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Abstract: White blood cells (WBCs) are one of the main components of blood produced by the bone
marrow. WBCs are part of the immune system that protects the body from infectious diseases and an
increase or decrease in the amount of any type that causes a particular disease. Thus, recognizing the
WBC types is essential for diagnosing the patient’s health and identifying the disease. Analyzing
blood samples to determine the amount and WBC types requires experienced doctors. Artificial
intelligence techniques were applied to analyze blood samples and classify their types to help
doctors distinguish between types of infectious diseases due to increased or decreased WBC amounts.
This study developed strategies for analyzing blood slide images to classify WBC types. The first
strategy is to classify WBC types by the SVM-CNN technique. The second strategy for classifying
WBC types is by SVM based on hybrid CNN features, which are called VGG19-ResNet101-SVM,
ResNet101-MobileNet-SVM, and VGG19-ResNet101-MobileNet-SVM techniques. The third strategy
for classifying WBC types by FFNN is based on a hybrid model of CNN and handcrafted features.
With MobileNet and handcrafted features, FFNN achieved an AUC of 99.43%, accuracy of 99.80%,
precision of 99.75%, specificity of 99.75%, and sensitivity of 99.68%.

Keywords: deep learning; FFNN; SVM; fusion features; handcrafted features; WBC; haematology

1. Introduction

Blood cells are one of the basic components of the human body and are divided into
WBCs, red blood cells and platelets [1]. Bone marrow produces white blood cells called
immune cells [2]. WBCs protect the body from viruses, infections and other infectious
diseases. WBCs are an essential component of the immune system and play a crucial
role in protecting the body against infections and diseases. There are several types of
WBCs, each with distinct functions and characteristics. However, abnormalities in WBC
counts or alterations in their morphology can indicate the presence of various diseases.
Accurate identification and classification of WBC types are essential for diagnosing specific
blood disorders and determining appropriate treatment strategies. WBCs are classified
into granular and nongranular cells [3]. Granulocytes (multinuclear) are neutrophils,
basophils and eosinophils [4]. Nongranular (mononuclear) cells are lymphocytes and
monocytes. An increase or decrease in the number of WBC responses to different diseases
depends on the type of WBC [5]. WBC diseases are diagnosed by testing a sample of
blood under a microscope. WBCs are broadly classified into several types, including
neutrophils, lymphocytes, monocytes, eosinophils and basophils. Neutrophils are the
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most common type and are involved in fighting bacterial infections. Lymphocytes are
responsible for immune responses and can be further categorized as B cells, T cells and
natural killer cells. Monocytes play a role in phagocytosis and the immune response to
pathogens. Eosinophils are associated with allergic reactions and parasitic infections, while
basophils are involved in inflammatory responses and allergies. Abnormalities in WBC
counts or alterations in their morphology can indicate various blood disorders such as
leukemia, lymphoma, infectious diseases, autoimmune disorder, and allergic reactions.
The causes of these diseases can vary, including genetic factors, environmental factors,
infections, immune system dysregulation and exposure to toxins. Treatment options for
WBC-related diseases depend on the specific diagnosis and may include chemotherapy,
radiation therapy, immunotherapy or bone marrow transplantation. Neutrophil cells
increase in the blood due to metabolic disturbances, and hormonal conditions. Also,
bacteria, fungi, and endogenous and exogenous toxins cause an increase in neutrophil cells
in the blood [6]. Hepatitis and whooping cough increase lymphocytes in the blood [7]. Also,
HIV, polio, tuberculosis and rubeola decrease lymphocytes in the blood [8]. Monocytes
increase in the blood due to diseases such as malaria, listeriosis and viral and bacterial
infections [9]. The value of eosinophils in the blood increases due to atopic diseases,
allergies and parasites [10]. Conditions associated with basophils include hypothyroidism,
malignant myeloproliferative disease, renal disease syndrome and hemolytic anaemia [11].

