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Abstract: Geometrical assessments of human skulls have been conducted based on anatomical
landmarks. If developed, the automatic detection of these landmarks will yield both medical and
anthropological benefits. In this study, an automated system with multi-phased deep learning
networks was developed to predict the three-dimensional coordinate values of craniofacial landmarks.
Computed tomography images of the craniofacial area were obtained from a publicly available
database. They were digitally reconstructed into three-dimensional objects. Sixteen anatomical
landmarks were plotted on each of the objects, and their coordinate values were recorded. Three-
phased regression deep learning networks were trained using ninety training datasets. For the
evaluation, 30 testing datasets were employed. The 3D error for the first phase, which tested 30 data,
was 11.60 px on average (1 px = 500/512 mm). For the second phase, it was significantly improved to
4.66 px. For the third phase, it was further significantly reduced to 2.88. This was comparable to the
gaps between the landmarks, as plotted by two experienced practitioners. Our proposed method of
multi-phased prediction, which conducts coarse detection first and narrows down the detection area,
may be a possible solution to prediction problems, taking into account the physical limitations of
memory and computation.

Keywords: multi-phased deep learning; regression neural network; coordinate value; computer-assisted
tomography (CT); craniofacial bone

1. Introduction

Measuring the distances between characteristic landmarks and the angles between
certain planes determined by points is a useful approach to determining the shape of an
object. This approach has long been used to evaluate human skulls [1–4]. However, it is
impossible to obtain direct access to these landmarks when measuring the skulls of living
humans. X-ray imaging makes it possible to project the skull. In the 1920s, Todd and
Broadbent developed a device capable of holding human skulls and mandibles, which
allowed for the acquisition of standardized radiographs [5]. Cephalometry, which was
first introduced by Broadbent [6] and Hofrath [7] in 1931, remains one of the most helpful
modalities for evaluating cranio-maxillo-facial configurations. Geometrical assessments
are performed based on anatomical landmarks [8–11]. By utilizing cephalometry, clinicians
and researchers can identify important characteristics and anomalies of the craniofacial
region. The information forms the basis of surgical planning and future research. Various
parameters based on cephalometry can be used to establish baselines and track changes
over time.

Locating anatomical landmarks requires time and expertise. The automatic detection
of such landmarks would provide significant medical and anthropological benefits. A
number of studies have been conducted with the aim of accomplishing this challenge in
2D cephalograms [12–21], and a systematic review was published [22] in 2008. However,
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it was not possible to compare the studies’ methods, as they all used their own data,
so were different from one another. The unification of the image data was necessary in
order to carry out an assessment. Significant challenges were presented in 2014 [23] and
2015 [24], in conjunction with the IEEE International Symposiums on Biomedical Imaging.
Cephalometric X-ray images with the coordinate values of landmarks were provided by the
organizers. Participants competed by applying their own approaches to the same datasets.
The top positions were achieved by contestants who used the random forest method [24].
Lindner et al. [25] used the same images with a subset of coordinate values. After that,
a method using convolutional neural networks was proposed [26]. It outperformed the
previous benchmarks with the same datasets used in the challenge. The use of multi-phased
regression deep learning neural networks [27] with regression voting [28,29] enhanced
the prediction accuracy. Kim et al. utilized a two-stage method with their own larger
datasets [30]. Multi-staged convolutional neural networks were used on two-dimensionally
projected cone beam computed tomography (CBCT) [31]. A study with an attentive feature
pyramid fusion module [32] has surpassed previously published works. A systematic
review of the use of artificial intelligence in cephalometric landmark identification was
recently conducted [33]. A new challenge with larger datasets is currently underway [34].

The evaluation of objects as two-dimensionally projected images necessarily entails
some inaccuracies and failures. Some of the original information contained in three-
dimensional forms is lost or obscured by reducing the expressive dimension. It is rare for
the cranium to be bilaterally symmetrical. There is often a significant degree of asymmetry
between the left and right sides. In observing lateral cephalograms, it is common for the
positions of the left and right mandibular angles to be misaligned in the images.

Three-dimensional cephalometric analysis was originally conducted with two (lateral
and basilar or posteroanterior) cephalograms [35–38]. Computer-assisted tomography
(CT) has become popular in daily clinical practice. Horizontal slices are presented as two-
dimensional pictures, and CT images are usually stored in DICOM (Digital Imaging and
Communications in Medicine)-formatted files. They can be digitally restructured into vir-
tual three-dimensional objects. Additionally, 3D printing can be carried out, which enables
people to visually comprehend the objects being studied. Three-dimensional measurements
can be performed on the objects based on the anatomical landmarks. The cephalometric
analysis of the three-dimensional images is becoming increasingly popular [39–41].

In comparison with the reports on 2D cephalograms, reports on the automatic land-
mark detection systems for 3D images are relatively new and fewer in number [42].
Shahidi et al. [43] used an atlas-based method to identify 14 landmarks from 20 CBCT
images in 2014. A knowledge-based method [44] was reported in 2015. Various kinds of
learning-based methods [45–55] have been reported. In our experience with 2D cephalo-
grams [27–29], a multi-phased deep learning system was able to predict coordinate values
with high precision. It first made a rough prediction for the whole area of the image; then, it
marked down smaller areas of interest in the following phases. In this report, we present a
multi-phased deep learning system for predicting the three-dimensional coordinate values
of craniofacial landmarks in sequences of CT slices.

