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Abstract: Stress has an impact, not only on a person’s physical health, but also on the ability to
perform at the workplace in daily life. The well-established relation between psychological stress
and its pathogeneses highlights the need for detecting psychological stress early, in order to prevent
disease advancement and to save human lives. Electroencephalography (EEG) signal recording
tools are widely used to collect these psychological signals/brain rhythms in the form of electric
waves. The aim of the current research was to apply automatic feature extraction to decomposed
multichannel EEG recordings, in order to efficiently detect psychological stress. The traditional
deep learning techniques, namely the convolution neural network (CNN), long short-term memory
(LSTM), bidirectional long short-term memory (BiLSTM), gated recurrent unit (GRU) and recurrent
neural network (RNN) models, have been frequently used for stress detection. A hybrid combination
of these techniques may provide improved performance, and can handle long-term dependencies
in non-linear brain signals. Therefore, this study proposed an integration of deep learning models,
called DWT-based CNN, BiLSTM, and two layers of a GRU network, to extract features and classify
stress levels. Discrete wavelet transform (DWT) analysis was used to remove the non-linearity
and non-stationarity from multi-channel (14 channel) EEG recordings, and to decompose them into
different frequency bands. The decomposed signals were utilized for automatic feature extraction
using the CNN, and the stress levels were classified using BiLSTM and two layers of GRU. This study
compared five combinations of the CNN, LSTM, BiLSTM, GRU and RNN models with the proposed
model. The proposed hybrid model performed better in classification accuracy compared to the other
models. Therefore, hybrid combinations are appropriate for the clinical intervention and prevention
of mental and physical problems.

Keywords: EEG; DWT; CNN; LSTM; BiLSTM; GRU

1. Introduction

Human life today is not as simple as it once was. According to a recent study, the
greatest impact on routine life is on working professionals aged 25 to 40 [1]. Stress has been
revealed to be a silent killer for the human brain. Stress is the root cause of every mental
problem, and is due to various physical or emotional states in the human body. Work
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pressures to meet deadlines, financial crunches, job dismissals, unemployment and various
corporate demands contribute to increasing stress levels. The human brain progresses
to stressors in order to maintain balance in the nervous system [1]. If professionals are
under stress for an extended period, their performance suffers, and they become distressed.
This stress seems to have negative impacts on the human body, causing diseases such as
insomnia, decreased immunity, infections, cervical impairments and migraines, and so
on [1]. A person is unaware of the stress that is silently killing his/her mind. Scenario
and strategic management from health care institutions, digital technologies for stress
prediction and entrepreneurship development on the national medical services market
could boost a population’s quality of life and its nation’s human potential [2–4].

The main entities that reflect stress are the following: human body temperatures,
brain activity and eye blinks [1]. As stated by a World Health Organization (WHO) survey,
depression is one of the leading causes of disability worldwide [5]. In accordance with
India’s national mental health survey (2015–2016), held by the National Institute of Mental
Health and Neuro Sciences (NIMHANS) [2], the population diagnosed with mental illness
has increased from 7.5 percent in 2014 to 10.6 percent in 2016. The ratio of patients with
doctors in the low- and middle-income classes is being threatened [5]. In India, more than
150 million people are suffering from different mental illnesses such as anxiety, depression
and other personality disorders. Stress has also been made worse by the COVID-19
pandemic’s effects on people’s lives [6]. These mental illnesses are in desperate need of
mental health care; however, there is a treatment gap ranging from 74% to 90% for such
services.

There are several approaches to record/collect the human stress levels. A phonocardio-
graphy (PCG) signal can be obtained using an electronic stethoscope, which can be utilized
as a valuable diagnostic tool in rural locations, with babies, and for homecare purposes [5].
Electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) and
electrocardiography (ECG) are the four methods that are utilized most frequently for the
purpose of recording physiological signals in response to generated approaches. Photo-
plethysmography (PPG) also plays a critical role in the collection of physiological signals [7].
Conferring with the deferent literature, bio-chemical and bio-logical-based methodologies
have produced contradictory results; these were attributed to hormone instability.

