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Abstract: Invasive Ductal Carcinoma Breast Cancer (IDC-BC) is the most common type of cancer and
its asymptomatic nature has led to an increased mortality rate globally. Advancements in artificial
intelligence and machine learning have revolutionized the medical field with the development of
AI-enabled computer-aided diagnosis (CAD) systems, which help in determining diseases at an early
stage. CAD systems assist pathologists in their decision-making process to produce more reliable
outcomes in order to treat patients well. In this work, the potential of pre-trained convolutional
neural networks (CNNs) (i.e., EfficientNetV2L, ResNet152V2, DenseNet201), singly or as an ensemble,
was thoroughly explored. The performances of these models were evaluated for IDC-BC grade
classification using the DataBiox dataset. Data augmentation was used to avoid the issues of data
scarcity and data imbalances. The performance of the best model was compared to three different
balanced datasets of Databiox (i.e., 1200, 1400, and 1600 images) to determine the implications of this
data augmentation. Furthermore, the effects of the number of epochs were analysed to ensure the
coherency of the most optimal model. The experimental results analysis revealed that the proposed
ensemble model outperformed the existing state-of-the-art techniques in relation to classifying the
IDC-BC grades of the Databiox dataset. The proposed ensemble model of the CNNs achieved a 94%
classification accuracy and attained a significant area under the ROC curves for grades 1, 2, and 3, i.e.,
96%, 94%, and 96%, respectively.

Keywords: histopathological images; breast cancer; convolutional neural networks; computer-aided
design; ensemble model

1. Introduction

Breast cancer (BC) is a prevalent type of cancer and has become the fifth leading
cause of cancer-related deaths among women in recent years [1]. The most common signs
and symptoms of BC include heaviness, stiffness, pain, and redness or swelling in the
breast, as well as abnormalities such as shrinking, blood discharge, and nipple erosion [2].
Generally, cancer tissues originate either in the ducts or lobules of the breast and form a
lump, which is referred to as a tumour. As per the position and nature of the mass of cancer
tissues, the tumour is categorized into two types: Ductal Carcinoma In Situ (DCIS) and
Invasive Ductal carcinoma (IDC). Invasive cancer spreads to other parts of the body, while
in situ cancer does not invade other body parts [3]. Invasive cancer is life-threatening and
80% of BC deaths are caused by it. BC has been observed in younger age groups as well,
and this incidence has been increasing rapidly. In India, a significant proportion of the
younger population in their thirties and forties are affected by BC [4]. According to the
International Association of Cancer Registries (IACR) and the Global Initiative for Cancer
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Registry Development, the BC incidence worldwide, in both sexes and all age groups, is
depicted in Figure 1. In the year 2022, the estimated numbers of new cases and deaths in
both females and males due to BC were 2,261,419 and 684,996, respectively [1].
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Figure 1. Estimated number of incident cancer cases and deaths worldwide due to BC.

The diagnosis of BC involves various screening methods, such as thermography,
mammography, ultrasound scans, positron emission, magnetic resonance imaging, and
breast-specific imaging [5]. Microscopy biopsies or surgical incisions are other gold stan-
dard methods used to diagnose the location of a lump and size of a tumour. However,
the interpretation and analysis of BC types based on tissue textures, colour, and shape
differentiation are challenging due to their similar clinical manifestations. Researchers
are developing computer-aided diagnosis (CAD) systems based on artificial intelligence
techniques to overcome such challenges [6]. CAD systems increase diagnostic accuracy
by reducing human errors, which may further assist radiologists with proper diagnoses.
Among the various artificial-intelligence-based techniques, deep neural networks are
widely used in developing these CAD systems due to their automatic feature extraction,
deeper network layers, and representation learning ability. In addition, advances in com-
puter vision and the increased availability of computational power have contributed to
the popularity of deep learning techniques. A vast amount of training data, more time,
and high computational graphical processing units (GPU) are required to train these deep
neural networks. However, a transfer learning approach can be used to overcome the
requirement of a large amount of training data. Shallu Sharma and Rajesh Mehra per-
formed a histopathological image classification using both transfer learning and training
from scratch techniques [7]. They evaluated the performance of ResNet50, Xception, and
Densenet121 pre-trained models as baseline models for feature extraction and achieved
significant results.