2. Materials and Methods
2.1. Personal Computer

All procedures were performed on a desktop personal computer: CPU (central pro-
cessing unit)—AMD Ryzen 7 2700X 3.70 GHz (Advanced Micro Systems, Sunnyvale, CA,
USA), memory—64.0 GB, GPU—GeForce RTX2080 8.0 GB (nVIDIA, Santa Clara, CA, USA),
and Windows 10 pro (Microsoft Corporations, Redmond, WA, USA). Python 3.7 (Python
Software Foundation, Wilmington, DE, USA), a programing language, was used under
the Anaconda 15 (FedoraProject. http://fedoraproject.org/wiki/Anaconda#Anaconda_
Team_Emeritus, accessed on 30 May 2023) as an installing system, and Spyder 4.1.4 was
used as an integrated development environment. Keras 2.31 (https://keras.io/, accessed
on 20 February 2020), a deep learning library written in Python, was run on TensorFlow

http://fedoraproject.org/wiki/Anaconda#Anaconda_Team_Emeritus
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1.14.0 (Google, Mountain View, CA, USA). The reason for using Keras with Tensorflow
was that there are active communities of developers and researchers for them, providing
vast varieties of pre-developed or pre-trained models. GPU computation was employed
through CUDA 10.0 (nVIDIA). For 3D reconstructions, slicer 4.11 (www.slicer.org, accessed
on 20 February 2021) was used with the Jupyter Notebook (https://jupyter.org/, accessed
on 20 February 2021). OpenCV 3.1.0 libraries (https://docs.opencv.org/3.1.0/, accessed on
20 February 2021) were used in the image processing.

2.2. Datasets
2.2.1. CT Images

A collection of CT images from head and neck squamous cell carcinoma patients was
retrieved from the public access Cancer Imaging Archive (wiki.cancerimagingarchive.net)
Head-Neck-Radiomics-HN1 dataset [56]. The dataset consists of a folder for each patient,
containing 512 × 512 px DICOM images, taken axially at 5 mm intervals in the cephalocau-
dal direction: 512 px correspond to 500 mm, as the pixel spacing recorded in DICOM tag
was (0.9765625, 0.9765625). The order of the images was checked and images from the top
of the head to the mandible were extracted for 120 cases. The images from the caudal to the
area of interest were excluded. The largest number of images extracted for a single patient
was 81. The direct reads of the numbers in the images ranged from 0 to 4071. To standardize
the coordinate values and their origins, the size of all the reconstructed 3D objects was set
to 512 by 512 px in the x and y directions. For convenience, in the subsequent procedures,
pixels were used as the unit of measurement. As a calibration marker, a cross of 512 px in
length and width was added to the most caudal image of each patient. Briefly, from each
patient folder, the last DICOM file was selected. Using Pydicom, a Python module that
deals with DICOM files, the image was read from the file. Using NumPy, another Python
module used for mathematical operations, all elements with an index of 255 in the 0 and
1 dimensions were replaced by the number 4000. Using Pydicom, the original image in the
DICOM file was replaced by the image with the calibration cross and was then saved.

2.2.2. 3D Reconstruction (STL File Creation)

The DICOM CT image sequence for each case was processed with a 3D slicer kernel
using Jupyter Notebooks. Using a python script process [57], sequences of DICOM files for
patients were loaded. Bony parts were segmented into groups of 250 and reconstructed
into 3D objects. The size of the objects, including the blank areas, was 512 × 512 along the
x- and y-axes and varied along the z-axis, depending on the patient. They were stored as
STL files. The script produced STL objects for all patients in a series. It took 1 h and 40 min
to convert all 120 of the DICOM file series into STL images.

2.2.3. Plotting Anatomical Landmarks

Each STL file was imported into blender (https://www.blender.org/, accessed on 20
February 2021). For each anatomical landmark, a colored sphere with a radius of 1 px was
placed in the corresponding location. Five perspective views of the object were displayed on
a screen to ensure the location of the spheres in the x, y, and z directions. The objects with
the spheres were saved in the STL format. To maintain consistency, the spheres for a given
landmark were placed on all the objects in the series. After one landmark had been plotted for
all the objects, another landmark plotting procedure was undertaken. The plotted landmarks
are listed in Table 1 and shown in Figure 1. Most of the images were likely from elderly
patients, as there were many missing teeth. Many of the images were taken in the open bite
position. Therefore, landmarks on teeth were not plotted in this study. Using Python scripts
for blender, the three-dimensional coordinate values (x, y, z) of the spheres on the STL objects
were obtained. They were exported as an array of 120 cases × 16 points × 3 in the csv format.
Two practitioners, with 31 and 10 years experience, plotted the landmarks. The coordinate
values plotted by the senior practitioner were used as the ground truth.

www.slicer.org
https://jupyter.org/
https://docs.opencv.org/3.1.0/
https://www.blender.org/
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Table 1. Plotted landmarks.

No Abbreviation Description

L01 A Point A
L02 AntNS Anterior nasal spine
L03 LGoni Left gonion
L04 LOrbi Left inferior lateral orbital rim
L05 LPori Left porion
L06 LsupO Left supra orbital incisura
L07 Mento Menton
L08 Nasio Nasion
L09 PocEx External occipital protuberance
L10 PosNS Posterior nasal spine
L11 RGoni Right gonion
L12 ROrbi Right inferior lateral orbital rim
L13 RPori Right porion
L14 RsupO Right supra orbital incisura
L15 Sella Center of sella turcica
L16 XstaG Top of crista galli
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2.3. Neural Networks and Learning Datasets

Ninety cases were designated as training data and thirty were used as testing data.



