classes, and (c) a chart view of the
number of the segments in Healthy and ICU classes used in this study.

2.4. Model Architecture

For the classification of signals into the two categories, “Healthy” and “ICU patients”,
two Self-Organizing Operational Neural Network (Self-ONN)-based novel 1D classifica-
tion models were proposed. The details about Self-ONN and the architecture of the 1D
classification models are described in the following subsections.

2.4.1. Self-ONN

To surpass the drawbacks of Convolutional Neural Networks (CNNs), Operational
Neural Networks (ONNs) were proposed in [36]. Conventional CNNs function through
linear convolutional operators in their neurons and layers for feature learning. According
to Equation (1) [36], the output of the k" neuron in the I layer of an one-dimensional

CNN can be expressed as:
Ni1

X =D+ ) X (1)
i=0

where, bfc is the bias associated with the neuron and x%k is the I'" layer’s k" neuron output,
which can be further expressed as Equation (2):

k—1
xfk(m) = ConvlD (w,-k,yifl) = Z wgk(r)ygfl(m +7) ()
r=0
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where, wgk represents the weight of the kernel connecting the i neuron of the (I — 1)th

layer to the k™ neuron of the I layer, yﬁ_l represents the (I — 1)th layer’s i neuron output,

and ‘m’ and ‘r’ are convolutional operators. ONNs can address the homogeneity issues of
CNNs by employing heterogeneous neurons through non-linear convolutional operators
which can learn complex model functions with minimal network complexity [37]. As
reflected in Equation (3), every single neuron in the ONNs can be assigned unique nodal
(1) and pool (P) operators.

— k-1

xh (m) = Py (lljlé (wfk(r)/yﬁil(m +7)))r:0 ®)

Regardless of having non-linear operators, early ONNs were rigid due to dependence

on a bunch of pre-set operators by the user. To solve this challenge, Kiranyaz et al. [38]

proposed Self-Organizing ONNs or Self-ONNs in short, which can automatically determine

the best set of problem-specific non-linear operators during training. Self-ONN uses Taylor

series approximation for the non-linear transformation of each generative neuron to reach

an even higher level of diversity and flexibility. Based on [38—40], the contribution of the

i'" neuron in generating the feature map xfk from the (I — 1)th layer to the I'" layer of a
Self-ONN model can be expressed by Equation (4) as follows:

~ K-1 Q ~
tlm) = & % g (@i ),y on40)
=0 g=
SR @ -1 7_ & Q) (-1
= EO qglwik (r,q)(yi (m+r)) :q§1C0n01D<wik ,(yi ) )

)

where, wing) is the K x Q dimensional kernel matrix between the i neuron from the

(1 —1)" layer and the k™ neuron at the I layer. Here, the hyperparameter Q can be

tweaked to control the degree of Taylor series approximation while wﬁ,EQ) is the learnable

kernel, unlike CNNs and ONN . Finally, the output of a single neuron can be formulated
as in Equation (5):

I =
xk = bk + Z xik (5)
i=0

Mentionable that, with the Q =1 setting, a Self-ONN acts like a CNN as there is no
non-linearity in the first term of the Taylor series approximation. SelfMLP, which is a
variant of MLP, can also be designed from the SelfONN layer.

2.4.2. Self-ResNet18

The Self-ResNet18 model proposed in this study adopts the widely used CNN-based
most lightweight version of the ResNet models proposed by He et al. [41] in 2015. Being
one of the oldest deep learning architectures, ResNet models have been used in many
studies to solve various types of problems. In this study, we replace the CNN layers of the
ResNet18 model with the Self-ONN layers to construct the architecture of the proposed
Self-ResNet18. The architecture of Self-ResNet18 has been drawn in Figure 5.

Our proposed Self-ResNet18 model developed in PyTorch contains 18 Self-ONN layers
with Q = 3, as depicted in Figure 5. We started with 8 kernels or filters in the initial layer,
which was doubled up after each Self-ONN layer with a stride of two. Based on the
original implementation strategies [38], each Self-ONN block was followed by a “batch
normalization” layer and a “tanh” activation function. The batch normalization layer
was avoided during the down-sampling process. After the last residual block, which
contained 64 filters, we implemented an average-pooling layer followed by a flattening
layer to flatten the features into a single array. Then we passed the feature vectors through
a fully connected (FC) dense layer that performed a linear transformation of the incoming
features using a linear activation function [42]. This multi-layered perceptron (MLP)-
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Input

Input

based dense layer contained filters equal to the number of output classes (which is two
in this case, “Healthy” and “ICU patients”, making it a binary classification problem) to
aid the classification process based on refined features from previous layers. Finally, we
implemented a “Log-Softmax” layer [43] as the final activation function to help in the
classification process.
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Figure 5. The architecture of the proposed Self-ResNet18 model. The different colors of the boxes
represent different layers and residual blocks in the proposed Self-ResNet18 model.