In the line with this, an ensemble of pre-trained CNNs has been developed, which
includes EfficientNetV2L [8], ResNet152V2 [9], and DenseNet201 [10] to extract the poten-
tial features for classifying the IDC-BC histopathological grades of a new dataset called
databox [11]. The goal of this paper was to achieve a better performance in comparison
to the state-of-the-art methods for breast IDC grade classification using histopathological
images. The experimental work achieved the best results in comparison to the existing
methods with the databiox dataset, to the best of the author’s knowledge.
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• In the present study, an ensemble model comprising three pre-trained convolutional
neural networks (CNNs) was designed to make grading predictions for the Databiox
dataset, which consists of histopathological images of IDC-diagnosed patients for
this grade classification. Different pre-trained base models were analysed for their
performances individually and in combination to determine the most optimal and
coherent solution for breast cancer grade classification.

• In Databiox, the dataset is imbalanced and the distribution of images among the
different grades and total number of images in each grade are insufficient for training
a CNN. This may lead the problem of bias towards one particular class with more
images. To overcome this issue, data augmentation techniques were employed to
balance the dataset. The performance of the best model was compared for three
different balanced datasets of Databiox (i.e., 1200, 1400, and 1600 images) to ensure
the limit of the data augmentation.

• Additionally, the implications of the number of epochs were also demonstrated
throughout this experimental work. The performances of the models were observed
for four different numbers of epochs, which further determined the robustness and
coherency of the proposed ensemble model. The performance of the proposed models
was analysed by utilizing the evaluation parameters, namely, precision, recall, f1 score,
accuracy, ROC curve, and the area under the ROC curve (AUC).

2. Material and Method Used

In this work, CNNs were used as potential feature extractors and a fully connected
neural network was used as a classifier. The performances of the CNNs were enhanced to
extract the features effectively and the extracted features were mapped to their correspond-
ing categories using the dense layers of the CNNs [7–10,12].

2.1. Dataset

Here, histopathological images were analysed to classify the IDC BC grades. Different
grading systems are available to determine the stage of cancer based on its tissue features,
such as tubular formation, mitotic count (mitotic rate), and nuclear pleomorphism [13].
Each of these features was scored from 1–3 and the scores were added to obtain the final
total score, which determined the grade. Grades 1, 2, and 3 correspond to total scores
of 3–5, 6–7, and 8–9, respectively [14]. IDC is classified into three grades, namely low
(grade 1), moderate (grade 2), and severe (grade 3). Figure 2 visually represents these
different IDC-BC grades.

The classification of the different grades of IDC-BC using histopathological images is
a challenging task due to the undifferentiable variants in these tissue images. To address
this challenge, a robust and accurate grade classification model needs to be developed.
The Databiox dataset provides such a platform, consisting of three grades with different
magnification factors (4×, 10×, 20×, and 40×) collected from the Poursina Hakim research
centre of the Isfahan University of Medical Sciences in Iran [11]. The dataset comprises
histopathological microscopy images from 124 patients. It includes 259 images for grade 1,
366 for grade 2, and 297 for grade 3 BC, collected from 37, 43, and 44 patients, respectively,
with a total of 922 images at four different magnification levels. All the images are in RGB
colour and JPEG format, with resolutions of 1276 × 956 and 2100 × 1574 pixels.
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2.2. Data Pre-Processing and Augmentation

In Databiox, the dataset is imbalanced and the distribution of the images among the
different grades and total number of images in each grade are insufficient for training a
CNN. Training CNNs with imbalanced data leads to a biased classification. To overcome
this issue, the raw data of 922 images were transformed into a more balanced dataset
of 1200, 1400, and 1600 images using data augmentation techniques [15]. This not only
avoided the bias problem for each class, but also reduced the data scarcity issues.

