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Abstract: Retinoblastoma is a rare and aggressive form of childhood eye cancer that requires prompt
diagnosis and treatment to prevent vision loss and even death. Deep learning models have shown
promising results in detecting retinoblastoma from fundus images, but their decision-making process
is often considered a “black box” that lacks transparency and interpretability. In this project, we ex-
plore the use of LIME and SHAP, two popular explainable AI techniques, to generate local and global
explanations for a deep learning model based on InceptionV3 architecture trained on retinoblastoma
and non-retinoblastoma fundus images. We collected and labeled a dataset of 400 retinoblastoma
and 400 non-retinoblastoma images, split it into training, validation, and test sets, and trained the
model using transfer learning from the pre-trained InceptionV3 model. We then applied LIME and
SHAP to generate explanations for the model’s predictions on the validation and test sets. Our results
demonstrate that LIME and SHAP can effectively identify the regions and features in the input images
that contribute the most to the model’s predictions, providing valuable insights into the decision-
making process of the deep learning model. In addition, the use of InceptionV3 architecture with
spatial attention mechanism achieved high accuracy of 97% on the test set, indicating the potential of
combining deep learning and explainable AI for improving retinoblastoma diagnosis and treatment.

Keywords: retinoblastoma; explainable AI; deep learning; LIME; SHAP; medical image analysis;
InceptionV3; transfer learning

1. Introduction

Retinoblastoma is a rare and aggressive eye cancer that affects infants and young
children, with an incidence rate of about 1 in 15,000 live births worldwide [1]. Figure 1
shows the lateral view of a normal eye compared to an eye having retinoblastoma.

(a) Healthy eye (b) Retinoblastoma eye
Figure 1. Comparison of a healthy eye (a) and a retinoblastoma eye (b) [2].

Early detection and treatment of retinoblastoma is crucial for preserving vision and
preventing metastasis, but it remains challenging due to the complex and diverse clinical
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features of the disease [3]. Fundus photography is a non-invasive and widely used imaging
technique for diagnosing and monitoring retinoblastoma, which involves capturing images
of the retina using a specialized camera and analyzing them for abnormalities [4]. However,
accurate and reliable interpretation of fundus images requires extensive training and
expertise, which is often limited in resource-constrained settings [5]. The International
Intraocular Retinoblastoma Classification (IIRC) is a standardized system for describing
the clinical features of retinoblastoma based on fundus imaging [6]. Figure 2 shows an
example of the IIRC classification system, which can aid in the diagnosis and management
of retinoblastoma.

Figure 2. Internation Intraocular Retinoblastoma Classification [6].

Deep learning models have shown remarkable progress in every domain [7–10], par-
ticularly in medical image analysis, including retinoblastoma detection from fundus im-
ages [11–14]. These models learn to automatically extract relevant features and patterns from
the input images and use them to make predictions with high accuracy and speed [15]. How-
ever, their decision-making process is often considered a “black box” that lacks transparency
and interpretability, which can hinder their clinical adoption and trust [16–18]. To address
this challenge, several explainable AI techniques have been developed to generate local and
global explanations for the predictions of deep learning models, including LIME (local inter-
pretable model-agnostic explanations) [19] and SHAP (Shapley additive explanations) [20].
These techniques aim to identify the regions and features in the input images that contribute
the most to the model’s predictions and provide insights into the decision-making process of
the models [21–25]. In this project, we explore the use of LIME and SHAP to generate expla-
nations for a deep learning model trained on retinoblastoma and non-retinoblastoma fundus
images. We collected and labeled a dataset of 400 retinoblastoma [26] and 400 normal fundus
images extracted from [27], split it into training, validation, and test sets, and trained a deep
learning model using transfer learning from a pre-trained InceptionV3 architecture [28]. We
then applied LIME and SHAP to generate explanations for the model’s predictions on the
validation and test sets, and evaluated their effectiveness in diagnosing and differentiating
retinoblastoma from non-retinoblastoma. Our study contributes to the growing body of
literature on using explainable AI for improving medical image analysis and diagnosis
and provides insights into the interpretability and transparency of deep learning models for
retinoblastoma detection.

