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Abstract: The objective of our study is to investigate the predictive value of various combinations of
radiomic features from intratumoral and different peritumoral regions of interest (ROIs) for achieving
a good pathological response (pGR) following neoadjuvant chemoradiotherapy (nCRT) in patients
with locally advanced rectal cancer (LARC). This retrospective study was conducted using data from
LARC patients who underwent nCRT between 2013 and 2021. Patients were divided into training
and validation cohorts at a ratio of 4:1. Intratumoral ROIs (ROIITU) were segmented on T2–weighted
imaging, while peritumoral ROIs were segmented using two methods: ROIPTU_2mm, ROIPTU_4mm,
and ROIPTU_6mm, obtained by dilating the boundary of ROIITU by 2 mm, 4 mm, and 6 mm, respec-
tively; and ROIMR_F and ROIMR_BVLN, obtained by separating the fat and blood vessels + lymph
nodes in the mesorectum. After feature extraction and selection, 12 logistic regression models were
established using radiomics features derived from different ROIs or ROI combinations, and five–fold
cross–validation was performed. The average area under the receiver operating characteristic curve
(AUC) was used to evaluate the performance of the models. The study included 209 patients, con-
sisting of 118 pGR and 91 non–pGR patients. The model that integrated ROIITU and ROIMR_BVLN

features demonstrated the highest predictive ability, with an AUC (95% confidence interval) of 0.936
(0.904–0.972) in the training cohort and 0.859 (0.745–0.974) in the validation cohort. This model
outperformed models that utilized ROIITU alone (AUC = 0.779), ROIMR_BVLN alone (AUC = 0.758),
and other models. The radscore derived from the optimal model can predict the treatment response
and prognosis after nCRT. Our findings validated that the integration of intratumoral and peritumoral
radiomic features, especially those associated with mesorectal blood vessels and lymph nodes, serves
as a potent predictor of pGR to nCRT in patients with LARC. Pending further corroboration in future
research, these insights could provide novel imaging markers for refining therapeutic strategies.

Keywords: rectal cancer; radiomics; neoadjuvant therapy; mesorectum; region of interest

1. Introduction

Colorectal cancer is the second most common cause of cancer–related deaths world-
wide, with rectal cancer accounting for over one–third of all colorectal cancer cases [1].
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Recently, preoperative neoadjuvant chemoradiotherapy (nCRT) has emerged as the stan-
dard treatment strategy for locally advanced rectal cancer (LARC), as it can increase the
rate of local control and organ preservation [2,3]. However, the response to nCRT can
vary widely, ranging from pathological complete response (pCR) with no remaining viable
tumor cells to persistent disease (pathological no response, pNR) [4–6]. For those who
show a poor response, extensive surgery may reduce the local recurrence rate of tumors
and improve the prognosis [7,8]. A cohort study involving 1064 LARC patients revealed
that patients with a poor response to nCRT had worse survival outcomes when the interval
between the end of nCRT and surgery was longer [9]. Thus, predicting the treatment
response before nCRT can lead to personalized treatment strategies, such as timely or
extensive surgery, for patients who are less sensitive to nCRT.

However, a confirmation of nCRT response can only be obtained through the ex-
amination of resected specimens after surgery. Although previous studies have shown
that several clinical factors and imaging assessments are associated with the response to
nCRT in LARC patients [10–15], few clear and robust biomarkers have been identified
to predict pathological responses [16]. Radiomics is a medical research method that uses
computer technology to convert traditional radiological images into high–dimensional data
for further analysis, thereby assisting in clinical decision–making [17]. Over recent years,
radiomics has garnered substantial attention in the context of nCRT for LARC patients, with
MRI–based radiomics anticipated to serve as a promising imaging biomarker capable of
predicting treatment responses and prognostic outcomes [18–21]. However, it is worth not-
ing that the majority of radiomics studies focus solely on extracting intratumoral radiomic
features, neglecting the valuable information provided by the tumor microenvironment.

The extant literature suggests that peritumoral radiomic features in LARC are as-
sociated with various clinical outcomes, including response to neoadjuvant treatment,
lymph node metastasis, neural invasion, disease–free survival (DFS), and overall survival
(OS) [22–25]. This association could be attributable to the encapsulation of critical biological
information, such as the patterns of tumor growth and metastasis, within peritumoral
tissues [26]. However, most studies obtain the peritumoral region of interest (ROI) by
dilating a specific distance outward from the tumoral ROI. This methodological approach
presents two primary limitations: first, there is a lack of consensus regarding the optimal
dilation distance; second, the inherent complexity of the peritumoral tissue components
complicates the interpretation of radiomic features. Recent evidence suggests that the
radiomic features of the mesorectal fat ROI correlate with the prognosis and treatment
response of LARC [27]. This correlation may arise due to the integral role of mesorectal fat
in facilitating the nutrient supply and catabolite drainage from the normal rectal wall and
rectal tumors via vessels and lymphatics. Work by Kluza et al. [28] has shown that vascular
parameters derived from dynamic contrast–enhanced (DCE) MRI are related to lymph node
metastasis and response to nCRT. These findings collectively suggest that the radiomic fea-
tures of mesorectal fat, vessels, and lymph nodes could serve as potential biomarkers for the
treatment response in LARC. In light of these insights, this study proposed a novel method
for ROI segmentation: the mesorectum is divided into ROI for mesorectal fat (ROIMR_F)
and ROI for mesorectal vessels + lymph nodes (ROIMR_BVLN) based on signal differences
in T2WI sequences. This approach, premised on the differentiation of tissue components,
offers greater interpretability than traditional peritumoral ROI segmentation methods.