To expand the dataset, an augmenter was used in the machine learning library, which
is essentially a collection of options for common image-editing tasks, including rotat-
ing, shearing, and cropping. It is always important to select the appropriate data aug-
mentation techniques to avoid any discriminating features or details. A random num-
ber generator was used to select values between −5 to 10, forming an augmentation
pipeline. This resulted in the creation of a distinct image for each image sent through
the pipeline. The original 922 histopathological images from Databiox were increased to
1200, 1400, and 1600 images for this experimental work by rotating with a probability = 0.7,
maximum left rotation = 10, and maximum right rotation = 10, and zooming with a prob-
ability = 0.3, minimum factor = 1.1, and maximum factor = 1.6. After the augmentation
process, the produced dataset was split into training and validation with a ratio of 80%
and 20%, respectively. During the training, the validation set was used to validate the
performance of the model, as well as to control the overfitting problem.

A batch normalization procedure was applied to normalize the selected features.
Normalization is a commonly used process in machine learning that aims to scale down
the features to make the model training less sensitive to the scale of the data. This process
helps the model to perform better and maintain its training stability. It is an essential step in
designing a CAD system, as it normalizes the data samples to obtain more consistent data
for further processing. Therefore, batch normalization was performed in the pre-processing
stage, which changed all the sample attributes to a single scale in the range from 0 to 1.

2.3. Convolutional Neural Networks (CNNs)

CNNs have indeed become a popular choice for deep-learning-based CAD expert
systems, owing to their ability to learn the spatial hierarchies of features from raw input
data [16]. Adding more layers to a CNN can increase its capacity to learn complex features
from data, potentially leading to a higher accuracy [17].

Currently, various types of CNNs are available (Figure 3) and used as efficient feature
extractors. Pre-trained CNNs are used to adopt a transfer learning approach when fewer
computational resources are available [18,19]. Generally, transfer learning approaches make
CNN models easy to use, particularly for task-specific classification [20]. Convolutional
layers, pooling layers, and fully connected layers are the common types of layers in a
CNN model, while different types of CNNs based on the arrangements of different layers,
such as depth-wise separable convolution layers and skip connection between convolution
blocks, have also been proposed [7–10]. One of the popular CNN architectures is ResNet,
which uses a stack of linear, separable, depth-wise convolutional layers with residual
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connections [9]. One of the biggest problems in any deep learning network is vanishing and
exploding gradients, which restricts us from going much deeper into the network. The core
idea of ResNet is based on skip connections, which allow for activation to be taken from
one layer and fed into a future layer, even if it is much deeper [21]. ResNet has achieved
significant success in many computer vision tasks, including the ImageNet competition,
where the Residual Network with a 152-layer variant (ResNet152) won in 2015 [9].
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EfficientNet is a smaller and faster training system launched by Google AI that aims
to provide a more efficient approach, as suggested by its name [8]. EfficientNet uses an
efficient compound scaling mechanism, gradually increasing model attributes such as
depth, width, and resolution, instead of arbitrarily scaling these parameters in the CNN
design [18]. The recently introduced EfficientNetV2 improves upon EfficientNet in terms
of its training time and parameter effectiveness [8]. DenseNet is another CNN architecture
that requires fewer parameters than an equivalent traditional CNN, as it does not learn
redundant feature maps [10]. Unlike ResNet, DenseNet concatenates the output feature
maps of a layer with the incoming feature maps, instead of summing them up.