Hence, we can say that despite the recent advances in deep-learning-based medical
image analysis, the lack of interpretability of these models hinders their application in
clinical practice. This is especially important in the context of retinoblastoma. While deep
learning models have achieved remarkable performance in detecting retinoblastoma, their
black-box nature poses significant challenges in explaining the decision-making process.
There is a clear gap in the literature when it comes to the application of explainable AI
techniques in retinoblastoma detection. According to a recent review of the literature
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by [29], interpretability is a key issue in the application of deep learning to medical image
analysis, and explainable AI techniques are becoming increasingly important in this field.
In the specific context of retinoblastoma detection, we propose an explainable AI system
that combines a deep learning model with a saliency map to identify the important regions
in retinal images for diagnosis. Our main contributions are:

• We propose a novel approach to improve the interpretability of deep learning models
for retinoblastoma detection.

• We apply LIME and SHAP, two popular explainable AI techniques, to generate saliency
maps and identify the most important features contributing to the model’s decision.

• To the best of our knowledge, this is the first study to apply LIME and SHAP for the
task of retinoblastoma detection.

• Our proposed approach provides insights into the decision-making process of the
model and enables clinicians to better understand and trust the model’s predictions.

• Our work contributes to the growing body of literature on the application of explainable
AI in medical image analysis, specifically in the context of retinoblastoma detection.

The remainder of the paper is structured as follows: Section 2 discusses the related
work section, including the most recent and relevant studies on deep-learning-based
retinoblastoma detection and explainable AI. Then in Section 3, we describe the dataset
and preprocessing steps in the data section. Additionally, in the same section we discuss
the main methods, including LIME and SHAP, and how we use them to improve the inter-
pretability of deep learning models for retinoblastoma detection. Section 3.4 discusses the
experimental setup for the training process and Section 3.5 discusses the training hyperpa-
rameters. Section 4 outlines the results of both classification and explainable visualizations.
Section 5 presents a brief discussion on the results compared with benchmarks. Section 6
covers the potential constraints and obstacles that must be recognized. Finally, in Section 7,
we summarize the main contributions of our article, identify the strengths and weaknesses
of our approach, and recommend future research directions.

2. Literature Review

Retinoblastoma is a rare and potentially fatal type of pediatric cancer that affects the
retina of the eye. Early detection and treatment are crucial for preventing vision loss and
saving lives. In the clinical context of retinoblastoma diagnosis, various approaches are
employed worldwide, including routine screening and opportunistic screening.

For the early detection of retinoblastoma, organized screening programs are in exis-
tence in various nations. These programs often involve routine eye exams for newborns
and young children to look for any disease-related symptoms. For instance, some nations
have put in place governmental initiatives that encourage routine newborn eye screenings
and subsequent follow-up exams to find retinoblastoma in its earliest stages [30]. These
screening methods are designed to find retinoblastoma before symptoms appear, allowing
for prompt treatment and intervention [31].

In contrast, other countries rely on opportunistic screening, wherein eye examinations
are conducted when an individual presents with symptoms or risk factors associated
with retinoblastoma [32]. This approach often depends on the awareness and proactive
behavior of parents, caregivers, and healthcare professionals in recognizing potential signs
of retinoblastoma, such as leukocoria (white pupil reflex) [33] or strabismus (misaligned
eyes) [34]. While opportunistic screening may help detect some cases of retinoblastoma, it
can be limited by the variability in symptom presentation and the reliance on individual
awareness [35].

However, there are limitations to the accuracy of conventional screening methods
and opportunistic screening systems, particularly when it comes to spotting small or deep-
seated tumors. Ophthalmoscopy and ultrasonography are the major traditional procedures
for finding these tumors, and while they have historically been highly successful, they do
have certain drawbacks.
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Ophthalmoscopy is a visual inspection of the retina that can detect abnormalities
such as tumors, but it requires a highly trained and experienced clinician to perform the
examination accurately. Moreover, it can only visualize the outer layer of the retina, which
may not always reveal the presence of a tumor in its early stages [36,37].