While lymphocytes, monocytes and neutrophils are involved in various hematological
disorders, including some myeloproliferative diseases, it is important to note that the
classification of myeloproliferative disorders primarily focuses on abnormalities related to
the clonal proliferation of myeloid cells. While lymphocytes, monocytes and neutrophils
play essential roles in the immune system and can be affected in various hematological
disorders, their involvement in myeloproliferative diseases is not as prominent or defining
as in other conditions, such as lymphoproliferative disorders or certain types of leukemia.
The specific cell types affected in myeloproliferative disorders are more directly related to
the abnormal clonal proliferation of myeloid cells in the bone marrow. Myeloproliferative
disorders are a group of hematological conditions characterized by the excessive production
of mature myeloid cells in the bone marrow. There are four main types of myeloproliferative
disorders recognized by the WHO. Chronic myeloid leukemia (CML) is associated with
the presence of the Philadelphia chromosome, resulting in the formation of the BCR-
ABL fusion gene. This gene drives the uncontrolled growth and accumulation of mature
myeloid cells, particularly granulocytes. Polycythemia vera (PV) is characterized by the
overproduction of red blood cells (erythrocytes) in the bone marrow. While neutrophils and
other myeloid cells can also be increased, they are not the primary focus of this disorder.
Essential thrombocythemia (ET) involves the overproduction of platelets (thrombocytes)
in the bone marrow, resulting in increased platelet counts. Myeloid cell abnormalities,
including elevated neutrophils and monocytes, can also be observed in some cases, but
they are not a defining feature. Primary myelofibrosis (PMF) is characterized by the
excessive production of fibrous tissue in the bone marrow, which disrupts normal blood
cell production. Neutrophils, monocytes and lymphocytes can be increased, but they are
not the primary focus of the disease.

Thus, the diagnosis of many diseases takes place by examining a blood sample for a
blood cell count test (hemogram). The hemogram test is based on spreading blood on a
glass slide, staining it and then placing it under a microscope to evaluate blood cells [12].
A normal number of WBCs ranges from 4500 to 11,000 units per microliter [13]. In order
to identify the types of WBC cells, the hematologist must perform many procedures, such
as locating the cells and classifying the type of the microscopic image, which is tedious
and time consuming. Also, hematology diagnosis depends on the segmentation and
classification of WBC, which is difficult for hematologists because of their irregular sizes
and shapes. Thus, potential manual errors and the time it takes to analyze and reach
effective results can be reduced thanks to artificial intelligence techniques [14]. The main
goal of AI systems is to analyze WBC cells to classify WBC cell types. Based on the analysis
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of blood samples, automated systems determine the elements of interest for each type of
WBC cell and show the morphology of each cell, such as shape, size, colour, texture, and
nucleus. Segmentation of WBC cells is a complex task, and the challenge is to select cell
boundaries, separate them, and remove artifacts. Many researchers have used machine
learning techniques to classify WBC cell types and developed more effective CNN models.

The use of artificial intelligence (AI) techniques in white blood cell (WBC) classifi-
cation indeed has significant benefits in the field of pathology. Accurate identification
and classification of WBC types are crucial for diagnosing and treating various diseases,
including infections, autoimmune disorders, and certain types of cancer. Here are some
ways AI enhances WBC classification: AI algorithms analyze large datasets of WBC images
and learn to identify and classify different WBC types with high accuracy. This helps
pathologists by reducing the chances of human error and providing more consistent and
reliable results. AI-powered systems process and classify WBC images much faster than
manual methods. This significantly reduces the time required for analysis, allowing pathol-
ogists to diagnose and treat patients more efficiently. AI algorithms provide standardized
classification criteria, minimizing the subjectivity and variability that may arise when
different pathologists interpret WBC images. This leads to more consistent diagnoses and
treatment decisions. AI techniques enable the automated screening of large volumes of
WBC images, facilitating the identification of rare or abnormal WBCs that may be missed
during manual examination. This helps in early detection and diagnosis of diseases. AI
systems are used as training tools for pathologists and medical students. By analyzing and
comparing large datasets, AI algorithms assist in teaching the subtle differences between
different WBC types and improve the skills of practitioners in WBC classification. AI tech-
niques aid in the analysis of vast amounts of data from WBC images, enabling researchers
to discover patterns, correlations and new insights into various diseases. This contributes
to advancements in pathology and facilitates the development of more targeted treatment
strategies. However, it is important to note that AI systems should be used as a supportive
tool rather than a replacement for human pathologists. The expertise and clinical judgment
of pathologists remains crucial for accurate diagnosis and treatment decisions. AI augments
their capabilities and improves the overall efficiency and accuracy of WBC classifications
in pathology.