2.4. Ensemble of CNNs

This study aimed to compare the performances of individual CNNs with an ensemble
of CNNs for the classification of IDC BC grades. The proposed model used an ensemble of
CNN models to achieve a better performance. Initially, the CNN model was trained using
the ImageNet dataset. Later, the pre-trained CNN model’s first few layers were frozen and
the last layer’s output neurons were adjusted based on the number of classes in the target
problem, as shown in Figure 4. The individual CNN model’s performance was observed
and the best-performing individual models were saved for use in the ensemble architecture.
Later, the best accuracy-providing models were combined to create the ensemble.
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3. Results and Discussion

In this work, the IDC-BC grade classification task was performed on the Databiox
dataset after applying pre-processing and data augmentation techniques. Three differ-
ent augmented data samples were produced and used, consisting of 1200, 1400, and
1600 images from the original dataset of 922 images. For instance, in the case of
1200 histological images, 960 were used for training and 240 for validation. Similarly,
for the 1400 histopathological images, 1120 were used for training and 280 for validation.
Finally, for the 1600 images, 1280 were used for training and 320 for validation purposes.
The data were split into an 80–20% ratio and the Google Co-lab platform was used to per-
form the experimental work. To evaluate the model’s performance, various metrics, such as
the confusion matrix, precision, recall, F1 score, accuracy, receiver operating characteristic
(ROC) curve, and area under the curve (AUC), were calculated using a python workflow.

3.1. Confusion Matrix

A confusion matrix was used to evaluate the performances of the models in the
classification of the three IDC grades. Herein, the rows represent the predicted grades,
while the columns represent the actual grades. Here, we discuss the confusion matrix of
these IDC grades by considering a multi-classification that includes grade 0, grade 1, and
grade 2 (Table 1).

Table 1. A confusion matrix of IDC grades 0, 1, and 2.

Confusion Matrix
Predicted Class

Grade 0 Grade 1 Grade 2

Actual Class
Grade 0 GC00 GC01 GC02

Grade 1 GC10 GC11 GC12

Grade 2 GC20 GC21 GC22
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A confusion matrix is an extremely useful performance metric for calculating recall,
precision, specificity, accuracy, ROC, and AUC. The mathematical expressions used to
calculate the precision, recall, F1 score, and accuracy were as follows:

Precision = TP/(TP + FP) (1)

Recall = TP/(TP + FN) (2)

F1 score = (2 ∗ Precision ∗ Recall)/(Precision + Recall) (3)

Accuracy = (TP + TN)/(TP + FP + TN + FN) (4)

A predicted positive grade that matched the actual positive grade was referred to as a
true positive (TP). A predicted positive grade that did not match the actual positive grade
was referred to as a false positive (FP). A predicted negative grade that matched the actual
negative grade was referred to as a true negative (TN). A predicted negative grade that did
not match the actual negative grade was referred to as a false negative (FN). For Grade 0,
TP = GC00, FN = GC01 + GC02, FP = G10 + G20, and TN = G11 + G21 + G12 + G22.
For Grade 1, TP = G11, FN = G10 + G12, FP = G01 + G21, and TN = G00 + G20 + G02 +
G22. For Grade 2, TP = G22, FN = G20 + G21, FP = G02 + G12, and TN = G00 + G10 + G01
+ G11. Tables 2–4 represent the experimental results produced by the individual models
(via EfficientNetV2L, ResNet152V2, and DenseNet201) and the proposed ensemble of these
CNN models. The performances of all the models were evaluated for three different data
sample sizes (1200, 1400, and 1600) at four different numbers of epochs (5, 10, 15, and 20).

Table 2. Classification report of CNN models (data augmentation performed and obtained
1200 images, of which 960 were training images and 240 were validation images).