Ultrasonography is another technique that is often used to diagnose retinoblastoma.
It involves using high-frequency sound waves to create images of the eye. However, it
also has limitations, as it cannot always distinguish between benign and malignant tumors,
and it is unable to detect small tumors that are located in certain parts of the eye [38].

In general, conventional approaches have been somewhat successful in detecting
retinoblastoma [39–41], but they are challenging due to their reliance on the clinician’s skill
and their inability to pick up on profound or miniscule tumors. [42,43]. This emphasizes
the requirement for more sophisticated, automated and trustworthy diagnostic methods,
such as deep learning algorithms, to enhance the efficacy and accuracy of retinoblastoma
identification.

In the clinical setting of retinoblastoma diagnosis, AI can provide valuable support by
enhancing accuracy, efficiency, and accessibility. AI systems can examine retinal scans and
help doctors identify probable retinoblastoma symptoms, facilitating an early diagnosis
and prompt treatment. For example:

• In regions where access to specialized ophthalmologists is limited, AI-powered
retinoblastoma screening systems can be deployed. Through non-invasive meth-
ods like smartphone-based fundus photography, these devices can automatically
analyze retinal images. The retinoblastoma signs can be promptly and precisely iden-
tified by the AI algorithms, alerting medical professionals to possible cases that need
additional investigation.

• AI can assist clinicians in distinguishing between benign and malignant retinal tumors.
This capacity is especially useful in situations where differentiation is difficult based
just on visual assessment. By analyzing various features within the retinal images, AI
models can provide additional diagnostic information, aiding in appropriate treatment
planning and reducing unnecessary invasive procedures.

• AI can also help medical personnel track the development of retinoblastoma and
evaluate therapy effectiveness. By comparing sequential retinal images over time, AI
algorithms can detect subtle changes in tumor size, shape, or characteristics, enabling
early detection of tumor growth or recurrence. This timely information empowers
clinicians to adjust treatment strategies promptly and optimize patient outcomes.

Deep learning algorithms, a subfield of AI, have emerged as a well-known method for
the detection and diagnosis of several ocular fundus diseases, including diabetic retinopa-
thy [44,45], glaucoma [46,47], and age-related macular degeneration [48,49]. Large datasets
of annotated photos are used to train these algorithms so they can recognize the distinctive
traits and patterns linked to certain diseases. Furthermore, deep learning algorithms have
also recently demonstrated impressive performance in diagnosing retinoblastoma from
fundus images with high accuracy [50–53]. These algorithms use artificial neural networks
to learn and identify specific features and patterns in fundus images that are associated with
retinoblastoma. So, compared to conventional methods, automated deep-learning-based
medical image analysis has a number of benefits, including increased accuracy, scalability,
and speed.

The study by Kaliki et al. [52] explores the application of AI and ML in the diagnosis
and management of retinoblastoma. Their qualitative investigation included 109 eyes
with 771 fundus pictures, 590 of which showed iRB. The trained AI model’s sensitivity,
specificity, positive predictive value, and negative predictive value were, respectively, 85%,
99%, 99.6%, and 67%. Their results show promising accuracy rates and suggest that AI
has the potential to improve the diagnosis and treatment of retinoblastoma. Kumar [54]
proposed a CNN-based method for detecting retinoblastoma. The proposed method
utilized an automated thresholding method to identify the tumor-like region (TLR) in
retinoblastoma, followed by the use of ResNet and AlexNet algorithms for classification of
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cancerous regions. The performance of ResNet and AlexNet was compared, and ResNet50
was found to yield the highest classification performance of 93.16%. In another paper, by
Jebaseeli et al. [55], the focus is on the detection of retinoblastoma through image analysis.
In their proposed work, the fundus picture is preprocessed to eliminate noise brought
on by light during eye scanning or recording using a linear predictive decision-based
median filter. After that, a 2.75D CNN approach is used to segment the images in order
to separate the foreground tumor cells from the backdrop. On the basis of the tumor
stage of malignancy, the tumors are then divided into additional categories. The accuracy,
sensitivity, and specificity of the suggested method are greatly increased to 98.84%, 97.96%,
and 98.32%, respectively. The study conducted by Rahdar et al. [56] focused on developing
a semi-supervised segmentation method for retinoblastoma tumors in fundus images.
The proposed method utilized a combination of unsupervised clustering and supervised
classification techniques to extract the tumor regions from the fundus images. The authors
evaluated the performance of their method on a dataset of 80 fundus images and compared
it with other state-of-the-art methods. The GMM was selected as the clustering algorithm
due to its capability of drawing elliptical boundaries and its probabilistic nature. Overall,
the study presented a promising approach for the accurate and efficient segmentation of
retinoblastoma tumors in fundus images, which could have potential implications for the
diagnosis and treatment of retinoblastoma.