2.4.3. Self-ResAttentioNet18

This study proposes an attention-based version of the Self-ResNet18 model, which
is called the Self-ResAttentioNet18. It is used to classify MCA signals acquired from
subjects into “Healthy” and “ICU” categories. Figure 6 represents the illustration of Self-
ResAttentioNet18, where every two SelfONN layers after the first one is a Residual Block.
In this architecture, a multi-head attention layer of several heads of 2 was added to each
alternative Self-Residual block. The attention layer requires query, key, and value. Every
input feature of the residual block or the identity features was used as a query and value,
while the output of the residual block was used as a key. The jointly attended feature
was further added to the residual block output and propagated to the next block. The
Self-ResAttentioNet18 is identical to the Self-ResNet18 architecture illustrated in Figure 5,
with only four multi-head attention layers added to it to jointly attend to information from
the identity feature and the output feature.

Self-ONN(Ft:64, k:3, pi1, s:1)
Self-ONN(Ft:64, k:3, p:1,s:1)
Self-ONN(Ft:64, k:3, p:1,5:1)
FC (Ft: output class)
Log-Softmax
Output

)
3
=]
a
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&
<
O
13
Z
Z
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»
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Self-ONN(Ft:32, k:3, p:1,s:1)

Self-ONN(Ft:32, ki3, pi1, s:1)
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—» Average Pooling MultiHead Attention k =Kernel Size

Figure 6. Model architecture of Self-ResAttentioNet18. The different colors of the boxes represent
different layers and residual blocks in the proposed Self-ResAttentioNet18 model.

2.5. Experimental Setup

The deep learning models discussed above were investigated on the dataset provided
by [9] after preprocessing. For the classification purpose, the healthy subjects were la-
belled as ‘Healthy’, while the subjects with hydrocephalus, traumatic brain injury, and
intraparenchymal or subarachnoid hemorrhage were labelled as ‘ICU Patients’. Thus, the
problem was considered a binary classification problem. Each study was conducted twice
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during training, validation, and testing, once with the standard SelfRes-Net18 model and
once with an enhanced Self-ResAttentioNet18 model that included multiheaded-attention
layers. Both models’ efficacies were evaluated by using g-values in the range [1,3,5].

To minimize bias and data scarcity, 5-fold cross-validation was employed with 80%
signal overlapping. The splitting and fold creation was performed based on session IDs
as shown in Table 2. A percentage of 10% of the overall training sample was moved to
the validation set to validate the model learning process during training. The objective of
session-wise splitting was to minimize data bias during training and validation and testing,
meaning the data used for training will not be present in the test data. This method of the
5-fold training, validation, and test data splitting ensures data stratification [44].

Table 2. Fold creation and stratification criteria.

Session ID
Fold Num

Train (Healthy) Test (Healthy) Train (ICU) Test (ICU)
1 Rest “14-16" Rest “1,2,5”
2 Rest “10-12" Rest “24-26"
3 Rest “7-10" Rest “21-23"
4 Rest “4-6" Rest “4,5,20”
5 Rest “1-3” Rest “27-29"

The models used in this study use a Python 3.7 environment and several PyTorch
libraries. For training and testing, Google-Colab was used along with its high-performing
resources. A 16 GB Tesla T4 GPU was used for this study. For the classification of tran-
scranial doppler (TCD) ultrasound signals, the following hyperparameters in Table 3 were
used during the model training and test phases.

Table 3. Training parameters used for binary classification.

Training Parameters Value
Number of folds 5

Batch size 4

Number of epochs 100
Learning rate 0.0001
Epoch patience 7

Learning factor 0.2

Loss type SoftM_MSE
Optimization function Adam

2.6. Performance Metrics

For the quantitative analysis of the classification model, several parameters were calcu-
lated. In this work, signal classification was mainly done from the waveform morphologies
of Heathy and ICU subjects” TCD scans. The performance of the proposed model was
evaluated using measures such as precision, overall accuracy, recall, specificity, and f1 score,
with a 90% confidence interval (CI) in addition to receiver operating characteristic (ROC)
curves. Due to the difference in sample sizes between Healthy and ICU subjects, weighted
recall, precision, f1 score, and specificity measures were determined. Equations (6)—(10)
describe weighted precision, sensitivity or recall, specificity, F1 score, and overall accuracy

quantitatively.
TP

Precision = m

(6)
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TP
Recall = TPLEN 7)
e TN
Specificity = TPLTN 8)

2 x Precision x Recall
F1 =
score Precision + Recall ©)

TP
TP+FP+TN+FN

Here, TP = true positive, FP = false positive, TN = true negative, and FN = false
negative.