Number of Epochs = 5

CNN Model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.78 0.74 0.76

0.71Grade 1 0.72 0.62 0.67

Grade 2 0.66 0.79 0.72

Model 2: ResNet152V2

Grade 0 0.35 0.82 0.49

0.45Grade 1 0.66 0.24 0.36

Grade 2 0.55 0.40 0.46

Model 3: DenseNet201

Grade 0 0.87 0.33 0.48

0.47Grade 1 0.73 0.12 0.20

Grade 2 0.41 0.96 0.57

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.78 0.77 0.78

0.75Grade 1 0.67 0.82 0.74

Grade 2 0.85 0.65 0.73
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Table 2. Cont.

Number of epochs = 10

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.70 0.87 0.77

0.76Grade 1 0.78 0.78 0.78

Grade 2 0.80 0.67 0.73

Model 2: ResNet152V2

Grade 0 0.66 0.61 0.63

0.61Grade 1 0.65 0.53 0.58

Grade 2 0.55 0.69 0.61

Model 3: DenseNet201

Grade 0 0.56 0.75 0.64

0.69Grade 1 0.77 0.57 0.66

Grade 2 0.75 0.78 0.76

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.78 0.80 0.79

0.78Grade 1 0.74 0.84 0.79

Grade 2 0.84 0.69 0.76

Number of epochs = 15

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.00 0.00 0.00

0.37Grade 1 0.38 0.83 0.52

Grade 2 0.34 0.16 0.22

Model 2:
ResNet152V2

Grade 0 0.28 1.00 0.43

0.28Grade 1 0.00 0.00 0.00

Grade 2 0.00 0.00 0.00

Model 3:
DenseNet201

Grade 0 0.00 0.00 0.00

0.34Grade 1 0.00 0.00 0.00

Grade 2 0.34 0.99 0.51

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.82 0.76 0.79

0.78Grade 1 0.76 0.80 0.78

Grade 2 0.78 0.78 0.78

Number of epochs = 20

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.74 0.83 0.79

0.82Grade 1 0.83 0.83 0.83

Grade 2 0.87 0.79 0.83

Model 2:
ResNet152V2

Grade 0 0.64 0.55 0.59

0.62Grade 1 0.66 0.72 0.69

Grade 2 0.55 0.56 0.55

Model 3:
DenseNet201

Grade 0 0.66 0.67 0.66

0.69Grade 1 0.66 0.80 0.72

Grade 2 0.83 0.56 0.67

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.82 0.88 0.85

0.85Grade 1 0.85 0.87 0.86

Grade 2 0.89 0.80 0.84
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From Table 2, it was observed that the performances of the models improved when
the number of epochs increased from 5 to 20. It showed that the models were trained well
with a higher number of epochs. The performances of the individual models were not
consistent; however, in comparison, the proposed ensemble model consistently achieved
the best performance of all the models. Specifically, the proposed ensemble model achieved
a maximum accuracy of 85%, a recall of 86%, an F1 score of 84%, and a precision of 87% for
20 epochs with a sample size of 1200. These results were significantly higher than the 72%
accuracy obtained by Zaverah et al. using the same dataset [22].

Table 3. Classification report of CNN models (data augmentation performed and obtained
1400 images, of which 1120 were training images and 280 were validation images).

Number of Epochs = 5

CNN Model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.64 0.94 0.76

0.79Grade 1 0.82 0.73 0.78

Grade 2 0.95 0.74 0.83

Model 2:
ResNet152V2

Grade 0 0.38 0.72 0.49

0.45Grade 1 0.51 0.38 0.43

Grade 2 0.52 0.33 0.40

Model 3:
DenseNet201

Grade 0 0.48 0.51 0.49

0.37Grade 1 0.26 0.11 0.15

Grade 2 0.35 0.56 0.43

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.89 0.80 0.84

0.81Grade 1 0.76 0.83 0.80

Grade 2 0.80 0.78 0.79

Number of epochs = 10

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.84 0.93 0.88

0.85Grade 1 0.88 0.80 0.84

Grade 2 0.84 0.86 0.85

Model 2:
ResNet152V2

Grade 0 0.94 0.21 0.34

0.53Grade 1 0.45 0.81 0.58

Grade 2 0.65 0.45 0.53

Model 3:
DenseNet201

Grade 0 0.54 0.77 0.64

0.62Grade 1 0.85 0.36 0.50

Grade 2 0.61 0.81 0.70

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.87 0.92 0.89

0.88Grade 1 0.86 0.84 0.85

Grade 2 0.90 0.88 0.89
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Table 3. Cont.