In another study, conducted by [57], the authors describe a multi-view convolutional
neural network for automated ocular anatomy and tumor segmentation in retinoblastoma
patients using MRI. The researchers used intra-class correlation and the dice similarity
coefficient to assess morphological and spatial performance in 40 retinoblastoma and 20
healthy eyes from 30 individuals. The best results were obtained by using a three-level
pyramid MV-CNN and data enhancement. The findings demonstrated that MV-CNN
can accurately segment retinoblastoma ocular structures and tumors. Henning et al. [58]
discuss the use of CNNs to detect leukocoria, or white-eye reflections, which is a prominent
symptom of retinoblastoma. The researchers trained several CNNs of varying architectures
and depths. The researchers found that CNNs produced much better results than traditional
fully-connected neural networks and that biased architecture of CNNs allows for a fully
trainable system without requiring hand-coded feature extractors. The researchers also
found that a small capacity network achieved better results for their task than larger
capacity networks. In another work, by [59], a deep Visual Geometry Group-net CNN
classifier is proposed for the automatic detection of leukocoria. The study takes use of a
database of 124 eye scans, 35 of which are classified as ’leukocoric’ and the remaining as
’healthy’. Moreover, the study looks into the usage of deep features extracted from the
VGG-Net for leukocoria identification tasks.

However, all of these studies mainly focus on detection and segmentation. Zhang et al. [60]
developed the Deep Learning Assistant for Retinoblastoma (DLA-RB), which uses uses
explainable AI to generate visualizations by Grad-CAM to highlight the regions of an
image that are most important in the algorithm’s prediction. Statistical analysis was
conducted using both R-Statistical Software (version 4.1.1, R Foundation for Statistical
Computing, Vienna, Austria) and Stata (version 17.0, StataCorp LLC, College Station, TX,
USA). The efficiency of the algorithm was compared to that of human ophthalmologists,
and a cost-utility study revealed that their proposed system is more affordable for both
retinoblastoma identification and tumor activity surveillance.

Despite these promising results, there is still a lack of studies that have applied
explainable AI techniques to retinoblastoma detection. Most studies to date have focused on
the development of deep learning models and have not explored the potential of explainable
AI to improve their interpretability and trustworthiness. This research gap highlights the
need for further studies that explore the use of explainable AI in retinoblastoma detection
and its potential impact on clinical decision-making.

In this paper, we present a novel approach for retinoblastoma detection that com-
bines deep learning models with explainable AI techniques. We use a dataset of 800 fun-
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dus images, half of which are labeled with retinoblastoma and the other half are non-
retinoblastoma. We first train a deep learning model to classify the images into retinoblas-
toma and non-retinoblastoma categories and then apply LIME and SHAP to generate
visual explanations for the model’s predictions. Our contributions include the development
of a novel retinoblastoma detection approach that combines deep learning models with
explainable AI techniques, and an evaluation of the effectiveness of LIME and SHAP in
improving the interpretability and trustworthiness of the model.

3. Materials and Methods

In this section, we provide an overview of the materials and methods used in our
study. We describe the dataset collection process, preprocessing steps, model architecture,
training procedure, and evaluation metrics employed. Figure 3 provides an illustrative
representation of the overall framework, depicting the sequential steps involved in the data
collection, preprocessing, model training, and the application of explainable AI techniques
(LIME and SHAP) for generating local and global explanations.

Figure 3. Illustration of the Overall Framework.