A receiver operating characteristic (ROC) curve is a graph representing how well a
binary classifier system works as the threshold for discrimination is varied. This graph
shows the true positive rate (sensitivity) against the false positive rate (1-specificity) for
different threshold settings.

Overall Accuracy = (10)

FN

Fasle Positive Rate = TP+ EN

(11)

The ROC curve is a useful tool for figuring out how well a binary classifier works
because it shows how the true positive rate and the false positive rate work together. The
AUC of a perfect classifier is 1, while the AUC of a classifier that guesses at random is
0.5. The ROC curve can be used to evaluate the performance of a classifier for imbalanced
classes. The curve can also be used to find the optimum threshold for a classifier. The point
on the ROC curve that is closest to the top left corner indicates the best balance between
true positives and false positives.

3. Results and Discussion

The goal of the study is to identify the optimum model configuration for efficient
classification. For evaluating the performance of the proposed models (Self-ResNet18 and
Self-ResAttentioNet18), different performance metrics were calculated. The performance
metrics achieved from different models are discussed in the following subsections.

3.1. Accuracy-Based Comparison

The five-fold cross-validation produces classification accuracy across the five folds.
For similar experimental setups, different models produce different performance metrics.
The accuracy-based comparison of the proposed Self-ResNet18 model without the attention
layer and Self-ResAttentioNet18 with the attention layer is given in Figure 7. The best
accuracy achieved was 96.05% which was from the Self-ResAttentioNet18_Q1 model.
Additionally, the five-fold accuracy variance is also the minimum among the other models.
The five-fold lowest accuracy 92.97% is achieved by Self-ResAttentioNet18_Q5. From
Figure 7, it is evident that Self-ResAttentioNet18_Q1 achieved nearly the same accuracy
across the five folds.

The other performance metrics used in this study are overall accuracy, weighted preci-
sion, weighted recall, weighted f1 score, and weighted specificity. The performance metrics
are recorded in Table 4 for the six different configurations of the two model architectures.
The efficiency in classifying the healthy subjects’ signals and ICU patients’ signals was eval-
uated for g-values of 1, 3, and 5. For the base Self-ResNet18 models, the Self-ResNet18_Q3
model shows superior performance among the three variations. This model achieved an
accuracy of 94.91%, 94.92% precision, 94.91% f1 score, and 94.88% specificity. The experi-
ments also were carried out by adding attention layers in the Self-ResNet18 model with the
expectation that the overall accuracy would increase significantly. However, the accuracy
achieved for the Self-ResAttentioNet18_Q1 model was 2.74% higher than the Self-ResNet18



Diagnostics 2023, 13, 2000

11 0f 16

Accuracy

models. This model achieved an accuracy of 96.05%, 96.06% precision, 96.06% f1 score,
and a specificity of 96.09%. Based on the evaluation metrics such as overall accuracy,
precision, recall, f1 score, and specificity (as shown in Table 4), Self-ResAttentioNet18
Q1 stands out as the top-performing model among the six variants of Self-ResNet18 and
Self-ResAttentioNet18.

96.05
94.91 95.31
93.46 93.31 9297

Self-ResNet18_Q1

Self-ResNet18_Q3 Self-ResNet18_Q5 Self-ResAttentioNetl8_Q1 Self-ResAttentioNetl8_Q3 Self-ResAttentioNetl8_Q5
Models

Figure 7. Mean and standard deviation of fold-wise accuracy of different models for the six versions
of models from Self-ResNet18 and Self-ResAttentioNet18 model architecture.

Table 4. Performance metrics for six variants of Self-ResNet18 and Self-ResAttentioNet18 different
models.

Model Name Overall Accuracy  Precision Recall F1 Score Specificity
Self-ResNet18_Q1 93.46 93.48 93.46 93.46 93.39
Self-ResNet18_Q3 94.91 94.92 9491 94.91 94.88
Self-ResNet18_Q5 93.31 93.32 93.31 93.3 93.26

Se!f— 96.05 96.06 96.05 96.06 96.09
ResAttentioNet18_Q1

Self- 95.31 95.34 95.31 95.31 95.37
ResAttentioNet18_Q3

Self- 92.97 93.01 92.97 92.97 93.03

ResAttentioNet18_Q5

Learning curves of a deep learning model, especially the accuracy curves and loss
curves, indicate how well the model is performing during training, validation, and testing.
The accuracy curve plots the accuracy of the model for training, validation, and test data,
while the loss curve plots the loss of the model for training, validation, and test data.
The loss curve illustrates the model’s ability to minimize the gap between the predicted
and the actual outputs, whilst the accuracy curve demonstrates the model’s ability in
learning the features of the data. Both can indicate whether or not the model exhibits
overfitting or underfitting. For our models, the top two best-performing variants are
Self-ResAttentioNet18_Q1 and Self-ResNet18_Q3.