The morphological features of WBC cell types are similar in the early stage, so this
study aims to extract hidden features using hybrid techniques between machine and deep
learning based on features combined from more than one model.

The most important contributions to this study are as follows:

• Improving blood slide images using overlapping average filters and Contrast limited
adaptive histogram equalization (CLAHE);

• Classification of WBC types by SVM based on hybrid features of VGG19-ResNet101,
ResNet101-MobileNet and VGG19-ResNet101-MobileNet;

• Classification of WBC types by FFNN based on hybrid features of CNN (VGG19,
ResNet101 and MobileNet) and handcrafted features.

The rest of the paper is organized as follows: Section 2 discusses the techniques
and findings of previous studies. Section 3 presents the methods and tools for analyzing
blood slide images to classify WBC types. Section 4 summarizes the results of WBC type
classification systems. Section 5 discusses and compares all strategies for classifying WBC
types. Section 6 concludes the study.

2. Related Work

Patil et al. [15] employed canonical correlation analysis to classify multiple blood cells.
The technique involved the extraction of overlapping nuclei, followed by training and
classification using recurrent neural network (RNN) models based on canonical correlation
analysis. The authors reported their findings on the successful classification of blood cells
using this approach. Yusuf et al. [16] utilized capsule networks for the classification of differ-
ent types of WBCs. To improve the network’s performance, they fine tuned it and addressed
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challenges related to overfitting and dataset balancing. The capsule network achieved an
impressive accuracy of 96.86% in classifying WBCs. Hüseyin et al. [17] proposed a regional
CNN methodology to locate white blood cells and classify them into different types. This
approach aimed to facilitate the identification of various white blood cell diseases using
the same image. The authors reported the successful implementation of their methodology
for WBC classification. Mesut et al. [18] developed a hybrid methodology combining
quadratic discriminant analysis and CNN models for WBC classification. Relevant features
were extracted using the Ridge test and information coefficient in conjunction with CNN
models. The proposed methodology achieved an impressive classification accuracy of
97.95% for WBC types. To address the challenge of limited data, Khaled et al. [19] proposed
the use of generative adversarial networks (GANs). This approach aimed to overcome
the lack of data, which often hinders system generalization. The CNN models’ weights
were initialized either using preselected weights from the CIFAR-100 dataset or randomly.
Maxim et al. [20] presented two approaches for classifying WBC species. The first approach
involved the classification of hand-extracted features, while the second approach utilized
deep learning techniques. The evaluation was performed on spot images using fivefold
cross-validation. The reported accuracies for machine learning and deep learning methods
were 77.8% and 70.3%, respectively. Ahmed et al. [21] proposed the usage of VGGNet
for diagnosing leukemia. The authors highlighted the production of high-level features
by VGGNet, which were then filtered using the statistically enhanced Negative Swarm
method. The selection of 1000 out of 25,000 features was carried out using the SESS method,
resulting in performance improvement. Channabasava et al. [22] introduced the BCNet
architecture and fine tuned it using three different optimizers. The performance of BCNet
was compared with pretrained CNN models. The results indicated that BCNet with the
RMSP optimizer outperformed the other optimizers and pretrained models, demonstrating
the superiority of the proposed architecture. Yan et al. [23] developed the WBC-Net net-
work based on the UNet++ architecture and CNN models for WBC classification. WBC-Net
incorporated a feature encoder with multiple layers to extract and combine various features
using different metrics. The training process involved WBC segmentation improvement
through decoding, Tversky index determination, and cross-entropy loss. Partha et al. [24]
proposed a method for segmenting the WBC nucleus by employing a colour space trans-
formation and k algorithm. This method facilitated the separation of the nucleus from
the rest of the image. The characteristics of the first and last layers of CNN models were
collected for WBC type classification. The segmentation method achieved an accuracy
of 98.61%, while the CNN model attained 96% accuracy. Asim et al. [25] proposed the
utilization of a CNN for the classification of WBCs following image optimization using the
CLAHE method. To identify the most discriminative characteristics, the authors employed
an optimization technique based on an ant colony, merging the optimized features and
subsequently inputting them into an SVM for classification. Cecilia et al. [26] put forth a
framework for differential counting of WBCs, aiming to reduce image analysis time and
enhance diagnostic efficiency. They employed a colour-shifting technique to highlight WBC
cells in the images. The authors performed WBC cell segmentation using the watershed
method and extracted chromaticity and texture features. These features were then classified
using a random forest classifier. Yusuf et al. [27] introduced a pretrained adaptive model
for the classification of WBC species, which leverages knowledge gained from preexisting
models. Notably, this adaptive model has the ability to adapt to target domains while disre-
garding domain differences. Xin et al. [28] proposed a supervised self-learning approach
for WBC classification. Their method involved extracting the frontal area of cell images
using the K-means clustering method. Subsequently, the WBC area was extracted through
concavity analysis. Colour and border features were then extracted using a noncontrast
edge optimization operator, and these features were fed into an SVM for classification.