3.1. Gathering Data and Preprocessing

We collected a dataset of retinoblastoma and non-retinoblastoma fundus images
from multiple sources, including the MathWorks Retinoblastoma Dataset [26] and Google
Images. The MathWorks dataset contained 140 retinoblastoma images, while the additional
retinoblastoma images were obtained from Google Images. We ensured accurate labeling
of the retinoblastoma images by consulting with two expert ophthalmologists.

We extracted non-retinoblastoma images from the Messidor dataset [27] by filtering
for grade level 0 (no visible lesion) and resized all images to 224 × 224 pixels. We randomly
split the combined dataset of retinoblastoma and non-retinoblastoma images into training
(60%), validation (20%), and test (20%) sets using stratified sampling to ensure a balanced
distribution of images in each set.

The images were preprocessed by normalizing the pixel values to the range [0, 1] and
applying data augmentation techniques to the training set, including rotation, zooming,
and flipping. Figure 4 shows some sample images from our dataset.
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(a) Retinoblastoma Fundus (b) Normal Fundus
Figure 4. Sample image from dataset: (a) retinoblastoma fundus and (b) normal fundus.

3.2. Deep Learning Model

Deep learning has become increasingly popular in the medical field for image clas-
sification tasks, including the detection of retinoblastoma, a rare and aggressive form of
childhood eye cancer. In this study, we developed a deep learning model based on transfer
learning and the InceptionV3 architecture to accurately classify retinoblastoma from fundus
images. Figure 5 shows the overall flow diagram of our model.

Figure 5. Architecture of transfer learning with InceptionV3 model for retinoblastoma classification,
including LIME and SHAP visualizations.

3.2.1. Transfer Learning

Transfer learning has been widely used in deep learning applications, including medical
image analysis, due to the limited availability of large annotated datasets. In our study, we
used transfer learning to overcome the challenge of a small dataset by leveraging a pre-trained
deep learning model and fine-tuning it for our specific task of retinoblastoma classification.
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3.2.2. InceptionV3

InceptionV3 is a popular deep learning architecture that has been shown to achieve high
accuracy in various image classification tasks. We chose InceptionV3 as the base architecture
for our retinoblastoma classification model due to its high performance on similar tasks and
its ability to extract meaningful features from input images. Additionally, we added two fully
connected dense layers with L2 regularization and a final dense layer with sigmoid activation
to the InceptionV3 architecture to improve its performance on our specific task.

3.2.3. Model Architecture

We added a GlobalAveragePooling2D layer to reduce the spatial dimensions of the
output from the InceptionV3 model and then added two fully connected dense layers with
L2 regularization to prevent overfitting. We used an activation function of ReLU in the
dense layers, which has been shown to be effective in deep learning models. To further
prevent overfitting, we added dropout layers with a rate of 0.3 after each dense layer.
Finally, we added a final dense layer with sigmoid activation for binary classification,
as our task was to classify fundus images as either retinoblastoma or non-retinoblastoma.

3.3. Explainable AI Techniques

We used two popular explainable AI techniques, LIME and SHAP, to generate local and
global explanations for the deep learning model’s predictions on the validation and test sets.
LIME generates an interpretable model by training a local linear model around the prediction
point, while SHAP provides a unified framework for feature importance estimation.

3.3.1. LIME

LIME is a well-known model-independent technique for generating explanations for
individual predictions generated by a black-box model. It creates a local linear model
around the prediction point and weights the input features to estimate their importance
in the prediction. We used the Lime package in Python to generate explanations for our
model’s predictions on the validation and test sets.

3.3.2. SHAP

SHAP is a game-theory technique to explain machine learning model output. It
provides a unified framework for feature importance estimation and generates global
explanations for the model’s behavior. We used the SHAP library in Python to generate
feature importance values for our model’s predictions on the validation and test sets.

3.4. Experimental Setup

All experiments were conducted using Google Colab, a cloud-based platform for
machine learning that provides access to powerful GPUs. We used a Tesla T4 GPU for
training our deep learning model and generating explanations using LIME and SHAP.
The implementation of the deep learning model and explainable AI techniques was per-
formed in Python using the Keras and Lime packages for LIME and the SHAP library
for SHAP.