Number of epochs = 15

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.96 0.93 0.94

0.88Grade 1 0.84 0.87 0.86

Grade 2 0.86 0.84 0.85

Model 2:
ResNet152V2

Grade 0 0.59 0.70 0.64

0.59Grade 1 0.67 0.45 0.54

Grade 2 0.53 0.65 0.59

Model 3:
DenseNet201

Grade 0 0.70 0.65 0.67

0.72Grade 1 0.65 0.84 0.74

Grade 2 0.86 0.63 0.73

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.87 0.94 0.91

0.91Grade 1 0.91 0.88 0.89

Grade 2 0.95 0.92 0.93

Number of epochs = 20

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.29 0.39 0.34

0.32Grade 1 0.35 0.24 0.28

Grade 2 0.33 0.36 0.34

Model 2:
ResNet152V2

Grade 0 0.00 0.00 0.00

0.36Grade 1 0.00 0.00 0.00

Grade 2 0.36 1.00 0.53

Model 3:
DenseNet201

Grade 0 0.23 0.58 0.33

0.27Grade 1 0.32 0.31 0.32

Grade 2 0.00 0.00 0.00

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.97 0.93 0.95

0.94Grade 1 0.90 0.95 0.92

Grade 2 0.97 0.93 0.95

Based on the results presented in Table 3, it was clear that the individual models
did not exhibit consistent performances, but the ensemble of CNNs produced stable re-
sults. As the number of epochs increased from 5 to 20, the accuracy of the ensemble
model also increased from 88% to 94% with a sample size of 1400. It is evident from the
results that the representation learning ability of the model was enhanced with the large
dataset. However, the sensitivities of all the models, except the ensemble model, were influ-
enced towards one particular class when the sample size was increased from 1200 to 1400,
eventually reducing their performances. These results significantly outperformed those
achieved by Talpur et al. [23] and Sujatha et al. [24], who reported accuracies of 92.81% and
92.64%, respectively.
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Furthermore, a similar trend was also observed in Table 4, where the performances of
the individual models were not significant and inconsistent with 1600 samples. On the other
hand, the proposed ensemble model still outperformed in comparison. The performance
of the proposed ensemble model increased from 79% to 87% in terms of accuracy with an
increment in the number of epochs, but decreased with the increment in the sample size
from 1400 to 1600. The overfitting of the model with an increased sample size was the
major rationale behind its degraded performance.

Table 4. Classification report of CNN models (data augmentation performed and obtained
1600 images, of which 1280 were training images and 320 were validation images).

Number of Epochs = 5

CNN Model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.59 0.90 0.71

0.70Grade 1 0.92 0.50 0.64

Grade 2 0.68 0.80 0.73

Model 2:
ResNet152V2

Grade 0 0.31 0.90 0.47

0.37Grade 1 0.49 0.29 0.36

Grade 2 0.55 0.06 0.10

Model 3:
DenseNet201

IDC Grade 0 0.38 0.82 0.52

0.44Grade 1 0.45 0.10 0.16

Grade 2 0.53 0.60 0.56

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.78 0.72 0.75

0.79Grade 1 0.78 0.83 0.81

Grade 2 0.82 0.80 0.81

Number of epochs = 10

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.27 0.03 0.06

0.32Grade 1 0.39 0.09 0.15

Grade 2 0.32 0.85 0.46

Model 2:
ResNet152V2

Grade 0 0.00 0.00 0.00

0.40Grade 1 0.40 1.00 0.57

Grade 2 0.00 0.00 0.00

Model 3:
DenseNet201

Grade 0 0.00 0.00 0.00

0.38Grade 1 0.39 0.93 0.55

Grade 2 0.22 0.02 0.04

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.79 0.89 0.83

0.86Grade 1 0.92 0.84 0.87

Grade 2 0.86 0.86 0.86
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Table 4. Cont.