Thus, the researchers devoted their time and effort to achieving superior results for
classifying WBC types. This study is distinguished from previous studies by extracting



Diagnostics 2023, 13, 1899 5 of 27

features from several CNN models and integrating them, in addition to incorporating CNN
and handcrafted features.

3. Materials and Methods
3.1. Description of the WBC Type Dataset

The white blood cell type dataset consisted of 12,507 microscopic images of blood
smears on glass slides. The dataset included four types of white blood cells: the Eosinophil
type had 3133 images, the Lymphocyte type had 3108 images, the Monocyte type had
3095 images and the Neutrophil type had 3171 images. All images had a 320 × 240 pixels
resolution with 24-bit RGB colour space [29]. All images were examined by professional
experts and categorized into the four types of WBC. All types of WBC cells contained
approximately equal images, so the dataset was balanced. Figure 1a contains random
samples from all types of the WBC dataset.

Diagnostics 2023, 13, x FOR PEER REVIEW 5 of 27 
 

 

and border features were then extracted using a noncontrast edge optimization operator, 
and these features were fed into an SVM for classification. 

Thus, the researchers devoted their time and effort to achieving superior results for 
classifying WBC types. This study is distinguished from previous studies by extracting 
features from several CNN models and integrating them, in addition to incorporating 
CNN and handcrafted features. 

3. Materials and Methods  
3.1. Description of the WBC Type Dataset 

The white blood cell type dataset consisted of 12,507 microscopic images of blood 
smears on glass slides. The dataset included four types of white blood cells: the Eosinophil 
type had 3133 images, the Lymphocyte type had 3108 images, the Monocyte type had 3095 
images and the Neutrophil type had 3171 images. All images had a 320 × 240 pixels reso-
lution with 24-bit RGB colour space [29]. All images were examined by professional ex-
perts and categorized into the four types of WBC. All types of WBC cells contained ap-
proximately equal images, so the dataset was balanced. Figure 1a contains random sam-
ples from all types of the WBC dataset. 

 
Figure 1. Samples WBC type dataset (a) before enhancement, (b) after enhancement. 

3.2. Enhancement Images of Blood Smears for WBC Type 
When a blood sample is taken and placed on glass slides under a microscope, noise 

and artifacts may appear that affect the diagnostic results and cause a breakdown in the 
performance of CNN models. Mixing the blood sample with eosin and methylene stains 
is a challenge because of the different colours of the dye. Also, the difference in micro-
scopes, their accuracy and the reflected lights have a negative impact on the performance 
of the CNN models. Thus, an averaging filter was proposed to remove the noise, and the 
CLAHE method was presented to show the distorted and blurred edges of the cells. 