3.5. Training Hyperparameter

Through a methodical grid search, we carefully adjusted numerous hyperparameters,
including the learning rate, batch size, and number of epochs, to optimize the performance
of our deep learning model. Additionally, we used a binary cross-entropy loss function and
the Adam optimizer to train our model. The final architecture of our model consisted of a
pre-trained InceptionV3 base with two dense layers and a final sigmoid layer for binary clas-
sification. We also used L2 regularization and dropout to prevent overfitting and improve
generalization. Table 1 shows the selected hyperparameter values for model optimization.
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Table 1. Optimized Hyperparameter Values for Model Training

Hyperparameter Value

Learning rate 0.001

Number of epochs 100

Batch size 32

Dense layer 1 size 256

Dense layer 1 reg L2 (0.001)

Dropout 1 0.3

Dense layer 2 size 128

Dense layer 2 reg L2 (0.001)

Dropout 1 0.3

Optimizer Adam

Loss function Binary crossentropy

4. Results
4.1. Results of Classification of Retinoblastoma and Normal Fundus

After training the model for 100 epochs, we achieved a training accuracy of 99% and a
validation accuracy of 99%. The model also performed well on the test data, with an accuracy
of 97%. The loss also decreased during the epochs, indicating that the model was learning
from the data. To visualize the training and validation accuracy and loss during the training
process, we plotted two separate figures. Figure 6 shows the training and validation accuracy
curves, which indicates that the accuracy steadily improved during the training process for
both the training and validation data. Figure 7 shows the training and validation loss curves,
which indicates that the loss decreased during the training process for both the training and
validation data. These results demonstrate that our deep learning model was able to accurately
classify retinoblastoma and normal fundus images with high accuracy. Below, we further
discuss the evaluation metrics in general with our test results on each metric.

Figure 6. Accuracy Curve for Training and Validation for the Initial Epochs.
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Figure 7. Loss Curve for Training and Validation for the Initial Epochs.

4.2. Evaluation Metrics
4.2.1. Accuracy

The model’s accuracy on the test set was 97%. The ratio of correct predictions to
the total number of predictions made by the model is defined as accuracy. The accuracy
formula is as follows:

Acc = (TP + TN)/(TP + TN + FP + FN) (1)

where TP = (true positive), TN = (true negative), FP = (false positive), and FN = (false
negative).

4.2.2. Precision

The model’s precision on the test set was 98.8%. Precision is defined as the proportion
of correctly predicted occurrences to the total number of positive predictions provided by
the model. The following is the precision formula:

Precision = TP/(TP + FP) (2)

4.2.3. Recall

The recall of the model on the test set was 99.6%. The ratio of accurately anticipated
positive cases to the total number of actual positive instances in the dataset is defined as
recall. The formula is as follows:

Recall = TP/(TP + FN) (3)

4.2.4. F1 Score

The F1 score of the model on the test set was 99.2%. The F1 score is a harmonic average
of precision and recall, and it creates a balance between the two metrics. The formula is
as follows:

F1Score = 2 ∗ (Precision ∗ Recall)/(Precision + Recall) (4)
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These evaluation metrics indicate that our deep learning model was able to accurately
classify retinoblastoma and normal fundus images with high accuracy, precision, recall,
and F1 score.

4.3. Visualization Results using LIME and SHAP

We used two popular explainable AI techniques, LIME and SHAP, to generate local
and global explanations for the deep learning model’s predictions on the validation and test
sets. LIME produced segmentations of the images and highlighted the important regions for
classification. The important features of retinoblastoma fundus include yellow-white mass,
calcification, retinal detachment, vitreous seeding, and subretinal fluid. LIME identified
most of these features in the retinoblastoma images, but some of the segmentations were
not accurate, including the outer region of the fundus. Nonetheless, the model’s important
regions were identified in most of the images. Figures 8 and 9 show the saliency map for
two sample retinoblastoma images using SHAP.

Figure 8. Saliency Map of Retinoblastoma Image 1 Using LIME.