Diagnostics 2023, 13, 1930 5 of 16

2.3.1. First-Phase Deep Learning

Each CT image in the DICOM files in the folders of the cases used for training was
read using Pydicom (512 × 512 px). Using OpenCV, the CT image was compressed
to 96 × 96 px. It was binarized to segment bone with 1100 as the threshold and then
converted to a 0 or 1. Arrays of zeros with a 96 × 96 × 81 shape were prepared for a
three-dimensional template. For each case, compressed images replaced the template
from the bottom and were stacked up. A modified regression deep learning model (only
the last activation layer was changed, from “softmax” to “linear”), Resnet 3d-50 [58],
was built, with 96 × 96 × 81 as the input and 48 as the output. The coordinate values of
16 landmarks were set as the targets, the batch size was set to 8, and it was trained for
150 epochs. The weights of the trained model were saved as a file (Figure 2).
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Figure 2. Diagram of the first-phase deep learning. Each CT image (512 × 512 px) was compressed
to 96 × 96 px and stacked up. A regression deep learning model was trained with 90 cases for
150 epochs.

2.3.2. Second-Phase Deep Learning

Each CT image in the DICOM file was read with Pydicom. A 100 × 100-px image was
cropped out from each original image using OpenCV, centered on the x and y coordinates
of each landmark. It was binarized to a 0 or 1 using the threshold of 1100. All the cropped
and binarized images were stacked up from the bottom to form a 100 × 100 × 81 3D array.
The target coordinate values were 50 for x, 50 for y, and the ground truth z value for z. For
data augmentation, the images were also cropped out at shifted positions in the x and y
directions, from −30 to 30, in 10-px steps. They were stacked in the same way to obtain
the positions of the feature points in each array (3240 sets in total). The target coordinate
values along the x- and y-axes for these shifted images were changed with the amount of
shift. For each landmark, the modified Resnet 3d-50 model was prepared for regression
with 100 × 100 × 81 as the input and 3 as the output. In total, 16 models with a batch size
of 16 were trained for 100 epochs. The weights of the trained models were saved (Figure 3).
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3D array. The shifted images were also cropped and stacked for data augmentation. A model was
trained for each landmark.

2.3.3. Third-Phase Deep Learning

A 50 × 50-px image was cropped out from each original image, using the same
method described for the second phase. Stacks of 50 × 50 × 81 were obtained. The
target value for x was 25, for y it was 25, and for z it was the ground truth z value. For
data augmentation, the images were also cropped out at shifted positions in the x and
y directions, from −15 to 15 in 5-px steps. The target values for x and y were changed
as the range shifted. For training, 3240 sets of data for each landmark were used. A
modified Resnet 3d-50 model with an input of 50 × 50 × 81 and an output of 3 was
constructed. In total, 16 models with a batch size of 16 were trained for 150 epochs. The
trained weights were saved (Figure 4).
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2.4. Evaluation

For the evaluation, 30 testing datasets that were not used during training were em-
ployed (Figure 5). It took 52.5 s to load the modules and 33 models. Landmark predictions
for 30 patients using 3-phase models took 33 min and 3.0 s.
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Figure 5. Prediction and evaluation. Prediction of the landmark coordinates was achieved in
three phases. The three-dimensional distances between the predicted and ground truth points
were evaluated.

2.4.1. First-Phase Prediction

The first-phase model and the trained weights were loaded. The 96 × 96 × 81 3D-
arrays of the 30 testing cases were fed to the model to predict the 3D coordinates of the
feature points. They were saved in a csv file. The prediction errors for the distances between
the predicted point and the ground truth landmark were calculated in x, y, and z. The
three-dimensional prediction errors were presented as the square root of the sum of the
squares of the gaps along the three axes.

2.4.2. Second-Phase Prediction

The 100 × 100-px images were cropped from the original validation images and
centered on each of the 16 coordinates obtained during the first-phase prediction. The
coordinate values for the starting point of the cropped object in the original objects were
recorded. The cropped images were piled up into 100 × 100 × 81 3D arrays. They were
used to predict the coordinates of each feature point in the cropped object with the trained
second-phase models for the respective landmarks. The predicted coordinate values of the
16 points were saved.

2.4.3. Third-Phase Prediction

For each landmark, 50 × 50-px images were cropped, centering on each of the coor-
dinates obtained in the second-phase prediction. The coordinate values for the starting
point of the cropped object in the original objects were recorded. They were stacked up into
50 × 50 × 81 arrays and fed to the respective 16 trained third-phase models. The predicted
values were recorded.

2.4.4. Prediction Error Evaluation

The distance norm between the predicted coordinates and the manually plotted
ground truth coordinates was calculated as the absolute value in the x, y, and z directions.
The square root of the sum of the squares of each was used as the 3D distance. For the
second-phase and third-phase predictions, the coordinate values of the predicted points
in the original objects were configured with the starting point for the cropped object in



Diagnostics 2023, 13, 1930 8 of 16

the original object and the predicted coordinate in the cropped object. The prediction
errors were calculated as the distances between the predicted points and the ground truth
landmark points in the original object.

2.4.5. Statistical Analysis

Multiple comparisons were conducted using scikit-posthocs (https://scikit-posthocs.
readthedocs.io/en/latest/#, accessed on 20 February 2021).

3. Results
3.1. First-Phase Prediction Error

Overall, the average three-dimensional distance between the predicted points and the
ground truth was 11.60 px (1 px = 500/512 mm) (Table 2). The per-landmark prediction
errors are shown in Figure 6. Regarding the axis directions, the error for the x-axis was
significantly smaller than that for the others, and the error for the y-axis was the largest
(Figure 7).
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Table 2. Three-dimensional prediction errors in 480 landmarks from 30 testing datasets.
(pixel = 500/512 mm) * p < 0.001 in the Conover test. N.S.: not significant.