First, the images of the WBC type dataset were fed into the averaging filter of size 5 
× 5. Each time, the filter selected 25 pixels from the WBC image, targeted one pixel called 
the central, and calculated the average value of the pixels adjacent to the central pixel as 
in Equation (1). The central pixel was replaced by the average of its neighbors. The filter 
persisted each time it targeted a central pixel and replaced it with its neighbors [30]. 

Figure 1. Samples WBC type dataset (a) before enhancement, (b) after enhancement.

3.2. Enhancement Images of Blood Smears for WBC Type

When a blood sample is taken and placed on glass slides under a microscope, noise
and artifacts may appear that affect the diagnostic results and cause a breakdown in the
performance of CNN models. Mixing the blood sample with eosin and methylene stains is
a challenge because of the different colours of the dye. Also, the difference in microscopes,
their accuracy and the reflected lights have a negative impact on the performance of the
CNN models. Thus, an averaging filter was proposed to remove the noise, and the CLAHE
method was presented to show the distorted and blurred edges of the cells.

First, the images of the WBC type dataset were fed into the averaging filter of size
5 × 5. Each time, the filter selected 25 pixels from the WBC image, targeted one pixel called
the central, and calculated the average value of the pixels adjacent to the central pixel as
in Equation (1). The central pixel was replaced by the average of its neighbors. The filter
persisted each time it targeted a central pixel and replaced it with its neighbors [30].

f (n) =
1
p

p−1

∑
i=0

s(n− i) (1)

where f (n) is input, s(n− i) is the previous input, and p is the number of pixels of the
average filter.
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After that, the image was inserted into the CLAHE method to improve the appearance
of the edges. The method brightens the dark edges by distributing the bright regions’ pixels
to the dark areas. Each time the central pixel was compared with neighboring pixels, the
enhancement was performed as follows: contrast increases when the central pixel was
greater than the value of neighboring pixels. At the same time, the contrast decreased when
the value of the central pixel was less than that of the adjacent pixels. The method was
repeated until all pixels of the image were covered. Thus, an image with prominent edges
of WBC cells was obtained. Figure 1b shows images of the blood samples of the WBC
dataset after enhancement.

3.3. CNN-SVM Technique

This technology introduces a modern mechanism for classifying blood smear images
of WBC types using a combination of machine learning and CNN algorithm. The strength
of the CNN model lies in the superior capabilities of extracting accurate features that the
naked eye cannot detect. Still, one of the challenges of CNN is its need for high-specification
devices to train data, which takes a long time. Thus, CNN-SVM technology will solve this
challenge [31].

3.3.1. CNN Models for Feature Extraction

The CNN is inspired by multilayer perceptron (MLP) and is designed to learn visual
features. They learn features automatically by training the image dataset. Several CNN
architectures were created by many layers and their arrangement and steps training,
learning rate, and activation functions to classify WBC types. This section describes the
CNN architecture, including convolutional layers and the max and average pooling layers.
Included are some tunable parameters in the network, the size of the convolutional kernels
at each stage [32], the number of tunable filters in each convolutional layer and the size
in the average pooling filters. The convolutional layers must have the following: The size
of the convolutional filters, several channels as input and output and the convolutional
filters equal the input feature map. The convolutional layer applies many filters, learns the
weights during the training phase, processes the input and passes it on to the neurons in
the next layer. Weights engage neurons that form a convolutional filter. Three parameters
that control convolutional layers are the filter size, the zero padding of the input image
edges, and the filter step size [33].

Because of the high dimensionality of the features of the convolutional layers, they
require complex calculations and a long training time. Thus, pooling layers reduces
dimensionality by replacing a group of neurons with a single neuron. There are two
types of pooling layers, max pooling and average pooling. The max pooling method
selects a group of neurons and replaces it with one neuron that has the maximum value
among all neurons as in Equation (2) [34]. The average pooling method selects a group of
neurons, computes its average, and replaces the selected neuron with a single neuron, as in
Equation (3). Finally, the last layers yield features of sizes 12,507 × 4096, 12,507 × 2048 and
12,507 × 1024 for VGG19, ResNet101 and MobileNet models, respectively. Because of
the high dimensions, the best features were selected, and duplicate features were deleted
by PCA and saved at sizes of 12,507 × 580, 12,507 × 470 and 12,507 × 410 for VGG19,
ResNet101 and MobileNet models, respectively [35].