Number of epochs = 15

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.36 0.04 0.07

0.34Grade 1 0.35 0.91 0.51

Grade 2 0.21 0.05 0.09

Model 2:
ResNet152V2

Grade 0 0.32 1.00 0.48

0.32Grade 1 0.00 0.00. 0.00

Grade 2 0.00 0.00 0.00

Model 3:
DenseNet201

Grade 0 0.26 0.56 0.36

0.25Grade 1 0.26 0.22 0.24

Grade 2 0.00 0.00 0.00

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.92 0.81 0.86

0.86Grade 1 0.81 0.94 0.87

Grade 2 0.88 0.83 0.85

Number of epochs = 20

CNN model Grade Precision Recall F1-Score Accuracy

Model 1:
EfficientNetV2L

Grade 0 0.24 0.64 0.35

0.24Grade 1 0.45 0.04 0.07

Grade 2 0.19 0.15 0.16

Model 2:
ResNet152V2

Grade 0 0.23 0.14 0.17

0.39Grade 1 0.42 0.88 0.57

Grade 2 0.00 0.00 0.00

Model 3:
DenseNet201

Grade 0 0.43 0.28 0.34

0.47Grade 1 0.48 0.67 0.56

Grade 2 0.48 0.39 0.43

Ensemble of CNN
model (Model 1 +

Model 2 + Model 3)

Grade 0 0.86 0.85 0.86

0.87Grade 1 0.85 0.89 0.87

Grade 2 0.89 0.84 0.87

To obtain more insight into the models’ performance, confusion matrices and an ROC
curve analysis were performed. Figure 5a–c illustrate the confusion matrix and ROC curve
for the ensemble model over the sample sizes of 1200, 1400, and 1600, respectively. It was
analysed from the confusion matrices in Figure 5a–c that the samples from grade 0 and
grade 2 were wrongly predicted and were grade 1 in most cases. This was because the
grade 1 stage is in between the stages of grade 0 and grade 2; therefore, they share some
clinical expressions and this led to a state of confusion for the model. Despite this, the
proposed ensemble model was overall the best with a sample size of 1400 and AUCs of
0.96, 0.94, and 0.96 for grades 0, 1, and 2, respectively (refer to Table 5).
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Table 5. Comparative analysis of the proposed ensemble model performance for different sample
sizes at 20 epochs.

Sample Size Grade Precision Recall F1-Score AUC Accuracy

1200

Grade 0 0.82 0.88 0.85 0.90

0.85Grade 1 0.85 0.87 0.86 0.87

Grade 2 0.89 0.80 0.84 0.88

1400

Grade 0 0.97 0.93 0.95 0.96

0.94Grade 1 0.90 0.95 0.92 0.94

Grade 2 0.97 0.93 0.95 0.96

1600

Grade 0 0.86 0.85 0.86 0.90

0.87Grade 1 0.85 0.89 0.87 0.89

Grade 2 0.89 0.84 0.87 0.90

Time Complexity

Time complexity is an important parameter that determines the time taken by an
algorithm to execute each instruction of code. It was observed from the analysis that the
computation time of the proposed model was positively correlated with the number of
epochs and the sample sizes, as shown in Table 6. The time complexity increased with
increments in the numbers of samples and epochs.

Table 6. Time complexity of the proposed ensemble model for different sample sizes and numbers
of epochs.