We hypothesized that both ROIMR_F and ROIMR_BVLN encompass crucial information
pertinent to the prediction of the neoadjuvant treatment response. Thus, we aimed to
investigate the value of radiomic features from intratumoral and different peritumoral
ROIs for predicting the response to nCRT in LARC patients.

2. Materials and Methods

This retrospective study was approved by the institutional review board of Peking
University Third Hospital, Beijing, PR China (IRB00006761–M2022474). The board waived
the requirement for obtaining informed patient consent.
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2.1. Study Patients

We included consecutive patients diagnosed with LARC who underwent nCRT be-
tween January 2013 and December 2021 at our hospital. The exclusion criteria were as
follows: (1) distance from the anal verge greater than 10 cm; (2) not receiving standard nCRT
or changing the nCRT regimen; (3) not undergoing TME surgery; (4) developing distant
metastasis during the treatment period; (5) lacking pre–nCRT MRI data before treatment;
(6) the absence of T2–weighted imaging (T2WI) sequences; (7) significant image artifacts
that affect the determination of tumor boundaries; and (8) the absence of postoperative
pathological results. The patient selection process is illustrated in Figure 1. A total of
209 patients were finally included in the study and were randomly assigned to a training
cohort (167 patients) and a validation cohort (42 patients) at a ratio of 4:1.
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Figure 1. The patient selection process.

2.2. Neoadjuvant Chemoradiotherapy

All patients received nCRT treatment according to a specific protocol. The radiation
doses ranged between 45 and 50 Gy, administered over 25 fractions. The radiation clin-
ical target volume encompassed the primary rectal cancer, perirectal and internal iliac
nodes, mesorectum, pelvic sidewalls, and presacral space, with the upper edge at the
sacral promontory. Concomitant oral capecitabine or XELOX regimen chemotherapy was
administered during radiotherapy.

2.3. Reference Standard

The patients’ pathologic tumor regression grade (TRG) was assessed based on the
American Joint Committee on Cancer (AJCC) eighth edition classification standard [4]. The
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TRG definitions used were as follows: TRG 0, indicating no tumor cells; TRG 1, indicating
single tumor cells or small groups of tumor cells; TRG 2, indicating residual cancer with a
desmoplastic response (mild regression); and TRG 3, indicating no tumor cells killed. In
this study, we classified TRG 0–1 as a good pathological response (pGR) and TRG 2–3 as a
poor pathological response (pPR).

2.4. MRI Protocol

All patients in our cohort underwent pretreatment rectal MRI consisting of standard
high–resolution T2–weighted imaging (T2WI) on 3.0–T Discovery MR 750 (GE Medical
Systems, LLC, 3200 N. Grandview Boulevard, Waukesha, WI, USA) or 3.0–T MAGNETOM
Prisma (Siemens AG Healthcare, Erlangen, Germany). Detailed information regarding the
parameters of the two scans is provided in Table S1.

2.5. Image Segmentation

The oblique high–resolution T2WI sequence was used to perform the image segmenta-
tion for all patients. Digital Imaging and Communications in Medicine (DICOM) format
images of each patient were uploaded to the uAI research portal (V1.1, United Imaging
Intelligence, Co., Ltd., Shanghai, China) for analysis. Radiologist 1 (Q.S., with 3 years
of experience in radiology) manually segmented all the regions of interest (ROIs), while
radiologist 2 (L.K., with 3 years of experience in radiology) randomly selected 30% of all
cases for re–segmentation to evaluate the inter–reader consistency. The two radiologists
were kept unaware of the clinical and pathological information of the patients, as well as
each other’s segmentation. Subsequently, an experienced radiologist (Z.Y., with 17 years
of experience in abdominal radiology) reviewed and modified the ROIs segmented by
radiologist 1. The modified ROIs were then utilized for the final analysis. After utilizing the
uAI platform to adjust the image’s window width and level appropriately for a clear display
of the lesion and mesorectum, we proceeded to segment the ROIs as outlined below:

(1) Intratumoral region of interest (ROIITU): First, the location and extent of the lesion was
confirmed by combining the DWI and T2WI sequences. Subsequently, the tumor was
manually segmented with meticulous attention to detail, ensuring its proper inclusion
within the rectal contour and extension beyond the serosa, while simultaneously
excluding any fibrous bands or spicules surrounding it.

(2) The 2 mm peritumoral region of interest (ROIPTU_2mm) was generated by applying
the “dilation” tool on the uAI platform to the initial ROIITU, thereby expanding
its boundaries by 2 mm and retaining the added portion. To ensure that the ROI
solely consisted of the rectal wall and mesorectum around the tumor, the areas
outside the mesorectal fascia, within the rectal lumen, and inside the tumor were
manually excluded.

(3) The 4 mm peritumoral region of interest (ROIPTU_4mm) was segmented using the same
method as ROIPTU_2mm, except that the dilation distance was increased to 4 mm.