Mental stress is an important belief that is slowly gaining attention in different research
fields related to neuroscience, psychology, medicine and other fields such as sentiment
computing. As a result, it is critical to investigate stress using a variety of methods,
such as EEG data. Signals such as EEGs are extremely effective at revealing correlations
between various rhythmic signals [8]. Due to the scarcity of professional automation
and semi-automation, the study of different multimodal signals such as EEGs/ECGs is
critical [8]. Big data and the Internet of Medical Things have made it more important
than ever to diagnose, detect, and treat mental illnesses [9,10]. Consequently, more than
45 percent of high school scholars are stressed, which has an undesirable impact on their
learning performance [11,12]. Stress, on the other hand, manifests itself in a variety of
ways [13]. As a consequence of this, it is absolutely necessary to research the effects of
stress, utilizing individual EEG signals and the data on the human brain’s bioelectrical
transmissions [14,15]. Based on the EEG data obtained from the scalp, it is possible to
examine the electrical activities of the brain [16,17]. Additionally, electroencephalography
has developed into a crucial non-invasive method for gauging brain activity that can detect
anomalies, abnormalities, and mental illnesses [18,19]. The EEG signal has been widely
utilized to identify and analyze human stress [20], particularly in the frontal lobe [21]. Many
recent studies have focused on using EEG signals to detect and diagnose mental stress, as
well as the link between frontal lobe EEG alpha-bands and emotional states activity [22,23].

Generally, EEG signals are typically electrical recordings that are random,
non-stationary, non-correlated and non-linear in character. Therefore, the proper diag-
nosis of disease from EEG signals requires advanced signal processing tools to identify the
brain’s rhythms [24]. There are four types of features of extraction techniques for raw EEG
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signals: (i) time-domain-based, (ii) frequency domain-based, (iii) time–frequency domain-
based, and (iv) spatial-time–frequency domain-based [24]. Table 1 demonstrates the feature
extraction methods for classification procedures. Frequency and temporal investigations
can improve EEG studies [4]. This research applied a time–frequency analysis technique
for EEG signals called discrete wavelet transform (DWT) analysis. The DWT technique is
useful because it can convert fluctuating EEG signals into more stable linear ones [25–27].

1.1. Machine Learning/Deep Learning for Classification of EEG Signal

After successful extraction of the features from an EEG signal, machine learning
(ML)/deep learning (DL) models are used to classify the EEG Signals. ML/DL models can
be able to learn automatically from data without any human interaction [28–36].

Recently, DL techniques have increasingly been used for the analysis of EEG signals,
due to their remarkable characteristics [34]. A DL model can be an artificial neural network
(ANN) with multiple hidden layers, such as CNN, RNN, etc. DL models use multiple layers
of neural connections for extracting different features from the data and progressively
improving the accuracy of the results. These models showed efficient results in EEG
signals classification for several disease diagnoses [27,34,36,37]. In addition, DL algorithms
perform better than typical ML models when it comes to the classification of EEG data
(brain signals) [24]. Table 1 shows the approaches of previous research in the analysis of
EEG signals.

The previous research used various ML approaches, such as naïve Bayes (NB) and
support vector machine (SVM), to detect and classify stress conditions using EEG sig-
nals [38], and proposed different stress classification techniques. The improved Elman
neural network (IENN) was used to develop a stress detection system in [39]. A cognitive
design of an autonomously intelligent agent implemented an ANN [40].

Studies of EEG signals routinely employ a wide variety of ML models, including SVM,
neural networks (NN), k-nearest neighbor (KNN), stochastic gradient decent (SGD) and
linear regression (LR), multilayer perceptron (MLP), random forest (RF) and fuzzy logic
(FL) [41–43].

Table 1. Research analysis of previous models using ML and DL.

Classifier Volunteers/
Subjects

Feature
Engineering

(Domain)
Pros. of Classifier Cons. of Classifier Accuracy

SVM 15 volunteers [41]
Correlation

analysis
(Time)

Works effectively
when classes are
well-separated

Unsuitable for large
data sets 86.94%

MLP
33 subjects,

eyes open and closed
conditions [44]

Neuro-
physiological

Features
(Time)

More efficient on
non-linear data

Classification task
computation are

complex and
consuming time

85.20%

SVM 6 subjects’
EEG dataset [45]

Hilbert Huang
Transform

(Time-Frequency)
-

Performs poorly when
target classes overlap

due to noise.
89.07%

LR 4 EEG channels features
of 27 subjects [38]

Band power
(Frequency)

Works well when
data are linearly

separable.