First
Phase

Second
Phase

Third
Phase

Inter-Observer
Gaps

Average 11.6 _ * _ 4.66 _ * _ 2.88 _ N.S. _ 3.08
Median 10.89 4.22 2.56 2.4
Stdev 5.64 2.27 1.67 2.64

3.2. Second-Phase Prediction Error

The average prediction error in three dimensions was 4.66 px (Table 2). It was sig-
nificantly smaller than the error for the first-phase prediction. The per-landmark errors
are shown in Figure 8. The error for the y-axis direction was larger than that for the other
directions, and the error for the z-axis was the smallest (Figure 9).
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3.3. Third-Phase Prediction Error

The three-dimensional prediction error was 2.88 px, on average (Table 2). It was
significantly smaller than the second-phase prediction error. The errors per landmark are
shown in Figure 10. There were no significant differences between the axes (Figure 11).
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3.4. Inter-Phase and Inter-Observer Plotting Gaps

There were significant differences in the prediction errors for each phase. The third-
phase prediction error was the same level as the inter-observer plotting gaps (Table 2).

In summary, three-dimensional prediction errors became smaller as the phase pro-
gressed. The errors in the 3rd phase prediction showed no significant differences in the
inter-observer gaps between the two experienced practitioners. By the 1st and 2nd phase
prediction, the errors in the y-axis direction were larger than the x- and z-axis directions. By
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the 3rd phase, the differences dwindled. For each landmark, there was some variation in
prediction accuracy in the 1st and 2nd phase but no significant variation in the 3rd phase.

4. Discussion

Since it was first proposed by Broadbent [6] and Hofrath [7], standard cephalometry
has had a rich history. There have been many reports on the use of automatic landmark
detection systems for cephalograms in two dimensions. In comparison with the research
into 2D cephalograms, there are few reports on 3D images.

Previous automated 3D landmark detectors for use in the craniofacial area have
employed the registration method [59], knowledge-based methods [44,60], atlas-based
methods [43,61], random forest methods [45], and so on [47,49]. Deep learning is an
emerging technique in machine learning; it has attracted increased attention in recent
years due to its remarkable ability to learn from vast amounts of data and make accurate
predictions. It is categorized as a supervised learning method that identifies rules between
the input and output of training datasets. It is simply to prepare the datasets, and the
machine will then determine the function laws between them. Due to its versatility, deep
learning is widely used in a variety of fields, including natural language processing,
computer vision, speech recognition, robotics, voice, and text. Some attempts to utilize
deep learning for automatic 3D landmark prediction have been reported [46,50–55].

The processing speed of computers and the amount of memory installed have in-
creased at a remarkable rate. These technological advancements have revolutionized
various fields, including image processing, which is one of the fields where deep learning
algorithms have become increasingly popular. However, an enormous amount of computa-
tion is still required to process images using deep learning. The calculation volume required
to process three-dimensional images, based on spatial or time axes, is on a completely
different scale than that used to process their two-dimensional counterparts. There are
two reports of 3D landmark detection using fully convolutional neural networks (FCN)
with high precision [49,58]. However, in general, FCN is computationally expensive and
slow [62].

One solution is to compress the images [51] and then input them into deep learning
networks, but the compression process results in the loss of detailed information. In this
study, we took the multi-phase deep learning method, which is used to predict landmarks
in 2D cephalograms [27–29], and applied it to 3D craniofacial images. The conceptual
premise was to emulate the way that one finds a place on a map when provided with the
address. First, we open a map of the country. Then, we try to find the state and city on a
larger-scale map. Then, we open an even larger map to find the street and house number.
Prediction errors became smaller with each phase. Coarse detection was performed with
the first phase model, and further narrowing down was achieved based on the predictions
of the previous phase. This study was conducted on a personal computer. Accounting for
the physical limitations of memory and computation, multi-phase deep learning may be a
feasible means of dealing with large-scale images. This coarse-to-fine detection concept
has been adopted by other authors. Yun et al. [55] utilized a variational autoencoder to
achieve a rough initial estimate. They are unique in differentiating fine detection methods
for the mandible and cranium. For the mandible, they achieved an estimation error relative
to the reference of 2.68 mm; this value was 3.08 mm for the cranium and 2.88 mm for
the 90 total landmarks. Dot et al. [54] trained a spatial configuration network [62] on
down-sampled-resolution full scans. For the fine resolution within a selected region of
interest, they trained five spatial configuration networks. Using the 2-stage method, their
mean localization error was as fine as 1.0 mm for 33 landmarks.

Logically speaking, our system is very simple. Through all three phases, the main
part of the models used was the same Resnet 3d-50, modified for regression. However,
the system consists of 33 networks that are individually trained to predict 16 landmarks,
and it cannot be denied that it is structurally complicated. There may be ways to design
the system in an end-to-end fashion. Again, given the calculation limit, this sequential
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approach was practical for the authors and remains a promising option for future research
in this area.

Previous studies [27–29] of 2D cephalograms used the database that was published at
ISBI 2015, along with previous benchmarks [24,26]. The authors were unable to obtain a
database of feature-point three-dimensional coordinates for craniofacial CT. The authors
of the previous reports [43–55] on the three-dimensional landmark detection used their
own data, which are not publicly accessible. Since the previous studies all use different
datasets, their prediction accuracy could not be compared with the other published methods.
Unified datasets of 3D images and landmark coordinate values should be published, as they
were for the 2D challenges [23,24,34]. Generally, in studies using data with low variance,
the prediction error is small; meanwhile, in studies that use highly dispersed data, the
prediction error is large. This is because the greater the variance of the data, the greater
the uncertainty in the underlying relationships and patterns, making it more difficult to
predict accurately. The size of the data volume can also have a significant impact on the
prediction error. In general, higher data volumes can help to reduce prediction errors by
providing more comprehensive and representative samples that contain information about
the underlying phenomenon. The higher the data volume, the more uncertainties tend to be
eliminated. Systems based on high-volume datasets tend to have high levels of robustness.