(4) The 6 mm peritumoral region of interest (ROIPTU_6mm) was segmented using the same
method as ROIPTU_2mm, except that the dilation distance was increased to 6 mm.

(5) The mesorectal region of interest (ROIMR) refers to the area within the mesorectal fas-
cia, outside the contours of the rectum and tumor, and below the peritoneal reflection.

(6) The mesorectal fat region of interest (ROIMR_F) was created using the “threshold
separation” tool on the uAI platform. The signal intensity threshold was adjusted to
select only the fat signals (high signals) within the ROIMR, and a manual correction
was carried out to remove the non–fat contents.

(7) The mesorectal blood vessels + lymph nodes region of interest (ROIMR_BVLN) was
created by adjusting the signal intensity threshold to select the middle to low signals
within the ROIMR, which were mostly composed of the blood vessels and lymph
nodes. A manual correction of the ROI was then performed to ensure that it only
included blood vessels and lymph nodes.

The ROI segmentation process is shown in Figure 2.
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Figure 2. The process of segmenting the ROIs. (a,g) Oblique axial high–resolution T2–weighted
images. (b) ROIITU. (c–e) The ROIs obtained by dilating ROIITU by 2 mm, 4 mm, and 6 mm outward,
respectively, and keeping only the different parts. (f) ROIPTU_6mm, which was manually adjusted
based on (e) to include only the rectal wall and mesorectal fat around the tumor. (h) ROIMR. (i,j) Two
ROIs derived from (h) by separating it based on the signal intensity threshold, and manually adjusted
to find the ROIMR_BVLN and ROIMR_F. ROI, region of interest.

2.6. Clinical and Follow–Up Information

Two weeks after segmentation, the clinical features comprising baseline information
and MRI assessments were collected. The baseline information included age, gender,
body mass index (BMI), the presence or absence of diabetes/hypertension, clinical T
stage (cT), clinical N stage (cN), white blood cell count (WBC), hemoglobin level (HGB),
platelet count (PLT), lymphocyte count, neutrophil count, eosinophil count, monocyte count,
neutrophil–to–lymphocyte ratio, lymphocyte–to–monocyte ratio, platelet–to–lymphocyte
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ratio, carcinoembryonic antigen (CEA), cancer antigen 125 (CA125), and cancer antigen
199 (CA199). The MRI assessments consisted of the distance from the mass to the anal
verge (DTAV), the tumor length, mesorectal fascia involvement (MRF), extramural vascular
invasion (EMVI), and lateral pelvic lymph node metastasis (LPLN). MRF positivity was
defined as the minimum distance between the tumor (mass, cancer nodule, metastatic
lymph node, extramural vascular invasion, etc.) and the mesorectal fascia being ≤1 mm.
EMVI positivity was defined as the presence of tumor signals within the blood vessels
outside the rectal lumen where the tumor is located [29]. LPLN positivity was defined as
the observation of pelvic enlarged lymph nodes (short axis >5 mm) outside the mesorectal
fascia on MRI [30]. Figure S1 shows a schematic diagram of the MRF, EMVI, and LPLN.

We followed up the patients by reviewing their inpatient and outpatient medical
records and conducting phone interviews. Overall survival (OS) was defined as the
duration from the surgery date to the latest follow–up or death caused by any reasons.
Disease–free survival (DFS) was defined as the interval between the surgery date and the
first incidence of local tumor recurrence or distant metastasi. If disease progression did not
occur, DFS was determined as the period from the surgery date to the last follow–up.

2.7. Radiomics Feature Extraction and Selection

The uAI platform was utilized to perform image preprocessing and radiomic feature
extraction. To reduce image heterogeneity, anisotropic pixels were resampled using B–
spline interpolation to generate isotropic pixels of 1.0 × 1.0 × 1.0 (mm). The extracted
features included first–order statistical features, shape features, texture features, and fil-
ter features, resulting in a total of 2264 features extracted from each ROI. The radiomic
features generated are based on Pyradiomics [31], an open–source python package for
the extraction of radiomic features from medical imaging. The definitions of all features
can be found at https://pyradiomics.readthedocs.io/en/latest/features.html (accessed on
20 December 2022).

We evaluated the inter–rater reliability of the radiomic features extracted by two
radiologists using the intra–class correlation coefficient (ICC). The ICCs ranges from 0
to 1, with a value between 0.80 and 1.0 indicating almost perfect agreement, 0.61 to 0.80
indicating substantial agreement, 0.41 to 0.60 indicating moderate agreement, 0.21 to
0.40 indicating fair agreement, and 0 to 0.20 indicating poor agreement. To ensure the
extracted features were robust, only those with an ICC greater than 0.80 were included in
subsequent analyses.

To make the features more comparable, we standardized the features of the training
cohort using the z–score method: z = (X − Xmean)/s. Here, X denotes the original feature
value; Xmean and s represent the mean value and the standard deviation of the feature in
the training cohort, respectively. Then we applied the same method to the validation cohort
using the mean and standard deviation of the training cohort. Next, we removed features
with a variance less than 1.0 using the variance threshold method. Then, we performed a
statistical test on each feature and retained only those with a p–value less than 0.05. Finally,
we employed the least absolute shrinkage and selection operator (LASSO) with five–fold
cross–validation to select the features with the highest predictive power for pGR.