Figure 8 shows the learning curves of the Self-ResAttentioNet18_Q1 model, which
achieved the highest accuracy for fold 2, among all five folds. The nature of the learning
curves shows that the model was not overfitting or underfitting since the training accuracy
reaches saturation after gradually improving up to a certain number of epochs. The absence
of plateaus in training and validation accuracy points to a deep learning model that is
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well-fitted. Similar trends can be seen from all the other learning curves presented in
Supplementary Tables S1-S6. After analyzing the learning curves for all the variants of our
model, Self-ResAttentioNet18_Q1 was found to be the best performing model for session-
independent classification of middle cerebral artery doppler ultrasound classification.

Actual

0.14 -
—— train_loss
0.12 —— val_loss
’ —— test_loss
0.10
0.08
&
(=]
~ 0.06
0.04
— train_acc 0.02 1
—— val_acc
—— test_acc 0.001
40 60 80 100 0 20 40 60 80 100
Epoch Epoch
(a) (b)

Figure 8. Learning curves of Self-ResAttentionResNet18_Q1. The left graphical representation is the
(a) accuracy curve and the right graphical representation is the (b) loss curve.

3.2. ROC Curve and Confusion Matrix-Based Comparison

The receiver operator characteristic (ROC) curve is an important metric for comparing
the performance of different binary classification models. The area under the ROC curve
(AUC) is a common way to measure how well a classifier does the classification. While a
confusion matrix presents corresponding instances of all four TP, TN, FP, and FN, the ROC
curve graphically represents the true positive rate against the false positive rate, which
can be calculated from the instances of the confusion matrix. From the accuracy-based
comparison, it was found that the Self-ResAttentioNet18_Q1 was the best performing
model with 96.05% accuracy. The confusion matrix and the ROC curve of this model are
presented in Figure 9. The confusion matrix and the ROC curve of the other models can be
found in Supplementary Figures S1-512. The figures show that compared to other models,
Self-ResAttentioNet18_Q1 performs better for the classification of healthy subjects and
ICU subjects based on the maximal blood flow velocity waveform. The model correctly
predicted 95.51% of all the ICU instances with an area of 0.99 under the ROC curve.

ROC curve of SelfAttentionResNet18_q1

1.0
1400
1200 0.8
1000
2
T
< 0.6
o
- 800 2
@
&
g
- 600 =04
1596
95.51% - 400
0.2 /,// micro-average ROC curve (area = 0.99)
-200 ’,—" - macro-average ROC curve (area = 0.99)
i ROC curve of class 'Healthy ' (area = 0.99)
L ROC curve of class 'ICU' (area = 0.99)
0.0 +- T T ™ ™
0.0 0.2 0.4 0.6 0.8 1.0
Predicted False Positive Rate
(a) (b)

Figure 9. (a) Confusion matrix where 0 indicates the Healthy class and 1 indicates the ICU class, and
(b) ROC curve of Self-ResAttentioNet18_Q1 model.
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3.3. Comparison with Respect to Previous Literature

To evaluate the performance of our model, we need to compare it with the existing
literature. However, the dataset used in this study has no other associated literature that
worked on signal classification. Therefore, the previous literature that worked on a similar
problem was used for the comparison. From Table 5, the previous best performing model
reported by [45] achieved 89.17% classification accuracy. However, the model proposed
in this study surpasses the previous best performing model by achieving a classification
accuracy of 96.05% with recall and specificity of 96.05% and 96.09%, respectively.

Table 5. Evaluation of the proposed model against the background of previous research. The best
results are highlighted in bold texts.