As for the current situation in Japan, it is not easy to access and build databases of
patient information, even for clinicians, such as the authors of this article. The same point
has been made by Yun et al. [55]. Hence, the authors constructed an original database from
publicly available image sets [56]. The image sets used were from patients with head and
neck tumors. Most of the images were likely from elderly patients, and there were many
missing teeth.

In the course of conducting our study, we encountered a significant challenge in plot-
ting anatomical landmarks. We adopted blender in this procedure as we were familiar with
it. Plotting the featured points one by one took a long time. Moreover, in order to capture a
comprehensive three-dimensional image of each feature point, multiple perspective views
were necessary. In this study, we used five viewpoints in conjunction. In addition, it is often
necessary to pan and zoom in and out; bone ridges are formed by curves, not by sharp
angles, so it was difficult and sometimes impossible to plot them accurately. To maintain as
much consistency as possible, the series included in this study was produced by one person,
and one feature point was plotted for all cases in succession. This method was used based
on the belief that the continuous determination of points would produce high-quality data.

The craniofacial CT data used in this study were provided at 5 mm intervals in the
cranio-occipital direction. The data intensity along the z-axis was more than five times
sparser than that along the x or y-axes. However, to our surprise, prediction errors in the
z-axis direction were not worse than for the x or y-axes (Figures 7, 9 and 11).

The first- and second-phase prediction errors in the y-axis direction were larger than
those in the x- and z-axis directions. Looking back at the original CT images, the positions
of the patients’ heads in the images were relatively centered in the x-axis direction, whereas
they were spatially scattered in the y-axis direction. The degree of dispersion of the data
may have led to estimation errors. The second-phase prediction was possibly affected by
the first-phase prediction, as it was performed on the cropped images, which were defined
by the first-phase prediction, whereas the y-axis prediction errors were at the same level as
those of the other axes in the third phase. The impact of the first-phase prediction errors on
the y-axis may have been diminished.

The third-phase prediction error revealed no significant differences from that of the
two experienced practitioners. The system was ultimately performed at the clinician level.
The issue that the plotted ground truth coordinate values may differ from one plotter to
another has been a matter of debate [63]. There is no consensus on how precisely these
systems should function. It is well known and should be taken as a given that inter-
observer [63] and intra-observer errors always exist [64,65]. It seems reasonable to set goals
at the inter-expert error level, and our system was able to attain that benchmark.
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Automatic craniofacial landmark detection will contribute to sparing time and labor
for various researchers. Accurate identification and localization of craniofacial landmarks
are crucial for surgical planning in various craniofacial procedures. To understand the
surgical impact on the patient, it is very important to monitor the positions and relationships
of these landmarks over time. All practitioners, who perform surgeries on the craniofacial
area, including plastic surgeons, maxillofacial surgeons, otolaryngologists, neurosurgeons,
pediatric surgeons, orthodontists, ophthalmologists, and so on, will benefit from this kind
of software. Forensic experts and anthropologists can save time comprehending the human
head three-dimensionally.

In the field of clinical practice, slices of less than 1 mm are commonly used to obtain
detailed bone information (so-called thin slices). To apply these images in real-world
clinical situations, such as in the navigation systems utilized during surgery, it is necessary
to have adequate support for these images. Our system, based on 5 mm thickness slices,
cannot be directly applied to those thin-sliced detailed data.

CBCT has gained significant popularity among orthodontists and otolaryngologists; it
has the benefit of exposing patients to less radiation than traditional CT scans, and it can
obtain detailed images with small voxels. This has enabled highly accurate estimations
and diagnosis of various dental and craniofacial conditions. However, as the amount of
information to be processed increases, the computational volume required also increases.
Our proposed method of multi-phased prediction, which begins with coarse detection and
then narrows down the detection area, may be a possible solution to this problem.

5. Conclusions

A multi-phased deep learning system was constructed to predict landmarks on three-
dimensional craniofacial images. It is a sequential system that first detects landmarks
coarsely and marks down the region of interest in the following phases; it consists of
33 individual networks. The system reached the same level as expert clinicians. Given the
limitations in computational resources, multi-phase deep learning may be a solution for
dealing with large-scale images. There is a need for the publication of high-volume unified
datasets of 3D images with landmark coordinate values; this would promote research in
this area and enable the comparison of studies.

Author Contributions: Conceptualization, S.N.; data curation, S.N. and T.S.; formal analysis, S.N.
and T.F.; funding acquisition, S.N.; investigation, S.N.; methodology, S.N.; project administration,
K.K. and M.K.; resources, S.N.; software, S.N. and T.S.; validation, S.N. and T.S.; visualization, S.N.
and H.I.; writing—original draft, S.N.; writing—review and editing, S.N., K.K. and M.K. All authors
have read and agreed to the published version of the manuscript.

Funding: This study was partly supported by a Nakatani Foundation research grant number 2019C002.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code of this manuscript is available at https://drive.google.
com/drive/folders/1RI4ZHr2l2KyIpCZpV0KSLY2YVMbX0wAU?usp=sharing, accessed on 30 May 2023.
Publicly available datasets were analyzed in this study. These data can be found here: https://wiki.
cancerimagingarchive.net/display/Public/Head-Neck-Radiomics-HN1, accessed on 30 May 2023 [56].