2.8. Model Construction

Radiomics models were developed using the logistic regression (LR) method, and
their nomenclature followed the LR + subscript format based on the corresponding ROI.
The models established using a single ROI comprised LRPTU_2mm, LRPTU_4mm, LRPTU_6mm,
LRMR_F, and LRMR_BVLN. The models established using one intratumoral and one peri-
tumoral ROI included LRITU+PTU_2mm, LRITU+PTU_4mm, LRITU+PTU_6mm, LRITU+MR_F, and
LRITU+MR_BVLN. Since there was no overlap between the mesorectal fat and mesorectal
blood vessels and lymph node regions, a LRITU+MR_F+MR_BVLN model was also established.

To train and validate the model and reduce the bias from data splitting, we used the
five–fold cross–validation method. We randomly split 209 patients into five groups of

https://pyradiomics.readthedocs.io/en/latest/features.html
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similar sizes and proportions of pGR and pPR. We trained the model on four groups and
validated it on the remaining one. We repeated this process five times so that every sample
was in both the training and validation sets. We then evaluated the model’s performance
using the average measures of the training and validation sets across all five groups.

The models’ performance was assessed by computing the average AUC of the valida-
tion cohort. The stability of the model was assessed by the coefficient of variation (CV) of
the AUC in the validation cohorts of the five folds. Subsequently, for the model with the
highest AUC, a radiomics score (radscore) was computed for each patient by utilizing the
features and coefficients acquired from LASSO regression. The radscore was obtained using
the following formula: radscore = β0 + β1X1 + β2X2 + β3X3 +···+ βnXn, where Xn refers
to the nth selected feature and βn denotes the coefficient associated with the nth feature.
Furthermore, clinical models, radscore models, and clinical–radscore models (cli–radscore)
were built and their performance was evaluated on the validation cohort.

2.9. Statistical Analysis

The categorical variables were analyzed using either the χ2 or Fisher’s exact test,
while continuous variables were analyzed using either the independent–sample t–test (for
normally distributed data) or the Wilcoxon rank–sum test (for non–normally distributed
data). Variables with a p–value less than 0.1 in univariate analysis were subsequently
included in a multiple stepwise logistic regression analysis, with the final selection of
variables based on the Akaike’s Information Criterion (AIC) method. The AIC, which is a
measure of the goodness–of–fit of a statistical model, was calculated as AIC = −2InL + 2k,
where L represents the maximum likelihood of the model and k represents the number
of adjustable parameters in the model. A smaller AIC value indicates a better fit of the
model. Receiver operating characteristic (ROC) curves were plotted to quantify the differ-
entiation performance of the established model, and the area under the curve (AUC) was
calculated. DeLong’s test was utilized to compare any arbitrary two ROC curves. Moreover,
decision curve analysis was employed to assess the clinical usefulness of each model. The
“surv_cutpoint” function from the R package “survminer” was utilized to transform the
continuous variables in survival analysis into categorical variables. Disease–free survival
(DFS) durations were determined from the surgical date to either the occurrence of tumor
recurrence/metastasis or the latest follow–up appointment. We designated the incidence
of tumor recurrence/metastasis as an event, while patients who were lost to follow–up
were considered censored. To visualize the DFS trends, we utilized Kaplan–Meier estimates
to construct the DFS curves. Furthermore, the log–rank test was employed to scrutinize
the differences across these curves. The Cox proportional hazards model was utilized
for both the univariate and multivariate analyses to identify the risk factors associated
with DFS. The predictive performance of the model for DFS was evaluated using the
C–index. A two–tailed p–value < 0.05 was considered to indicate a statistically signifi-
cant difference. All statistical analyses were performed with R software (version 4.2.0,
http://www.Rproject.org, accessed on 20 December 2022) and SPSS (version 27.0, IBM,
Armonk, NY, USA).

3. Results
3.1. Clinical Features

This study enrolled 209 consecutive patients with LARC, with 44 (21%), 74 (35%),
71 (34%), and 20 (10%) classified as TRG 0, 1, 2, and 3, respectively. Of these, 118 patients
were classified as pGR, while 91 patients were classified as pPR. There were significant
statistical differences (p < 0.05) observed in DTAV, tumor length, MRF, EMVI, platelet
count, neutrophil count, NLR, and PLR between the two groups. No significant differences
(p ≥ 0.05) were observed in the remaining clinical features (Table 1).

http://www.Rproject.org
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Table 1. Patients’ characteristics.