Requires average or no
independent variable

multi-collinearity
98.76%

SVM 17 patients were taken
from subjects [46] NIL - - 90.0%

SVM 34 patients were taken
from subjects [47]

Band Power
(Frequency) -

Needs extensive
testing such as cross

validation
85.0%
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Table 1. Cont.

Classifier Volunteers/
Subjects

Feature
Engineering

(Domain)
Pros. of Classifier Cons. of Classifier Accuracy

NB 48 practice patterns were
taken from subjects [48]

DWT
(Time and
frequency)

Process
high-dimensional

data efficiently

NB struggles to predict
minorities class data 91.60%

DL Network 32 samples were taken
from the subjects [49]

Power spectrum
density

(Frequency)

The model learns
relevant features
without manual

feature
engineering.

The training data, and
model’s performance
can decline in diverse
hardware resources.

53.42%

RF
17 scalp patients and 10
intracranial were taken

from subjects [50]

DWT
(Time and
frequency)

It automatically
selects a subset of
characteristics at

each split,
reducing the

causes of
dimensionality
and irrelevant

features.

Low-cardinality
features may be less
important or require

preprocessing to avoid
bias.

62.00%

FL 19 patients were taken
from subjects [51]

Band Power
(Frequency)

It permits the
formulation of

rules that account
for varying
degrees of

uncertainty and
exceptions

Complex fuzzy
systems demand more

processing and
memory, making them

unsuitable for
real-time or

resource-constrained
applications.

91.80%

KNN 32 healthy
subjects only [52]

DWT
(Time and
frequency)

It detects linear
and non-linear

data relationships

Struggles with class
imbalances 95.69%

Long
Short-Term

Memory
(LSTM)

32 EEG channels of
32 subjects [53]

Band power
(Frequency)

Successfully
captures long-term
relationships and
can alleviate the

vanishing gradient
issue that is typical
in standard RNNs,

making training
and optimization

simpler.

It is susceptible to
overfitting, especially
when the model has a

high number of
parameters and the

training data are
restricted.

94.69%

(Bidirectional
Long

Short-Term
Memory)
BiLSTM-

LSTM

14 EEG channels of
48 subjects [54]

Power spectral
density

(Frequency)

Processes data in
both directions,
and is able to

properly capture
past and future

contexts of the data

Requires an extensive
amount of data to train
successfully, this may

pose a problem if there
are not enough
labelled data.

97.80%

LR, NN,
RNN

1488 abnormal, 1529
normal patients were

taken from subjects [55]
Raw EEG

RNNs can learn
context from

previous inputs

RNNs face vanishing
gradient problem

RNN
achieve3.47%

more

VGG16-CNN

16 and 19 channels were
taken from 45 and

28 subjects,
respectively [35]

Continuous
Wavelet Transform
(Time-Frequency)

VGG16 can be
used as a feature
extractor or as a
starting point for
transfer learning

VGG16 requires more
computation

compared other more
streamlined CNN

architectures such as
ResNet or Inception.

98%
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Table 1. Cont.

Classifier Volunteers/
Subjects

Feature
Engineering

(Domain)
Pros. of Classifier Cons. of Classifier Accuracy

2D-CNN-
LSTM

5 channels are taken
from 60 subjects [36] Raw EEG

In hybrid model,
CNNs are

powerful in
automatically

learning
hierarchical

features from input
data and LSTM

networks; on the
other hand, can
handle temporal
variations and

long-term
dependencies in
sequential data.

It is susceptible to
overfitting, especially
when the model has a

high number of
parameters and the

training data are
restricted.

72.55%

CNN +
LSTM

60 channels features of
brain EEGs were taken

from 54 subjects [27]

Fuzzy Entropy and
fast Fourier
transform

(Frequency)

Hybrid DL model
performed well on

high dimension
data

Hybrid DL Model
takes long

computation time for
training

99.22%

Figure 1 shows how researchers collect, analyze, and classify brain signals using EEG
signal analysis. The steps are as follows: data capture, preprocessing, feature extraction
and categorization [56].
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Figure 1. EEG signal analysis general steps.