Acknowledgments: A prototype (with 2-phased networks) of this study was presented at the 35th
Annual Conference of the Japanese Society for Artificial Intelligence, 2021 [66]. This article is a revised
version of preprint: “Three-dimensional cranio-facial landmark detection in CT slices from a publicly
available database, using multi-phased regression networks on a personal computer”, medRxiv
2021.03.21.21253999; doi: https://doi.org/10.1101/2021.03.21.21253999 accessed on 25 April 2023.

Conflicts of Interest: The authors declare no conflict of interest.

https://drive.google.com/drive/folders/1RI4ZHr2l2KyIpCZpV0KSLY2YVMbX0wAU?usp=sharing
https://drive.google.com/drive/folders/1RI4ZHr2l2KyIpCZpV0KSLY2YVMbX0wAU?usp=sharing
https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-Radiomics-HN1
https://wiki.cancerimagingarchive.net/display/Public/Head-Neck-Radiomics-HN1
https://doi.org/10.1101/2021.03.21.21253999


Diagnostics 2023, 13, 1930 14 of 16

References
1. Finlay, L.M. Craniometry and Cephalometry: A History Prior to the Advent of Radiography. Angle Orthod. 1980, 50, 312–321.
2. Birmingham, A.E. The Topographical Anatomy of the Mastoid Region of the Skull; with Special Reference to Operation in This

Region. Br. Med. J. 1890, 2, 683–684. [CrossRef]
3. Scott, S.R.; Lond, M.B.; Eng, F.R.C.S.; Lond, L.R.C.P. A New Method of Demonstrating the Topographical Anatomy of the Adult

Human Skull. J. Anat. Physiol. 1906, 40, 171–185. [PubMed]
4. Ford, E.H.R. The Growth of the Foetal Skull. J. Anat. 1956, 90, 63–72. [PubMed]
5. Hans, M.G.; Martin Palomo, J.; Valiathan, M. History of Imaging in Orthodontics from Broadbent to Cone-Beam Computed

Tomography. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 914–921. [CrossRef]
6. Broadbent, B.H. A New X-Ray Technique and Its Application to Orthodontia. Angle Orthod. 1931, 1, 45–66.
7. Hofrath, H. Die Bedeutung der Roentgenfern der Kiefer Anomalien. Fortschr Orthod. 1931, 1, 232–248.
8. Steiner, C.C. Cephalometrics for You and Me. Am. J. Orthod. 1953, 39, 729–755. [CrossRef]
9. Jacobson, A. The “Wits” Appraisal of Jaw Disharmony. Am. J. Orthod. 1975, 67, 125–138. [CrossRef]
10. Björk, A. Sutural Growth of the Upper Face Studied by The Implant Method. Acta Odontol. Scand. 1966, 24, 109–127. [CrossRef]

[PubMed]
11. Doberschütz, P.H.; Schwahn, C.; Krey, K.F. Cephalometric Analyses for Cleft Patients: A Statistical Approach to Compare the

Variables of Delaire’s Craniofacial Analysis to Bergen Analysis. Clin. Oral Investig. 2022, 26, 353–364. [CrossRef]
12. Lévy-Mandel, A.D.; Venetsanopoulos, A.N.; Tsotsos, J.K. Knowledge-Based Landmarking of Cephalograms. Comput. Biomed. Res.

1986, 19, 282–309. [CrossRef]
13. Parthasarathy, S.; Nugent, S.T.; Gregson, P.G.; Fay, D.F. Automatic Landmarking of Cephalograms. Comput. Biomed. Res. 1989,

22, 248–269. [CrossRef]
14. Cardillo, J.; Sid-Ahmed, M.A. An Image Processing System for Locating Craniofacial Landmarks. IEEE Trans. Med. Imaging 1994,

13, 275–289. [CrossRef] [PubMed]
15. Forsyth, D.B.; Davis, D.N. Assessment of an Automated Cephalometric Analysis System. Eur. J. Orthod. 1996, 18, 471–478.

[CrossRef] [PubMed]
16. Giordano, D.; Leonardi, R.; Maiorana, F.; Cristaldi, G.; Distefano, M.L. Automatic Landmarking of Cephalograms by Cellular

Neural Networks. In Proceedings of the 10th Conference on Artificial Intelligence in Medicine (AIME 2005), Aberdeen, UK, 23–27
July 2005; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 333–342.

17. Yue, W.; Yin, D.; Li, C.; Wang, G.; Xu, T. Automated 2-D Cephalometric Analysis on X-Ray Images by a Model-Based Approach.
IEEE Trans. Biomed. Eng. 2006, 53, 1615–1623.

18. Rueda, S.; Alcañiz, M. An Approach for the Automatic Cephalometric Landmark Detection Using Mathematical Morphology
and Active Appearance Models. In Proceedings of the 9th International Conference on Medical Image Computing and Computer-
Assisted Intervention—MICCAI 2006, Copenhagen, Denmark, 1–6 October 2006; Lecture Notes in Computer Science; Springer:
Berlin/Heidelberg, Germany, 2006; Volume 4190, pp. 159–166.

19. Kafieh, R.; Sadri, S.; Mehri, A.; Raji, H. Discrimination of Bony Structures in Cephalograms for Automatic Landmark Detection. In
Advances in Computer Science and Engineering; Communications in Computer and Information Science; Springer: Berlin/Heidelberg,
Germany, 2008; Volume 6, pp. 609–620.