Features pPR (n = 91 a) pGR (n = 118 a) p

Gender 0.373
Male 67 (74%) 79 (67%)

Female 24 (26%) 39 (33%)
Age (years) 59.66 ± 11.83 60.32 ± 10.64 0.671

BMI (kg/m2) 24.39 ± 3.11 24.21 ± 3.17 0.682
cT 0.508
T3 79 (87%) 107 (91%)
T4 12 (13%) 11 (9.3%)
cN 0.771
N0 17 (19%) 22 (19%)
N1 68 (75%) 85 (72%)
N2 74 (7%) 96 (9%)

DTAV <0.001
≤4 cm 35 (38%) 19 (16%)
>4 cm 56 (62%) 99 (84%)

Tumor length 0.049
≤4 cm 30 (33%) 56 (47%)
>4 cm 61 (67%) 62 (53%)
MRF 0.007

Negative 50 (55%) 87 (74%)
Positive 41 (45%) 31 (26%)
EMVI 0.029

Negative 44 (48%) 76 (64%)
Positive 47 (52%) 42 (36%)
LPLN 0.698

Negative 64 (70%) 88 (74%)
Positive 27 (30%) 31 (26%)

CEA 0.647
≤5 ng/mL 51 (56%) 71 (60%)
>5 ng/mL 40 (44%) 47 (40%)

CA19–9 0.182
≤39 ng/mL 77 (85%) 108 (92%)
>39 ng/mL 14 (15%) 10 (8.5%)

WBC (×109/L) 6.69 ± 1.80 6.30 ± 1.63 0.100
HGB (g/L) 136.73 ± 16.97 133.99 ± 21.19 0.315

PLT (×109/L) 256.91 ± 70.17 233.87 ± 66.45 0.016
Lymphocyte (×109/L) 1.74 ± 0.55 1.83 ± 0.59 0.278
Neutrophil (×109/L) 4.34 ± 1.51 3.91 ± 1.38 0.036

Eosinophilic granulocyte (×109/L) 0.16 ± 0.12 0.14 ± 0.10 0.100
Monocyte (×109/L) 0.39 ± 0.15 0.41 ± 0.16 0.41

NLR 2.73 ± 1.44 2.37 ± 1.16 0.047
LMR 4.97 ± 2.17 4.97 ± 2.01 0.997
PLR 162.98 ± 77.89 139.78 ± 58.86 0.015
TRG <0.001

0 0 (0%) 44 (37%)
1 0 (0%) 74 (63%)
2 71 (78%) 0 (0%)
3 20 (22%) 0 (0%)

a Mean ± standard deviation; number (percentage). p–values < 0.05 are shown in bold. Abbreviations: pPR, poor
pathological response; pGR, good pathological response; BMI, body mass index; cT, clinical T stage; cN, clinical N
stage; MRF, mesorectal fascia involvement; EMVI, extramural vascular invasion; LPLN, lateral pelvic lymph node
metastasis; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; WBC, white blood cell count; HGB,
hemoglobin level; PLT, platelet count; NLR, neutrophil–to–lymphocyte ratio; LMR, lymphocyte–to–monocyte
ratio; PLR, platelet–to–lymphocyte ratio; TRG, tumor regression grade.

3.2. Feature Screening

A total of 2264 features were extracted from each ROI. Firstly, the inter–reader ICCs of
radiomics features were calculated for each ROI. The mean ICCs were as follows: ROIITU,
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0.83; ROIPTU_2mm, 0.67; ROIPTU_4mm, 0.71; ROIPTU_6mm, 0.76; ROIMR_F, 0.76; ROIMR_BVLN,
0.76. Among the extracted features, the number of features with an ICC > 0.80 for ROIITU,
ROIPTU_2mm, ROIPTU_4mm, ROIPTU_6mm, ROIMR_F, and ROIMR_BVLN were 1787, 930, 1186,
1553, 1417, and 1380, respectively. The distribution of ICCs for all 2264 features across each
ROI is presented in Figure 3 and Table S2.
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Following the removal of features with an ICC ≤ 0.8, additional feature selection
steps were carried out on the training cohort. Initially, the variance threshold method was
utilized to eliminate the features with a variance < 1.0, which was followed by univariate
feature selection to remove features with a p–value ≥ 0.05. Eventually, LASSO regression
was implemented to select the features for modeling. Table S3 displays the count of the
remaining features after each step of feature selection. Tables S4–S15 display the remaining
features after each feature set selection.

3.3. Model Construction and Assessment

The models were developed using 10~28 features, and the logistic regression classifier
was employed to establish the models. Five–fold cross–validation was performed. The
results of the models, including the mean AUC, F1 score, sensitivity, specificity, and
accuracy in both training and validation cohorts, are presented in Table 2. Several models
were constructed using different combinations of intratumoral and peritumoral ROIs.
Single ROI models included LRITU, LRPTU_2mm, LRP–TU_4mm, LRPTU_6mm, LRMR_F, and
LRMR_BVLN, with AUCs ranging from 0.689 to 0.79 in the validation cohort. Combined
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ROI models included LRITU+PTU_2mm, LRITU+PTU_4mm, LRITU+PTU_6mm, LRITU+MR_F, and
LRITU+MR_BVLN, and LRITU+MR_F+MR_BVLN, with AUCs ranging from 0.79 to 0.859 in the
validation cohort. The ROC curves for the different models are displayed in Figure 4.
LRITU+MR_BVLN had the highest AUC among all the models. Among the 28 features used
to establish the LRITU+ MR_BVLN model, 15 were derived from ROIITU and 13 were from
ROIMR_BVLN. The LASSO regression result and feature coefficients are shown in Figure S2.
The radscore was calculated by adding up the product of each feature value and its
corresponding coefficient.

Table 2. Performance of different models in the training and validation cohorts.