1.2. Research Contributions

This study presents a novel hybrid deep learning approach for stress detection. The
simultaneous task EEG workload (STEW) dataset was used [57], and an effective technique
called DWT for frequency band decompression and noise removal from raw EEG signals
was utilized. DWT delivers reliable frequency and timing information at low and high
frequencies. Hence, the DWT is ideal for asymmetrical data analysis [58,59]. Decomposed
EEG signals are taken as the input to a CNN-based automatic feature selection technique.
For the classification of stress levels, a hybrid combination of deep learning models called
LSTM, BiLSTM, two layers of Gated Recurrent Unit (GRU) and RNN were applied to
the classification of human stress. The hybrid combination of these techniques provided
improved performance, and could efficiently handle long-term dependencies in non-linear
brain signals. The proposed hybrid DL model, in contrast to more traditional methods of
anomaly identification, attained efficient accuracy.
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2. Approaches and Data Description

This section describes the EEG dataset used. It introduces DWT, which was used for
signal de-noising and decomposing; CNN, which was used for automatic feature extraction;
and RNN, LSTM, BILSTM and GRU, which are briefly introduced.

2.1. Dataset Descriptions

In this research, a STEW, simultaneous task EEG workload [57] dataset, was used.
This dataset consisted of total 48 subjects. A commercial psychological test single-session
simultaneous capacity (SIMKAP) experiment was performed, and the EEG signal activity
was evaluated with MATLAB EEGLAB toolbox [60]. An emotive EPOC (high resolution,
multi-channel, wireless neuroheadset) EEG device was used for EEG data collection, with
128 Hz as the sampling frequency. According to the 10–20 international system, the device
had fourteen electrodes located at AF3, F3, F7, FC5, T7, P7, O2, O1, T8, P8, FC6, AF4, F4
and F8. This research considered only a SIMKAP experiment based on subjects’ ratings on
a scale of 1–9. In reality, the inspection process as a whole was a form of validation for the
participant, who faced a greater burden while performing the test. A 1 to 3 rating was a low
burden, 4 to 6 was a moderate burden and 7 to 9 was a high burden. The EEG recordings
consisted of a total of fourteen channels. Figure 2 depicts the positions of the electrodes,
according to the 10–20 international system.
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Before starting any analysis, it was critical to process the raw EEG signal data to
remove the artefacts that were caused by muscle movement, and to clear the data of noise.
More details of the dataset description are presented in [57].

The general steps were as follows:

(a) Apply a 1 Hz high-pass filter on the raw data.
(b) Eliminate the line noise.
(c) Carry out artifact subspace reconstruction (ASR).
(d) Re-assign data to the average.

2.2. Discrete Wavelet Transform

The wavelength techniques were already fulfilled the signal decomposing along with
de-noising significantly. The transformation coefficients could be estimated to the initial
signal [58]. Wavelets can be used to classify the neighborhood features of the signals in
both the frequency and time domains. The frequency domain generates low-frequency
wavelets to compare to the large-scale time domain [61]. The continuous wavelet transform
(CWT) of signal x(n) is enumerated as follows:

WTx(a, τ) =
1√
a

∫ ∞

−∞
x(n)ψ

(
n− τ

a

)
δn (1)

where a is the scale displacement, τ is the time displacement, and ψ(i) indicates a wavelet
basis function. EEG signals are discrete signals; for this reason, DWTs are essential re-
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quirements of discrete wavelets. In comparison to the CWT, the DWT restricts the a
and τ from the wavelet basis function ψ(a,τ) to different discrete points, i.e., the scale
and displacement are discretized. The discrete wavelet basis function is expressed as
ψ(j,l) (n) = 2ˆ(−i/(2)) ψ(2ˆ(−j) n−l) where, j ∈ Z, l ∈ Z indicates DWT.

WTx(j, l) =
∫

x(n)ψ∗(n)δt (2)

In DWT, the scaling function brings off both the low- as well as the high-pass filter.
The procedure of the DWT workflow is shown in Figure 3, where approximation coeffi-
cients have a low-pass frequency resolution but a high time resolution, whereas the detail
coefficient has the reverse condition [61]. The wavelets of the four-level EEG signals are
decomposed using low-pass (LP) and high-pass (HP) filter coefficients (Figure 3), which
are detail coefficients (D1, 30–65 Hz; D2, 14–30 Hz; D3; 8–14 Hz; D4; 4–8 Hz, Theta) and
approximation coefficients (A1: 0–32 Hz; A2: 0–16 Hz; A3: 0–8 Hz; A4: 0–4 Hz, Delta) [9].
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2.3. Convolutional Neural Network (CNN)

The CNN structure can mimic the activity of the human brain’s composite cerebral
cortex. To train a multiplex model, it predicts based on a large training dataset that uses
many algorithms, such as back propagation and gradient descent optimization, to find out
effective features. It utilizes a multiple number of filtering techniques, non-linear activation
and normalization methods to extract different important features [62,63].