On the other hand, SHAP provided a more accurate explanation of the model’s
predictions by assigning feature importance scores to individual pixels in the image. We
observed that SHAP was more effective in identifying important regions of the image,
with pink areas highlighting the areas correctly identified as significant in retinoblastoma
images and blue areas indicating the lack of significant features in normal images. SHAP
also showed that the most important features for classification were the presence of a
yellow-white mass and calcification, consistent with clinical observations. We created
visualizations of the SHAP values to show the areas of the image that contributed most
to the model’s prediction. These visualizations provide valuable insight into the model’s
decision-making process and can aid medical professionals in interpreting the model’s
predictions. Figures 10–12 show the saliency map for two sample retinoblastoma images
using SHAP. On the other hand, Figures 13 and 14 show the SHAP values for the normal
fundus images from the datset.
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Figure 9. Saliency Map of Retinoblastoma Image 2 USING LIME.

Figure 10. Saliency Map of Retinoblastoma Image 1 USING SHAP.
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Figure 11. Saliency Map of Retinoblastoma Image 2 USING SHAP.

Figure 12. Saliency Map of Retinoblastoma Image 3 USING SHAP.
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Figure 13. Saliency Map of Normal Fundus Image 1 USING SHAP.

Figure 14. Saliency Map of Normal Fundus Image 2 USING SHAP.

As can be seen from Figures 10–14, in the case of retinoblastoma images, the presence of
a yellow or white mass may be considered as an important feature by the SHAP algorithm,
leading to the corresponding area being highlighted in pink. On the other hand, normal
images may not have any significant features that impact the model output, leading to the
SHAP values being blue across the entire image.
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5. Discussion

The comparative analysis of various studies in Table 2 reveals that our study is
highly competitive in terms of performance metrics such as accuracy, precision, recall,
and F1 score. None of the studies in the table, except Zhang et al. [60], utilized any XAI
techniques. On the other hand, our study used two popular XAI techniques, LIME and
SHAP, for the interpretation of the classification model. SHAP provided a better color-coded
interpretation of feature importance, which helped in identifying the most discriminative
features between retinoblastoma and normal fundus images.

Table 2. A Comparative Analysis of Our Model and Established Benchmarks.

Study Model Dataset Performance XAI Used

Kaliki et al. [52] AI model 109 eyes, 771 fundus
pictures

Sensitivity: 85%,
Specificity: 99%,
PPV: 99.6%, NPV: 67%

No

Kumar [54] CNN-based
ResNet50 Not specified Accuracy: 93.16% No

Jebaseeli et al. [55]

Linear predictive
decision-based
median filter,
2.75D CNN

Not specified
Accuracy: 98.84%,
Sensitivity: 97.96%,
Specificity: 98.32%

No

Rahdar et al. [56]
Semi-supervised
segmentation
method

80 fundus images Not specified No

Strijbis et al. [57]
Multi-view
convolutional
neural networks

40 retinoblastoma and
20 healthy eyes Not specified No

Henning et al. [58] CNNs Flickr training images Low error rates (<3%) No

Subrahmanyeswara et al. [59]

Deep Visual
Geometry
Group-net CNN
classifier

Not specified Not specified No

Zhang et al. [60] CNN(ResNet) Not specified Not specified
Feature
Heatmaps
Grad-CAM

Our Model Transfer learning
Inceptionv3 800 fundus images

Testing accuracy: 97%,
Precision: 98.8%,
Recall: 99.6%,
F1 score: 99.2%

Feature
Heatmaps
Grad-CAM

Comparing our study with the benchmark studies presented in Table 2, it is evident
that our study outperforms most of them in terms of accuracy and other performance
metrics. For instance, in the study by Kaliki et al. [52], the AI model achieved a sensitivity
of 85%, specificity of 99%, PPV of 99.6%, and NPV of 67%. While their model achieved
high specificity and PPV, it performed poorly in terms of sensitivity and NPV. In contrast,
our model achieved a high recall of 99.6%, which indicates the ability to correctly iden-
tify positive samples. This is particularly important in medical applications where false
negatives can be detrimental to patient outcomes. Similarly, in the study by Kumar [54],
the CNN-based ResNet50 achieved an accuracy of 93.16%. This is significantly lower than
the accuracy achieved by our model, which is 97%. This suggests that the transfer learning
approach using InceptionV3 has been effective in improving the accuracy of the model.
Moreover, in the study by Jebaseeli et al. [55], the linear predictive decision-based median
filter and 2.75D CNN achieved an accuracy of 98.84%, sensitivity of 97.96%, and specificity
of 98.32%. While their model achieved high accuracy and sensitivity, it performed slightly
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lower in terms of specificity compared to our model. This indicates that our model can
correctly identify negative samples with high precision. Furthermore, our study used a
relatively larger dataset than most of the studies in the table, which provides a more robust
evaluation of the model’s performance.