20. Tanikawa, C.; Yagi, M.; Takada, K. Automated Cephalometry: System Performance Reliability Using Landmark-Dependent
Criteria. Angle Orthod. 2009, 79, 1037–1046. [CrossRef] [PubMed]

21. Nishimoto, S.; Sotsuka, Y.; Kawai, K.; Ishise, H.; Kakibuchi, M. Personal Computer-Based Cephalometric Landmark Detection
with Deep Learning, Using Cephalograms on the Internet. J. Craniofac. Surg. 2019, 30, 91–95. [CrossRef]

22. Leonardi, R.; Giordano, D.; Maiorana, F. Automatic Cephalometric Analysis a Systematic Review. Angle Orthod. 2008, 78, 145–151.
[CrossRef]

23. Wang, C.W.; Huang, C.T.; Hsieh, M.C.; Li, C.H.; Chang, S.W.; Li, W.C.; Vandaele, R.; Marée, R.; Jodogne, S.; Geurts, P.; et al.
Evaluation and Comparison of Anatomical Landmark Detection Methods for Cephalometric X-ray Images: A Grand Challenge.
IEEE Trans. Med. Imaging 2015, 34, 1890–1900. [CrossRef]

24. Wang, C.W.; Huang, C.T.; Lee, J.H.; Li, C.H.; Chang, S.W.; Siao, M.J.; Lai, T.M.; Ibragimov, B.; Vrtovec, T.; Ronneberger, O.; et al. A
Benchmark for Comparison of Dental Radiography Analysis Algorithms. Med. Image Anal. 2016, 31, 63–76. [CrossRef] [PubMed]

25. Lindner, C.; Wang, C.-W.; Huang, C.-T.; Li, C.-H.; Chang, S.-W.; Cootes, T.F. Fully Automatic System for Accurate Localisation
and Analysis of Cephalometric Landmarks in Lateral Cephalograms. Sci. Rep. 2016, 6, 33581. [CrossRef] [PubMed]

26. Arik, S.Ö.; Ibragimov, B.; Xing, L. Fully Automated Quantitative Cephalometry Using Convolutional Neural Networks. J. Med.
Imaging 2017, 4, 014501. [CrossRef]

27. Nishimoto, S. Cephalometric Landmark Location with Multi-Phase Deep Learning. In Proceedings of the 34th Annual Conference
of the Japanese Society for Artificial Intelligence, Online, 9–12 June 2020; p. 2Q6GS1001.

28. Nishimoto, S.; Kawai, K.; Fujiwara, T.; Ishise, H.; Kakibuchi, M. Locating Cephalometric Landmarks with Multi-Phase Deep
Learning. medRxiv 2020. [CrossRef]

29. Nishimoto, S.; Kawai, K.; Fujiwara, T.; Ishise, H.; Kakibuchi, M. Locating Cephalometric Landmarks with Multi-Phase Deep
Learning. J. Dent. Health Oral Res. 2023, 4, 1–13. [CrossRef]

https://doi.org/10.1136/bmj.2.1551.683
https://www.ncbi.nlm.nih.gov/pubmed/17232674
https://www.ncbi.nlm.nih.gov/pubmed/13295152
https://doi.org/10.1016/j.ajodo.2015.09.007
https://doi.org/10.1016/0002-9416(53)90082-7
https://doi.org/10.1016/0002-9416(75)90065-2
https://doi.org/10.3109/00016356609026122
https://www.ncbi.nlm.nih.gov/pubmed/5225742
https://doi.org/10.1007/s00784-021-04006-3
https://doi.org/10.1016/0010-4809(86)90023-6
https://doi.org/10.1016/0010-4809(89)90005-0
https://doi.org/10.1109/42.293920
https://www.ncbi.nlm.nih.gov/pubmed/18218504
https://doi.org/10.1093/ejo/18.1.471
https://www.ncbi.nlm.nih.gov/pubmed/8942096
https://doi.org/10.2319/092908-508R.1
https://www.ncbi.nlm.nih.gov/pubmed/19852592
https://doi.org/10.1097/SCS.0000000000004901
https://doi.org/10.2319/120506-491.1
https://doi.org/10.1109/TMI.2015.2412951
https://doi.org/10.1016/j.media.2016.02.004
https://www.ncbi.nlm.nih.gov/pubmed/26974042
https://doi.org/10.1038/srep33581
https://www.ncbi.nlm.nih.gov/pubmed/27645567
https://doi.org/10.1117/1.JMI.4.1.014501
https://doi.org/10.1101/2020.07.12.20150433
https://doi.org/10.46889/JDHOR.2023.4103


Diagnostics 2023, 13, 1930 15 of 16

30. Kim, H.; Shim, E.; Park, J.; Kim, Y.J.; Lee, U.; Kim, Y. Web-Based Fully Automated Cephalometric Analysis by Deep Learning.
Comput. Methods Programs Biomed. 2020, 194, 105513. [CrossRef] [PubMed]

31. Kim, M.J.; Liu, Y.; Oh, S.H.; Ahn, H.W.; Kim, S.H.; Nelson, G. Automatic Cephalometric Landmark Identification System Based
on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images. Sensors 2021, 21, 505. [CrossRef]

32. Chen, R.; Ma, Y.; Chen, N.; Lee, D.; Wang, W. Cephalometric Landmark Detection by AttentiveFeature Pyramid Fusion and
Regression-Voting. In Proceedings of the 22nd International Conference on Medical Image Computing and Computer Assisted
Intervention—MICCAI 2019, Shenzhen, China, 13–17 October 2019; Lecture Notes in Computer Science; Springer: Cham,
Switzerland, 2019; Volume 11766, pp. 873–881.