The recommended simple CNN input layer is involved by the convolutional layer,
which then passes the result to the next layer. The filter application and the feature
extraction properties in the convolutional layers act as an input signal [64]. Each sub-
sample input layer minimizes its dimension to reduce different number of parameters. It
learns how to reduce calculation costs by utilizing standard discretization max-pooling-1D
blocks. The flattened layer is utilized for traditional multidimensional data to flatten out.
In the classification process, dropout layers prevent the loss of validity by normalizing and
improving the neural network over-fitting problem.

2.4. Recurrent Neural Networks (RNN)

RNN are powerful and robust in nature, and consist of recurrent networks along with
internal memory. Since RNN weights are considered for both the input and looping back
output signals, these types of weights are adjusted with the help of gradient descent or
back propagation [64] algorithm. The deficit in RNN is long-term dependencies [65], while
the LSTM can solve this problem due to the design of its repeating module. RNN are time
delay networks with training complexity issues, which is a key problem, because at each
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back propagation step of computation there is gradient loss. Therefore, the LSTM model
may be utilized in place of the RNN model without having these side effects [66].

2.5. Long Short-Term Memory (LSTM)

The LSTM network presents a unique configuration known as a memory cell [64,67].
This memory cell consists of four major components: a neuron, a forget gate, an input gate,
and an output gate with a self-recurrent structure (Figure 4). The ability of cells to store
and access information for longer durations is supported by these gates.

Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 19 
 

 
Figure 4. Structure of an LSTM memory cell. 

The hidden states are calculated by the LSTM network using the following equations: 

i = σ(xnUi + sn−1Wi) (3) 

f = σ�xnUf + sn−1Wf� (4) 

o = σ(xnU∘ + sn−1W∘) (5) 

g = tanh (xnUg + sn−1Wg) (6) 

cn = cn−1 ∘ f + g ∘ i (7) 

sn =  tanh(cn) ∘ o (8) 

y = softmax (Vsn) (9) 

Traditionally, neural networks are used, such as feedforward neural networks as well 
as recurrent neural networks. In essence, a feedforward neural network is an ANN in 
which the output of any layer does not affect the overall performance of that same layer, 
i.e., there is no cycle formed by the connections between the two units. However, feedfor-
ward networks are processed to the network by both the input and output layers. 

2.6. Bidirectional LSTM 
The BiLSTM learning technique is a series of processing models that includes two 

LSTM networks: the first one acts in a forward direction, and second one in a backwards 
direction [68,69]. BiLSTMs effectively increase the amount of information available to the 
network, giving the algorithm more context. Figure 4 shows a BiLSTM model architecture 
which consists of forward, backward and hidden layers. In the BiLSTM model (Figure 5) 
architecture, σ is the activation function for the layers, and x and y are the input and out-
put, respectively. 

Figure 4. Structure of an LSTM memory cell.

The hidden states are calculated by the LSTM network using the following equations:

i = σ
(

xnUi + sn−1Wi
)

(3)

f = σ
(

xnUf + sn−1Wf
)

(4)

o = σ(xnU◦ + sn−1W◦) (5)

g = tanh(xnUg + sn−1Wg) (6)

cn = cn−1 ◦ f + g ◦ i (7)

sn = tanh(cn) ◦ o (8)

y = softmax(Vsn) (9)

Traditionally, neural networks are used, such as feedforward neural networks as well
as recurrent neural networks. In essence, a feedforward neural network is an ANN in
which the output of any layer does not affect the overall performance of that same layer, i.e.,
there is no cycle formed by the connections between the two units. However, feedforward
networks are processed to the network by both the input and output layers.