Classification e s
Ref. Data Classes Model Accuracy Recall Specificity
TCD signal Vasospasm & .. o o
[45] from MCA normal Decision tree 89.17 87.5% 89.74%
[18] Peripheral Five degre?es of ANN 88.7% ) .
pulse wave stenosis
[46] Cerebral Stenosis & SVM 80.8% to 81.9%  70.9% to 73.1%  90.7% to 90.8%
ultrasound normal
[17] TCD from basal Stenosis & RNN 71.1% to 75.89%  74.6% to 75.53% 71.15% to
arteries non-stenosis 74.89%
TCD signal Self- o o o
Ours from MCA Healthy & ICU ResAttentioNet18_Ql 96.05% 96.05% 96.09%

4. Conclusions

In the classification of biomedical signals, deep learning models have been shown
to perform exceptionally well. The prognosis and diagnosis of diseases are greatly aided
by this type of study. A deep learning model trained on the transcranial doppler (TCD)
ultrasound signal, or more specifically MCA waveform, was proposed to be utilized in a
binary classification system in this research. Self-ResNet18 and Self-ResAttentioNet18, both
based on the SelfONN and ResNet architecture, were proposed in this research. Each deep
learning application on biomedical signals needs rigorous testing across many evaluation
matrices to guarantee its success. Among the six model versions, Self-ResAttentioNet18_Q1
had the highest classification accuracy at 96.05%, along with the highest recall (96.05%)
and the highest specificity (96.09%). A comparative analysis of our proposed model with
the existing literature [17,18,45,46] in the normal vs. abnormal classification using ICA or
MCA waves has been done in this study to evaluate the performance of Self-AttentioNet18
against contemporary existing models. From that analysis, it can be concluded that the
accuracy of the Self-AttentioNet18 in classifying healthy subjects and traumatic brain
injured subjects is 6.88% greater than the existing state-of-the-art result [45]. Since both of
these studies focus on ultrasound signals from the MCA, the generalizability of our study
is also validated. These findings provide more evidence of Self-ResAttentioNet18 for the
effectiveness of classifying MCA waveform in the ‘Healthy’ vs. ‘ICU’ classification task.
To avoid the data-leakage issue, the entire investigation was planned out using a session-
independent technique. This method enables a model to be evaluated using data that were
not used during training. The Self-ResAttentioNet18 Q1 performed at an AUC of 0.99 and
a classification accuracy of 95.51% when tested on data that had not previously been seen.
Such a highly performing deep learning model has the prospect of being used for classifying
MCA waveforms in real-time alongside the diagnosis of the targeted patients. This study
thus concludes the medical importance of utilizing a Self~-ONN-based classification model
to classify TCD ultrasonography signals into “Healthy” and ‘ICU’ classifications.
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5. Limitations and Future Work

Although this study has the potential to detect neurological diseases in real-time, a
larger, more diverse dataset can enhance the robustness and reliability of the outcomes.
Further studies can be conducted on external datasets as well to assess the generalizability
of the model. While this study considers only the signals from the MCA, as a future
prospect of this work, signals from other basal arteries such as the internal carotid artery
(ICA) can also be investigated and compared to the outcomes using only the MCA signals.
The need for human supervision in manual annotation of signals can be eliminated by
developing an automated annotator, which will categorize the signals based on their wave-
form morphologies. In order to improve the signal quality and hence boost the accuracy of
the classifier, we plan to explore the signal reconstruction techniques by noise reduction
with the use of the proposed model. The use of the proposed Self-AttentioNet18 model can
also be explored in the domains of object detection [47] and segmentation [48]. While this
study presents promising results and demonstrates the effectiveness of the proposed deep
learning models for the classification of TCD ultrasound signals in neurological diseases, it
also highlights avenues for further improvement and exploration.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/diagnostics13122000/s1, Figure S1: Confusion matrix for Self-
ResNet18_Q1 model; Figure S2: ROC curve of Self-ResNet18_Q1 model; Figure S3: Confusion
matrix for Self-ResNet18_Q3 model; Figure S4: ROC curve of Self-ResNet18_Q3 model; Figure S5:
Confusion matrix of Self-ResNet18_Q5 model; Figure S6: ROC curve of Self-ResNet18_Q5 model;
Figure S7: Confusion matrix of Self-ResAttentioNet18_Q1 model; Figure S8: ROC curve of Self-
ResAttentioNet18_Q1 model; Figure S9: Confusion matrix of Self-ResAttentioNet18_Q3 model;
Figure 510: ROC curve of Self-ResAttentioNet18_Q3 model; Figure S11: Confusion matrix of Self-
ResAttentioNet18_Q5 model; Figure S12: ROC curve of Self-ResAttentioNet18_Q5 model; Table S1:
Fold-wise learning curves of the Self-ResNet18_Q1 model; Table S2: Fold-wise learning curves of
the Self-ResNet18_Q3 model; Table S3: Fold-wise learning curves of the Self-ResNet18_Q5 model;
Table S4: Fold-wise learning curves of the Self-ResAttentionNet18_Q1 model; Table S5: Fold-wise
learning curves of the Self-ResAttentionNet18_Q3 model; Table S6: Fold-wise learning curves of the
Self-ResAttentionNet18_Q5 model.
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