Samples Epochs Time for Data
Augmentation (In Minutes)

Time for Training and
Validation (In Minutes)

Total Time
(In Minutes)

1200

5 21 27 48

10 21 33 54

15 21 46 67

20 21 50 71

1400

5 24 30 54

10 24 39 63

15 24 48 72

20 24 53 77

1600

5 28 34 62

10 28 42 70

15 28 49 77

20 28 58 86

3.2. Comparison of the State-of-the-Art Techniques

This experimental work revealed the potential of data augmentation and an ensemble
of CNNs for IDC BC grade classification. The performance of the proposed model was
evaluated using the augmented dataset of Databiox with 1200, 1400, and 1600 histopatho-
logical images. In the case of the 1200 data size, the proposed ensemble model achieved
a considerable performance with an accuracy of 85% and AUCs of 90% (grade 0), 87%
(grade 1), and 88% (grade 2). Despite this significant performance, the model did not
reach the existing state-of-the-art technique. This happened due to the scarcity of the data,
and to obtain an improved performance of the system, we increased the data size to 1200,
1400, and 1600 by applying data augmentation techniques and implemented the same
protocol. It was observed that the performance of the ensemble model drastically increased
with the 1400 data size in comparison to the individual models. A remarkable result of a
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94% accuracy was achieved with the proposed ensemble model. Zavareh et al. achieved
an accuracy of 72% for grade classification using a transfer learning approach, Sujatha
et al. achieved an accuracy of 92.64% by employing a transfer learning approach with
DenseNet121, and Talpur et al. achieved an accuracy of 92.81% with the sequential CNNs.
The proposed ensemble model surpassed the existing state-of-the-art techniques that have
been reported using the Databiox dataset to date. A comparative analysis of the existing
state-of-the-art techniques and the proposed ensemble model is illustrated in Table 7.

Table 7. Performance comparison of the proposed ensemble model with the existing state-of-the-art
techniques on the Databiox dataset for the classification of IDC-BC grade images.

Reference Year Approach Performance Metric

Zavareh et al. [22] 2021
Transfer learning approach

(VGG16 used as feature
extractor)

Accuracy of 72%

Kumaraswamy et al. [25] 2021

Transfer learning approach
pre-trained CNNs:
DensNet201 and

NASNetMobile used as
feature extractors)

Accuracy of 72%.
AUC for Grade 1, and

Grade 2 is 98% and 75%,
respectively with

DensNet201 AUC for
Grade 3 is 69% with

NASNetMobile

Sujatha et al. [24] 2022

Transfer learning approaches
(Utilized VGG16, VGG19,

InceptionReNetV2,
DenseNet121, and

DenseNet201)

DenseNet121 produced
the highest accuracy

of 92.64%

Talpur et al. [23] 2022 A sequential convolutional
neural network is utilised Accuracy of 92.81%

Present Work 2023

Proposed Ensemble
Model(EfficientNetV2L

+ ResNet152V2
+ DensNet201)

Accuracy of 94%. AUC of
96%, 94% and 96% for

Grades 0, 1, and 2,
respectively.

4. Conclusions

The present work proposed an ensemble model that improved the classification of
IDC-BC grades and investigated the impacts of sample size and several training epochs. By
implementing various data augmentation approaches, the sample size was increased and
analysed for three samples sizes: 1200, 1400, and 1600. The obtained results revealed that
there is always a trade-off between a model’s performance and the sample size. Training
a model on a largely augmented dataset may introduce errors of generalization, which
ultimately lead to overfitting problems. Therefore, datasets should be made sufficiently
large through data augmentation techniques to ensure the optimal performance of a model.
Furthermore, our study concluded that the ensemble of CNNs consistently achieved the
most stable and robust performance in contrast to the individual models.

In the future, Generative Adversarial Networks (GAN) can be investigated to deter-
mine their overall impact on the accuracy of models in place of data augmentation. GANs
have the potential to generate artificial data based on existing datasets. As a matter of fact,
this will overcome the issues of data scarcity and data imbalances in the DataBiox dataset,
which may increase the efficiency of the classification model.
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