Models Cohort Cut–Off AUC (95%CI) F1 Score Sensitivity Specificity Accuracy

LRITU Training 0.48 0.824 (0.764–0.887) 0.774 0.775 0.703 0.744
Validation 0.779 (0.634–0.924) 0.741 0.728 0.705 0.718

LRPTU_2mm Training 0.52 0.806 (0.74–0.873) 0.761 0.722 0.772 0.744
Validation 0.785 (0.638–0.93) 0.758 0.72 0.769 0.742

LRPTU_4mm Training 0.48 0.832 (0.776–0.899) 0.789 0.754 0.797 0.773
Validation 0.79 (0.649–0.93) 0.749 0.712 0.757 0.732

LRPTU_6mm Training 0.48 0.81 (0.745–0.877) 0.779 0.775 0.72 0.751
Validation 0.79 (0.647–0.933) 0.772 0.762 0.725 0.746

LRMR_F Training 0.50 0.723 (0.645–0.801) 0.745 0.822 0.5 0.682
Validation 0.689 (0.522–0.854) 0.751 0.83 0.517 0.694

LRMR_BVLN Training 0.54 0.789 (0.722–0.858) 0.695 0.614 0.802 0.696
Validation 0.758 (0.61–0.906) 0.685 0.602 0.815 0.694

LRITU+PTU_2mm Training 0.49 0.831 (0.771–0.893) 0.779 0.754 0.764 0.758
Validation 0.795 (0.654–0.935) 0.764 0.745 0.737 0.741

LR ITU+PTU_4mm Training 0.50 0.832 (0.771–0.895) 0.778 0.714 0.843 0.77
Validation 0.805 (0.667–0.944) 0.755 0.695 0.825 0.751

LR ITU+PTU_6mm Training 0.51 0.874 (0.825–0.927) 0.807 0.801 0.761 0.783
Validation 0.795 (0.659–0.931) 0.761 0.754 0.704 0.732

LR ITU+MR_F Training 0.52 0.842 (0.784–0.903) 0.794 0.771 0.777 0.774
Validation 0.79 (0.643–0.935) 0.745 0.712 0.748 0.727

LR ITU+MR_BVLN Training 0.52 0.936 (0.904–0.972) 0.878 0.85 0.89 0.867
Validation 0.859 (0.745–0.974) 0.811 0.789 0.803 0.794

LR ITU+MR_F +MR_BVLN Training 0.55 0.873 (0.825–0.926) 0.782 0.705 0.874 0.779
Validation 0.85 (0.736–0.967) 0.763 0.679 0.879 0.766
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3.4. Clinical, Radscore, and Cli–Radscore Models

In both the training and validation cohorts, the radscore of the pGR group was higher
than that of the pPR group (Figure 5a,b, p < 0.001). A multivariate stepwise logistic regression
analysis was conducted on clinical factors with a p–value less than 0.1, revealing that two
factors, namely DTAV > 4 cm (OR = 4.41, 95%CI 2.04–9.52, p < 0.001) and PLR (OR = 0.99,
95%CI 0.99–1.00, p = 0.008), were independent predictors of pGR. The results of the univariate
and multivariate analyses are illustrated in Table S16. The clinical model had an AUC of
0.702 and 0.618 in the training and validation cohorts, respectively. In comparison, the
radscore model had an AUC of 0.913 and 0.884, and the cli–radscore model had an AUC
of 0.924 and 0.873 in the training and validation cohorts, respectively. The ROC curves for
clinical, radscore, and cli–radscore models are presented in Figure 5c,d. The decision curves
for the clinical, radscore, and cli–radscore models in both the training and validation cohorts
are shown in Figure 5e,f. The overall findings suggest that incorporating the clinical factors
does not improve the predictive ability and clinical applicability of the radscore for pGR.

3.5. The Association between Radscore and Disease–Free Survival

The follow–up period for the study participants ranged from 2 to 123 months, with a
median duration of 42 months and a mean duration of 45.6 months. Within this period,
42 patients (18.3%) experienced disease progression, with 10 cases (4.4%) showing local
recurrence and 38 cases (16.6%) presenting distant metastasis. Specifically, lung metastasis
was observed in 17 cases, liver metastasis in 16 cases, bone metastasis in 4 cases, lymph
node metastasis in 3 cases, and metastasis of unknown location in 2 cases. Moreover, seven
patients died during the follow–up period.

Table S17 displays the optimal cut–off values for each variable, alongside their correspond-
ing log–rank statistics. These values were determined by utilizing the “surv_cutpoint” function
within the R package “survminer” to convert continuous variables into categorical ones. To
analyze the 5–year DFS of patients, any follow–up durations exceeding 60 months were uni-
formly recorded as “60 months.” In the high radscore group, the median follow–up duration
was 38.5 months, with recurrence/metastasis observed in eight patients. Meanwhile, in the low
radscore group, the median follow–up duration stood at 25 months, and recurrence/metastasis
was witnessed in 34 patients. A log–rank test demonstrated that patients with a high radscore
tend to achieve a more extended DFS (p = 0.029) (Figure 6a). We conducted univariate and mul-
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tivariate Cox analyses on variables with p–values less than 0.05 from all log–rank tests. Table 3
presents the results of these analyses, as well as the corresponding C–indices for predicting the
5–year DFS. Figure 6b displays the forest plot of the multivariable Cox regression results.