2.6. Bidirectional LSTM

The BiLSTM learning technique is a series of processing models that includes two
LSTM networks: the first one acts in a forward direction, and second one in a backwards
direction [68,69]. BiLSTMs effectively increase the amount of information available to the
network, giving the algorithm more context. Figure 4 shows a BiLSTM model architecture
which consists of forward, backward and hidden layers. In the BiLSTM model (Figure 5)
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architecture, σ is the activation function for the layers, and x and y are the input and output,
respectively.
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2.7. Gated Recurrent Units (GRU)

Traditional RNN architectures suffer from vanishing and rising gradients [70]; this
makes optimization challenging, and prevents the networks from learning long-term
dependencies. To address this issue, several RNN modifications have been proposed, the
most popular of which are long short-term memory units (LSTMs) [71,72]. In comparison
to LSTMs, GRUs are easier to implement, require fewer parameters, and have better
performance in a number of scenarios [73]. Figure 6 shows the structure of a GRU cell.
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Where reset (αt), update (βt) and output (ht) are gates at time t. outputs of gates ĥt and
ĥt−1 are the output at times t and t − 1, respectively, Input (Xt) is at time t, and the activa-
tion functions (σ, tanh). Wα, Wβ, Wĥ and Wo are the weights for the input and output of
the models.ŷt shows the output of the training sample at time t. The calculation process of
the memory unit is expressed by Equations (10)–(14).

αt = σ
(

Wα ·
[

ĥt−1, Xt

])
(10)

βt = σ
(

Wβ ·
[

ĥt−1, Xt

])
(11)

ht = tan h
(

Wĥ ·
[
αt ∗ ĥt−1, Xt

])
(12)
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ĥt = (1− βt) ∗ ĥt−1 + zt∗ht (13)

ŷt = σ
(

Wo · ĥt

)
(14)

3. The DWT-Based Hybrid DL Models

This section describes the proposed methods with a flow diagram and the parameter
settings. These experiments were performed using a Python rich library tool [74], using a
hardware configuration of RAM-32GB, i9 and CUDA-GPU. The following describes the
steps of the proposed methodology.

Step 1: Feature extraction from EEG signals
The DWT is a familiar tool used to remove noise, as well as for feature extraction

from the signals. The wavelet decomposition of a noisy signal emphasizes essential signal
information in a few large absolute-valued wavelet coefficients, without changing the
random noise distribution [75]. In this research, each subject has fourteen EEG channels.
The signal is extracted using DWT from the EEG dataset, and signals are decomposed in
four levels with Daubechies (dB4) wavelet function. Order 4 of the Daubechies wavelet
function performs better than the other orders [76]. The de-noising method is used with
a free distributed hypothesis test threshold (FDR), tunable oscillatory behavior (Q-factor)
with a value of 0.05; the threshold rule is hard and independent of the noise level. Figure 7
shows a decomposed signal in frequencies called Alpha, Beta, Gamma, Delta and Theta.
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Step 2: CNN and max pooling layer description
The CNN selects features from decomposed EEG signals in the model. In signal

processing, the CNN, a deep learning subset, has gained attention [77]. In the model, one
CNN-1d layer is continuously used with filter size ‘128′, kernel size 1, padding set as
‘valid’, and activation set as ‘Softmax’. These filters were used as inputs to the next layer.
For the purpose of feature extraction from input signals, the ‘Softmax’ activation function
was employed to describe a probability distribution over an n-valued discrete signal with
kernel size 1. For the input signals to be entirely covered by the filter, it was assumed that
all dimensions are accurate. The CNN layer receives pre-processed EEG signals as the
input, and the max-pooling filter acts as a window through which only the highest score
is selected for the output. The hit-and-trial method was used to select all of the learning
parameters.
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Step 3: Different hybrid combinations for stress classification
In this research, six hybrid combinations with the BiLSTM, RNN, LSTM and GRU

models were developed for classifying human stress levels. The hybrid combination of DL
models may provide improved performance, and can handle long-term dependencies in
non-linear brain signals. The hybridization of DLs leverages the strengths of different DL
models, and removes the limitations of single DL models. It enhances the performance
efficiency for EEG signal classification tasks [27,35,36]. Figure 8 shows the six hybrid
model combinations. The described CNN layers functioning in step 2 were same for all
combinations. In each of the first three combinations (Figure 8), the BiLSTM layer was
followed by two GRU layers (CBGG) or two LSTM layers (CBLL), or two RNN layers
(CBRR). Later, three were CNN–RNN, CNN–LSTM and CNN–GRU. Table 2 represents
each hybrid model’s parameter description. In order to solve the issue of over-fitting that
arises during the learning process, a dropout unit rate was set as 0.2. A single neuron
with a sigmoid activation function was employed to feed information into the last dense
layer. The hit-and-trial method was utilized throughout the entire process of configuring
the parameters. The model’s objective function was set as “binary_crossentropy” and the
optimizer was “Adam”. The other fitting parameters are epoch (200) and batch_size (50)
were chosen based on the hit-and-trial approach.
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Table 2. Model parameter descriptions.