z(i; j) = maxm,n=1....k f [(i− 1)p + m; (j− 1)p + n] (2)

z(i; j) =
1
k2 ∑

m,n=1....k
f [(i− 1)p + m; (j− 1)p + n] (3)

where f means size of the filter, m and n are the matrix locations, p means Filter wrap, and
k means the vectors.
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3.3.2. SVM Algorithm

SVM is based on finding the tradeoff between maximizing the margin and reducing
errors in a training set to achieve the best performance classification. SVM aims to create
boundaries to separate data into several categories. The best boundaries have the maximum
margin between the hyperplane and the data points. SVM works with linearly separable
data, which is called linear SVM. Whereas, if the data are not linearly separable, then
nonlinear SVM is applied. Support vectors are data points located on decision lines [36].
The SVM algorithm works with binary data by generating one hyperplane to separate the
two classes [37]. It also has the ability to work with multiclass data by generating multiple
hyperplanes between classes. The SVM takes the features of the VGG19, ResNet101 and
MobileNet models, trains them, validates them, and tests their performance. Figure 2
illustrates the methodology for analyzing blood microscopic slide images of the WBC
dataset by SVM based on the features of VGG19, ResNet101 and MobileNet.
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Figure 2. Methodology of blood slides image analysis for classification of a WBC dataset by SVM
technique with CNN features.

Because of the similarity of the biological characteristics of WBC types and for achiev-
ing promising results in classifying WBC types, the features of CNN were combined:
VGG19-ResNet101, ResNet101-MobileNet and VGG19-ResNet101-MobileNet. It is worth
noting that all the features of the CNN models are passed to PCA to select the necessary fea-
tures. Figure 3 illustrates the methodology for analyzing blood microscopic slide images of
the WBC dataset by FFNN based on hybrid features of the CNN models (VGG19-ResNet101,
ResNet101-MobileNet and VGG19-ResNet101-MobileNet).
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3.4. FFNN with Fused CNN and Handcrafted Features

This section presents hybrid systems for classifying WBC types based on hybrid
features. The handcrafted features were extracted by hybrid methods GLCM, LBP, DWT
and FCH. The study aims to reach superior results for the classification of WBC types, and
thus, the features were extracted by CNN, combined with handcrafted features, and then
classified by FFNN.

FFNN is a system consisting of simple, interconnected arithmetic units called neurons.
Neurons are interconnected from layer to layer by links, where every connection has
weight. At this time, the FFNN has become easy to learn, popular and valuable with
complex models like multilayer networks. The FFNN contains an input layer to receive
the primary data for a network, 15 hidden layers located between the input and output
layer where all the computations are performed, and an output layer to show the results
shown in Figure 4. The output value of each neuron is computed through the weights
calculated from the neuron’s previous stage. The repetition continues until the minimum
square error (MSE) is obtained between the actual and predicted classes, as in Equation (4).
The activation is first calculated in nodes in the hidden layers, where each node in the next
layer is equal to the sum multiplying the weights with the vectors (nodes) in the previous
layer [38].

MSC =
1
n

n

∑
i=1

(xi − yi)
2 (4)

where n indicates the number of data points, xi the predicted value and yi is the
actual value.
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The first step for all systems is to optimize blood slide images for the WBC dataset.
The features were extracted from the conventional methods GLCM, LBP, DWT and FCH
and combined into a vector as follows:

Extracting texture features from a region of interest according to the GLCM method
was provided by Harlick. The GLCM is a method that shows the gray-level composition
of WBC cells. Extraction of lesion area texture characteristics by GLCM helps to identify
different regions of the WBC cell area. The method distinguishes rough and soft areas
based on the value of the central pixel and its neighbors [39]. If the pixels are equal, the
cell area is smooth, but if they are different, it is rough. Texture metrics contain spatial
information for spatial gray levels, which define the relationship between a pixel and its
neighbors based on angle and distance. From each image, 24 features were extracted and
saved at a size of 12,507 × 24.