Table 3. Univariate and multivariate Cox analysis of 5–year disease–free survival in locally advanced
rectal cancer after surgery.

Factor Number (n)
Univariate Cox Analysis Multivariate Cox Analysis

HR (95%CI) p C–Index HR (95%CI) p

Tumor length 0.016 0.585 0.53
≤4 cm 86 1
>4 cm 123 2.328 (1.144–4.736) 1.304 (0.57–2.985)
MRF 0.018 0.591 0.356

Negative 137 1
Positive 72 2.05 (1.119–3.755) 0.704 (0.335–1.482)
EMVI <0.001 0.678 0.009

Negative 120 1
Positive 89 4.102 (2.098–8.018) 2.799 (1.292–6.062)
LPLN <0.001 0.636 0.015

Negative 151 1
Positive 58 3.42 (1.863–6.281) 2.251 (1.17–4.332)

cT 0.036 0.555 0.654
T3 186 1
T4 23 2.245 (1.036–4.862) 1.211 (0.524–2.801)

CA19–9 0.014 0.234
Negative 185 1
Positive 24 2.461 (1.177–5.146) 1.629 (0.73–3.638)
radscore 0.034 0.576 0.78
≥0.688 52 1
<0.688 157 2.303 (1.065–4.977) 1.126 (0.489–2.595)
pCR 0.007 0.59 0.103
No 165 1
Yes 44 0.176 (0.043–0.728) 0.294 (0.068–1.279)

p–values < 0.05 are shown in bold. Abbreviations: HR, hazard ratio; MRF, mesorectal fascia involvement, EMVI,
extramural vascular invasion; LPLN, lateral pelvic lymph node; CA199, carbohydrate antigen 199; pCR, complete
pathological response.
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Figure 5. Scatterplots and boxplots of radscores for pGR and pPR groups in the training cohort
(a) and validation cohort (b). The ROC curves of the clinical, radscore, and cli–radscore models
for predicting pGR in the training cohort (c) and validation cohort (d). The decision curves for
all models in the training cohort (e) and validation cohort (f). Notably, the decision curves for
the validation cohort demonstrate that the predictive performance of the radscore model and
cli–radscore model for pGR is comparable and superior to the clinical model at different threshold
probabilities. The y–axis corresponds to the net benefit, with the gray line assuming all patients
have pGR and the black line assuming all patients have pPR, while the x–axis represents the
threshold probability. pGR, good pathological response; pPR, poor pathological response. ROC,
receiver operating characteristic.
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of the multivariable Cox regression results. HR, hazard ratio; MRF, mesorectal fascia involvement,
EMVI, extramural vascular invasion; LPLN, lateral pelvic lymph node; CA199, carbohydrate antigen
199; pCR, complete pathological response.
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4. Discussion

In this study, we established several models based on radiomic features of the
intratumoral ROI and different peritumoral ROIs from pre–nCRT MRI. The model that
combined features of ROIITU and ROIMR_BVLN had the highest AUC of 0.859, with a sen-
sitivity of 78.9%, specificity of 80.3%, and accuracy of 79.4%. This model could accurately
distinguish between pGR and pPR patients and outperformed other combinations of
tumoral and peritumoral ROIs. Notwithstanding the substantial differences in numerous
clinical variables—such as DTAV, tumor length, MRF, EMVI, platelet count, neutrophil
count, NLR, and PLR—observed between the pGR and pPR groups in our patient data
comparisons, only DTAV and PLR retained their statistical significance following univari-
ate and multivariate analyses on the training cohort. This suggests potential instability
in the clinical factors under consideration. Additionally, our findings revealed that
incorporating these clinical factors did not bolster the predictive accuracy of the radscore
model. A plausible interpretation might be attributed to the inherent volatility of the
clinical factors. These factors within an individual patient may demonstrate variability
over time, be subjected to alterations across diverse physiological conditions, or fall prey
to inaccuracies in measurement, culminating in unpredictable predictive outcomes. For
example, the appraisal of radiological characteristics such as DTAV, tumor length, MRF,
and EMVI can be subject to the physician’s expertise or inaccuracies in measurement.
Moreover, hematological parameters including platelet count, neutrophil count, NLR,
and PLR may undergo fluctuation, depending on the overall immune–inflammatory
status of the patient.

In the realm of MRI for rectal cancer, high–resolution T2WI sequences are pre-
dominantly utilized, offering a vivid delineation of both the rectal neoplasm and its
adjacent structures [32,33]. T2WI is the most commonly employed sequence for rec-
tal cancer radiomics, followed by the diffusion–weighted imaging (DWI) or apparent
diffusion coefficient (ADC) sequence [34]. Within the context of this study, the DWI
sequence was consciously omitted owing to its inferior resolution, a characteristic found
to impede radiologists in executing effective ROI segmentation. Shin et al. demon-
strated that combining T2WI and DWI did not enhance the predictive performance of
radiomic models for pCR compared to using T2WI alone [19]. Moreover, we opted to
solely use T2WI in this study to reduce the time and effort required for segmentation
by radiologists, thereby facilitating the translation of radiomic models from theory to
clinical applications. Nevertheless, in our study, only manual segmentation was under-
taken. It was found in Defeudis et al.’s research that models perform more effectively
in external validation sets when automatic segmentation is employed [35]. Given the
similarity of signals in rectal mesenteric fat, blood vessels, and lymph nodes on T2WI,
they are more readily identifiable by artificial intelligence. Hence, in comparison to
tumors possessing complex signals, the prospect for successful automatic segmentation
is significantly enhanced.