Model Sequential
Layers Layer Parameters and Values

CBRR

CNN-ID
MaxPooling1D
BiLSTM Layer

RNN Layer
RNN Layer

Dropout
Total Parameters

Filter = 128, kernel size = 1,
padding = valid, activation = softmax

Pool_size = 1
Filter =64
Filter =32
Filter =16

0.2
112,927

CBLL

CNN-ID Layer
MaxPooling1D
BiLSTM Layer
LSTM Layer
LSTM Layer

Dropout
Total Parameters

Filter = 128, kernel size = 1,
padding = valid, activation =softmax

Pool_size = 1
Filter = 64
Filter =32
Fiter =16

0.2
153,681
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Table 2. Cont.

Model Sequential
Layers Layer Parameters and Values

CBGG

CNN-ID Layer
MaxPooling1D
BiLSTM Layer

GRULayer
GRU Layer

Dropout
Total Parameters

Filter = 128, kernel size = 1,
padding = valid, activation =softmax

Pool_size = 1
Filter = 64
Filter =32
Fiter =16

0.2
117,657

CNN-RNN

CNN-ID Layer
MaxPooling1D

RNN
Dropout

Total Parameters

Filter = 128, kernel size = 1,
padding = valid, activation =softmax

Pool_size = 1
Filter = 64

0.2
12,673

CNN-LSTM

CNN-ID Layer
MaxPooling1D

LSTM
Dropout

Total Parameters

Filter = 128, kernel size = 1,
padding = valid, activation =softmax

Pool_size = 1
Filter = 64

0.2
49,729

CNN-GRU

CNN-ID Layer
MaxPooling1D

GRU
Dropout

Total Parameters

Filter = 128, kernel size = 1,
padding = valid, activation =softmax

Pool_size = 1
Filter = 64
0.237,569

4. Results and Analysis

This section presents findings based on the matrices, convergence and receiver operat-
ing characteristic (ROC) curves, which are provided for a visual comparison of the hybrid
models.

4.1. Metrics-Based Performance

In this study, the data were classified into two classes, the stress state and the relaxed
state. The binary classification was evaluated on the basis of confusion matrix parameters.
The parameters’ names and formulations are specified in Table 3.

Table 3. Metrics formulation of parameters.

Parameter Formula

Precision TP
TP+FP ∗ 100

Sensitivity TP
TP+FN ∗ 100

Specificity TN
FP+TN ∗ 100

F1-Score 2 ∗ (PPV ∗ Sensitivity)
PPV+ Sensitivity

Accuracy TP+TN
TP+FN+FN+TN ∗ 100

Positive Likelihood Ratio (+LR) Sensitivity
100− Specificity

Negative Likelihood Ratio (−LR) 100− Sensitivity
Specificity
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4.2. Performance Evaluation

The performance of the proposed hybrid DWT-based CBGG model was compared
with the CBRR, CBLL, CNN–RNN, CNN–LSTM and CNN–GRU models to prove its
better efficiency. The STEW [48] dataset was used to prove the usability of the hybrid
models. The dataset had 14 channels and 921,600 (128 sampling frequency× 150 s recoding
time × 48 participants) data points per channel, with 70 percent used for instruction and
30 percent used for testing. The training data were likewise divided 70:30 for the purposes
of validating and testing the performance of the models.

The proposed CBGG model’s outcomes were evaluated using the following metrics:
accuracy, sensitivity, F-score, specificity, precision, +LR and −LR. Table 4 represents a
comparison of the models based on stated parameters. The proposed model outperformed
the existing models, and achieved highest accuracy of 98.10%. The CBRR and CBLL
models showed better efficiency compared to the CNN–RNN, CNN–LSTM and CNN–GRU
hybrid models. Furthermore, the performance metrics scores for the sensitivity (98.08%),
F-score (98.20%), specificity (97.76%), precision (98.27%), +LR (44) and −LR (0.02) of the
proposed CBGG model were higher compared to those of the other models. Figure 9 shows
a graphical representation of confusion matrix parameters over the proposed hybrid model
in comparison with the other models.

Table 4. Model comparison results.