33. Junaid, N.; Khan, N.; Ahmed, N.; Abbasi, M.S.; Das, G.; Maqsood, A.; Ahmed, A.R.; Marya, A.; Alam, M.K.; Heboyan, A.
Development, Application, and Performance of Artificial Intelligence in Cephalometric Landmark Identification and Diagnosis:
A Systematic Review. Healthcare 2022, 10, 2454. [CrossRef]

34. Khalid, M.A.; Zulfiqar, K.; Bashir, U.; Shaheen, A.; Iqbal, R.; Rizwan, Z.; Rizwan, G.; Fraz, M.M. CEPHA29: Automatic
Cephalometric Landmark Detection Challenge 2023. arXiv 2022, arXiv:2212.04808.

35. Grayson, B.H.; McCarthy, J.G.; Bookstein, F. Analysis of Craniofacial Asymmetry by Multiplane Cephalometry. Am. J. Orthod.
1983, 84, 217–224. [CrossRef]

36. Bütow, K.W.; van der Walt, P.J. The Use of Triangle Analysis for Cephalometric Analysis in Three Dimensions. J. Maxillofac. Surg.
1984, 12, 62–70. [CrossRef] [PubMed]

37. Grayson, B.; Cutting, C.; Bookstein, F.L.; Kim, H.; McCarthy, J.G. The Three-Dimensional Cephalogram: Theory, Techniques, and
Clinical Application. Am. J. Orthod. Dentofac. Orthop. 1988, 94, 327–337. [CrossRef] [PubMed]

38. Mori, Y.; Miyajima, T.; Minami, K.; Sakuda, M. An Accurate Three-Dimensional Cephalometric System: A Solution for the
Correction of Cephalic Malpositioning. J. Orthod. 2001, 28, 143–149. [CrossRef]

39. Matteson, S.R.; Bechtold, W.; Phillips, C.; Staab, E.V. A Method for Three-Dimensional Image Reformation for Quantitative
Cephalometric Analysis. J. Oral Maxillofac. Surg. 1989, 47, 1053–1061. [CrossRef] [PubMed]

40. Varghese, S.; Kailasam, V.; Padmanabhan, S.; Vikraman, B.; Chithranjan, A. Evaluation of the Accuracy of Linear Measurements on
Spiral Computed Tomography-Derived Three-Dimensional Images and Its Comparison with Digital Cephalometric Radiography.
Dentomaxillofac. Radiol. 2010, 39, 216–223. [CrossRef]

41. Ghoneima, A.; Albarakati, S.; Baysal, A.; Uysal, T.; Kula, K. Measurements from Conventional, Digital and CT-Derived
Cephalograms: A Comparative Study. Aust. Orthod. J. 2012, 28, 232–239.

42. Dot, G.; Rafflenbeul, F.; Arbotto, M.; Gajny, L.; Rouch, P.; Schouman, T. Accuracy and Reliability of Automatic Three-Dimensional
Cephalometric Landmarking. Int. J. Oral Maxillofac. Surg. 2020, 49, 1367–1378. [CrossRef] [PubMed]

43. Shahidi, S.; Bahrampour, E.; Soltanimehr, E.; Zamani, A.; Oshagh, M.; Moattari, M.; Mehdizadeh, A. The Accuracy of a Designed
Software for Automated Localization of Craniofacial Landmarks on CBCT Images. BMC Med. Imaging 2014, 14, 32. [CrossRef]

44. Gupta, A.; Kharbanda, O.P.; Sardana, V.; Balachandran, R.; Sardana, H.K. A Knowledge-Based Algorithm for Automatic Detection
of Cephalometric Landmarks on CBCT Images. Int. J. Comput. Assist. Radiol. Surg. 2015, 10, 1737–1752. [CrossRef]

45. Zhang, J.; Gao, Y.; Wang, L.; Tang, Z.; Xia, J.J.; Shen, D. Automatic Craniomaxillofacial Landmark Digitization via Segmentation-
Guided Partially-Joint Regression Forest Model and Multiscale Statistical Features. IEEE Trans. Biomed. Eng. 2016, 63, 1820–1829.
[CrossRef]

46. Zhang, J.; Liu, M.; Wang, L.; Chen, S.; Yuan, P.; Li, J.; Shen, S.G.F.; Tang, Z.; Chen, K.C.; Xia, J.J.; et al. Joint Craniomaxillofacial
Bone Segmentation and Landmark Digitization by Context-Guided Fully Convolutional Networks. In Proceedings of the 20th
International Conference on Medical Image Computing and Computer-Assisted Intervention—MICCAI 2017, Quebec City,
QC, Canada, 11–13 September 2017; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2017; Volume 10434,
pp. 720–728.

47. De Jong, M.A.; Gül, A.; De Gijt, J.P.; Koudstaal, M.J.; Kayser, M.; Wolvius, E.B.; Böhringer, S. Automated Human Skull
Landmarking with 2D Gabor Wavelets. Phys. Med. Biol. 2018, 63, 105011. [CrossRef]

48. Montúfar, J.; Romero, M.; Scougall-Vilchis, R.J. Automatic 3-Dimensional Cephalometric Landmarking Based on Active Shape
Models in Related Projections. Am. J. Orthod. Dentofac. Orthop. 2018, 153, 449–458. [CrossRef] [PubMed]

49. Montúfar, J.; Romero, M.; Scougall-Vilchis, R.J. Hybrid Approach for Automatic Cephalometric Landmark Annotation on
Cone-Beam Computed Tomography Volumes. Am. J. Orthod. Dentofac. Orthop. 2018, 154, 140–150. [CrossRef] [PubMed]

50. O’Neil, A.Q.; Kascenas, A.; Henry, J.; Wyeth, D.; Shepherd, M.; Beveridge, E.; Clunie, L.; Sansom, C.; Šeduikytė, E.; Muir, K.; et al.
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