6. Limitations

This study acknowledges some important limitations. Firstly, the potential bias arising
from the dataset composition, which primarily consists of Google Images and textbook
cases. Textbook cases often represent clear and well-defined instances of retinoblastoma,
which may not fully capture the complexity and variability encountered in clinical practice.
Real-world clinical situations might make it difficult to tell retinoblastoma from other
disorders since certain cases may resemble retinoblastoma but be associated with other
pathologies, or vice versa. As a result, even though the dataset used in this study provided
a useful basis for training the AI model, it is crucial to recognize the potential drawbacks in
extrapolating the findings to the complexity of actual clinical settings. Future investigations
should aim to incorporate diverse and representative datasets that encompass a broader
spectrum of retinoblastoma cases encountered in clinical practice, including those with
atypical or ambiguous presentations.

Second, the absence of data on the model’s performance in actual clinical situations
poses a restriction to our work. While the model has been developed and trained on a
specific dataset, its effectiveness and reliability in practical healthcare applications remain
unknown. The performance of the model may be impacted by a number of variables intro-
duced by real-world scenarios, such as variations in image quality, patient demographics,
and clinical circumstances. Additionally, elements absent from the training dataset, such
as underrepresented rare or unusual occurrences, may have an impact on the model’s
performance. It is important to acknowledge that performance observed in controlled ex-
perimental settings may not directly translate to real-world clinical practice. Thus, further
research and evaluation are necessary to assess the model’s performance in diverse clinical
settings and validate its usefulness as an effective diagnostic tool for retinoblastoma.

Finally, the lack of cheap and widely accessible techniques for capturing images of the
eye fundus in children is also a limitation. In many healthcare settings, especially in places
with low resources, traditional procedures such as ophthalmoscopy and ultrasonography
may not be readily available since they frequently call for specialized equipment and trained
personnel. However, the integration of AI technology in retinoblastoma diagnosis holds
the promise of overcoming this limitation. With the advancements in mobile and portable
imaging devices, coupled with AI algorithms, it is possible to develop cost-effective and
user-friendly solutions for capturing high-quality retinal images in pediatric populations.
AI algorithms can then be applied to these images to assist in the detection and diagnosis
of retinoblastoma, even in settings with limited resources. Therefore, future research
and development should focus on harnessing the potential of AI to address the lack of
cheap techniques for capturing fundus images in children, thus enabling broader access to
retinoblastoma diagnosis and improving outcomes for affected individuals.

7. Conclusions

In conclusion, our investigation reveals the efficiency of deep learning models in the
classification of retinoblastoma and normal fundus images. Our model achieved high
accuracy, recall, precision, and F1 scores on the test-set. The LIME and SHAP visualizations
provided local and global explanations for the model’s predictions, highlighting important
regions for classification.

One potential limitation of our study could be the size of the dataset. Although we
used a comprehensive dataset for our study, it is important to note that collecting more
images on a real-time basis could enhance the generalizability of our findings to larger and
more diverse datasets.
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Moving forward, we see two potential future directions for this work. Firstly, we can
test the model’s applicability to additional ocular illnesses such as diabetic retinopathy
and age-related macular degeneration. Secondly, we can investigate the use of ensemble
models and model interpretability techniques such as attention mechanisms to improve
the robustness and explainability of our model.

Overall, our study provides a promising avenue for the use of deep learning models
in the automated diagnosis of retinoblastoma, and we hope that our findings will inspire
further research in this field.
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