Model Accuracy (%) Precision (%) Sensitivity (%) F1-Score (%) Specificity (%) +LR −LR

CNN–RNN 89.91 89.70 89.83 89.80 89.80 8 0.12
CNN–LSTM 95.60 95.90 95.64 95.90 94.90 19 0.05
CNN–GRU 95.20 96.09 95.77 95.50 94.70 18 0.04

CBRR 97.10 96.53 97.74 97.14 96.45 28 0.02
CBLL 97.54 97.32 97.80 97.56 97.27 35 0.02

CBGG 98.10 98.27 98.08 98.20 97.76 44 0.02
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4.3. Convergence Curve Analysis

A convergence curve for both the training and validation phases can be thought of as
a representation of the optimum possible value for a learning parameter in relation to the
accuracy, with regard to the loss function. Figure 10a–f show the training accuracy curve
and validation accuracy curve traces for the hybrid CNN–RNN, CNN–LSTM, CNN–GRU,
CBRR, CBLL and CBGG models, respectively (200 epochs). The proposed model’s (CBGG)
(Figure 10f) train and validation accuracy showed a faster convergence rate compared to
that of the other developed models, with a higher accuracy of 98.10%.
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4.4. Receiver Operating Characteristic (ROC) Curve Analysis of Models

The ROC curve is a measurement of how well a model distinguishes between the
stressed and relaxed states. Since there were so many inconsistent data points in the
collection, the performance indicator based on confusion was insufficient. It was possible
to determine the ratio of accurate positives to erroneous ones using an ROC curve, which
was applied to the test data. On the X-axis, the false positive rate was plotted, while the real
positive rate was plotted on the Y-axis. Figure 11a shows ROC curves of the CNN–RNN,
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CNN–LSTM and CNN–GRU models, and Figure 11b shows the ROC curves for the CBRR,
CBLL and CBGG models. In Figure 11b, the ROC show better efficiencies for the CBRR,
CBLL and CBGG models compared to the other three hybrid models in Figure 11a. The
proposed model (CBGG), which includes a larger ROC covered area (area under curve),
indicates that it performed better than the CBRR and CBLL models.
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4.5. Comparison of Proposed and Existing Works

This section compares the proposed research with existing machine learning models
built using EEG channels and feature selection methods on the same dataset. The detection
of relaxation and tension from EEG signals has also been the subject of numerous studies
in the literature. Table 5 shows a comparison of the CBGG’s performance with those of
existing models.

Table 5. Comparison with the most relevant models in dealing with the identification of stress in
STEW EEG signals.

Feature Extraction/
Selection Classifier Accuracy Cross-Validation

Particle Swarm
Optimization (PSO) [46] BiLSTM, LSTM 86.33% -

PSD features via FFT [48]) KNN, SVM 69.00% -
CNN-based features from

DWT signals CBGG 98.10% 97.60% (Stratified
10-Fold)

4.6. Validation of Proposed Model

To provide quantitative statistical results, predictive models were constructed on a
dataset and then evaluated using resampling techniques. Lastly, statistical analysis was
carried out to select the ideal model. The average classification accuracy in this study, based
on training and testing the CBGG model using a stratified 10-fold cross-validation method,
was 97.60%.

4.7. Limitations of the Proposed Hybrid DL Models

The main limitation of DL-based hybrid models is the complexity due to significant
parameter tuning, which required higher running time. Furthermore, the selection of
different hybrid combinations was a tedious task in proving the validity of the models on
the EEG dataset.

5. Conclusions

This study developed DWT-based hybrid deep learning models used for the classifica-
tion of stress using a STEW dataset that consisted of a total of 48 subjects. The occurrence
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of stress is quite common, and it causes many health-related issues, such as insomnia,
decreased immunity, infections, cervical impairments and migraines. EEG signals are one
of the reliable tools for stress detection. Therefore, stress can be cured before it becomes
worse. In this research, an EEG signal is used as the input, and five different frequency
bands were extracted using a DWT. After frequency extraction, a CNN was used for auto-
matic feature extraction to achieve better prediction performance. Finally, a deep hybrid
model named as CBGG showed significant performance for stress level detection. The
attained accuracy using CBGG was 98.10%. The attained results demonstrate the feasibility
of using EEG signals for the detection of stress. Therefore, this method is appropriate
for the clinical intervention and prevention of mental and physical problems. In future
research, the proposed automatic feature extraction-based hybrid deep learning model will
be tested in prediction tasks that involve a greater number of EEG datasets. Furthermore,
the large number of parameters of these hybrid combinations can be reduced, in order to
run them in edge devices.
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