Radiomics research has recently focused on the peritumoral ROI due to its poten-
tial to provide valuable information about the tumor microenvironment, which can aid
in assessing treatment efficacy and predicting tumor prognosis. However, a standard-
ized definition of the peritumoral ROI is currently lacking. Most studies define it as
the area surrounding the tumor within a certain distance, but determining the optimal
distance remains a challenge. For example, in a study predicting the prognosis of
non–small cell lung cancer, the peritumoral ROI was defined as the area 15 mm outside
the lesion [36]. In another study on the postoperative recurrence of liver cancer, two
peritumoral ROIs were defined: the micrometastasis area (0–1 cm) and the potential
cirrhosis background (1–2 cm) around the tumor [37]. A study predicting the grading
of renal clear cell carcinoma defined the peritumoral region as the area 2 mm, 5 mm,
and 10 mm around the tumor, further dividing these regions into the peritumoral
parenchyma and peritumoral fat. The results showed that the radiomic features of
the peritumoral fat contained important predictive information [38]. However, our
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study found that the inclusion of peritumoral ROIs at 2 mm, 4 mm, or 6 mm did not
significantly enhance the performance of the radiomics model beyond the use of only
the intratumoral ROI. In a separate study by Pizzi et al. [39], the radiomic features
from pretreatment MRI were utilized to predict the pCR after nCRT in 72 patients with
LARC. The radiomic features were extracted from ROIs corresponding to the tumor
core (TC) and tumor boundary (TB). The results showed that the model incorporating
TC, TB, and clinical features achieved an AUC of 0.793, which was significantly higher
than the AUCs of the models using TC + clinical features or TB + clinical features
alone (0.689 and 0.541, respectively). This finding contrasts with our own results,
and one plausible explanation is that rectal tumors display heightened activity levels
and are surrounded by a complex composition of tissues. Hence, it is imperative to
identify additional peritumoral radiomics biomarkers. We segregated the mesorectum
into two ROIs based on distinct tissue components: mesorectal fat (ROIMR_F) and
mesorectal blood vessels and lymph nodes (ROIMR_BVLN). Our findings revealed that
the model (AUC = 0.859) that integrated features from ROIITU and ROIMR_BVLN out-
performed the models employing ROIITU and ROIMR_BVLN separately. In this model,
we utilized 15 texture features extracted from ROIITU, alongside 4 first–order features
from ROIMR_BVLN and additional 9 texture features from ROIMR_BVLN. As an example,
the “Original_GLSZM_HighGrayLevelZoneEmphasis” texture feature extracted from
ROIMR_BVLN can provide insights into the distribution of high–intensity pixels in an
image. This feature is indicative of the co–occurrence strength of the high gray–level
values within the image, allowing for the identification of bright or light areas present
in the image. A higher value of this feature corresponds to a greater prevalence of
bright areas in the image. By comparing the values of this feature, we can discern
differences in the signal intensity distribution between pGR and pPR patients. Our
results indicated that the tumor, blood vessels, and lymph nodes in the rectal vicinity
all harbored complementary information linked with response to nCRT. The radscore,
predicated on the fusion of ROIITU and ROIMR_BVLN features, also correlated with
the treatment response and prognosis of LARC patients post–nCRT. The radiomic
features of the blood vessels and lymph nodes around the tumor could be potential
imaging biomarkers for predicting the response to nCRT, potentially due to the fol-
lowing reasons: firstly, the growth and nutrient uptake of tumors are closely linked
with microvascular density around the tumor; secondly, hematogenous and lymphatic
metastasis are the principal pathways of rectal cancer metastasis; thirdly, radiotherapy
per se affects the development of the microvessels around the tumor. These reasons
could lead to morphological and signal alterations of blood vessels and lymph nodes,
which are intimately linked with tumor growth and metastasis, and could be reflected
in the radiomic features [40,41].

The present study has several limitations that should be acknowledged. Firstly, it is a
single–center retrospective study, which may lead to a potential selection bias, as we did not
consider patients who underwent conservative treatment. Secondly, external validation was
not performed, and therefore the generalization performance of the model requires further
verification. Thirdly, although we segmented the region of interest based on different tissue
components, the relationship between radiomic features and histopathological physiology
remains unclear, and additional studies are needed to establish a connection between
these features and biological behavior. Fourthly, the manual segmentation of ROI may
lead to inter–reader variability, but we attempted to ensure the robustness of the features
using ICC analysis, and we plan to develop automatic segmentation models as a future
research direction.

5. Conclusions

In conclusion, our findings validated that the integration of intratumoral and peri-
tumoral radiomic features, especially those associated with mesorectal blood vessels and
lymph nodes, serves as a potent predictor of pGR to nCRT in patients with LARC. Addi-
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tionally, the radscore, extrapolated from this model, demonstrated a notable correlation
with the duration of DFS following surgery in the patient cohort. Pending further corrobo-
ration in future research, these insights could provide novel imaging markers for refining
therapeutic strategies.
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