LBP is an efficient texture feature extraction algorithm. LBP selects the target pixel
and neighboring pixels, the method specifies the size of 5 × 5 for central pixel analysis,
and parameter R specifies the number of adjacent pixels per central pixel. The algorithm
compares the central pixel gc with the adjacent pixel gp, which are called neighborhood
pixels as in Equation (5). Suppose the cell region I (x, y) and gc indicate the gray level of
the arbitrary pixel (central pixel), gp indicates the gray level in neighborhoods, R denotes
the radius around the central pixel and P is several neighbors [40]. From each image,
203 features were extracted and saved at a size of 12,507 × 203.

LBP(xc, yc)R,P =
P−1

∑
p=0

s
(

gp − gc
)
·2P (5)
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where gc means the center pixel, P means the number of contiguous pixels, gp means the
contiguous pixels and R means the contiguous pixels.

Colour is one of the most powerful characteristics that help classify WBC types. The
WBC cell colours are distributed over histogram bins, each in one bin. The colours in
one container are the same, even if they differ. FCH checks similar colours through the
membership value of each pixel and the distribution of pixels across all histogram bins.
The fuzzy colour histogram method is used for colour distribution from the point of view
of probability [41]. The fuzzy colour histogram method distributes the colour from the
probability viewpoint. Consider the colour histogram is represented in the target region I
that includes n of pixels as (X(I) = x1, x2, . . . . . . . . . xi) where xi=ni/n which is the probability
that the pixels in the image I belong to different colour bins. ni indicates the total number of
pixels and ith is the total number of colour bins. From each image, 16 features are extracted
and saved at a size of 12,507 × 16.

Two-dimensional wavelet transform functions were used to analyze images of WBC
types. According to multiple resolutions using quadratic mirror filters, DWT decomposes
the input signal into two signals with different frequencies, as in Equations (6) and (7).

Wa,b =
∫ ∞

−∞
f (x)ψa,b(t)dt (6)

Wa,b(t) =
1√
a
ψ

(
t− b

a

)
(7)

where a and b indicate dilating and translating, respectively.
DWT is obtained when a and b are specified. The two signals represent wavelet

transform functions corresponding to low- and high-pass filters. DWT decomposes the
binary signal into four subbands at each level. Each band is passed through a special
filter to obtain specific parameters. The first range is passed to the low filter to obtain
approximate parameters. The other three subbands pass through high-pass filters (LH, HL
and HH) to obtain detailed parameters (horizontal, diagonal, vertical). Through statistical
measures of mean, standard deviation and variance, the characteristics of each range are
obtained. From each image, 12 features were extracted and saved at a size of 12,507 × 12.

Finally, all method features were combined and saved in vector sizes 12,507 × 255,
called handcrafted Features. FFNN received the handcrafted feature vector and distributed
it into 80% for network training and 20% to measure network performance. Figure 5
illustrates the methodology for analyzing blood microscopic slide images of the WBC
dataset for classifying WBC types by FFNN based on handcrafted features.
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The most important novelty of this study is to achieve superior results for classifying
WBC types by integrating features of CNN models with handcrafted features. The first
step of this technique was to optimize the images of the WBC dataset and insert them into
VGG19, ResNet101 and MobileNet models. The models analyzed blood microscopic images
through convolutional layering and pooling described previously. VGG19, ResNet101 and
MobileNet models produce high dimensional features; thus, PCA was applied to select the
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necessary features and eliminate the unnecessary and redundant ones. Finally, features
of VGG19, ResNet101 and MobileNet models were obtained and then saved in vectors of
sizes 12,507 × 580, 12,507 × 470 and 12,507 × 410, respectively. The VGG19, ResNet101
and MobileNet features were fused separately with the handcrafted features, as shown
in Figure 6. Finally, the fused features were introduced to FFNN, which distributed 80%
for training the network and validating its generalization, and kept 20% for measuring
its performance.
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4. Results of Techniques Performance
4.1. Split of WBC Dataset

All systems were implemented on the WBC dataset. The dataset consists of
12,507 images distributed among four classes of WBC types in a balanced manner. Table 1
shows the WBC type dataset distributed for all systems into 80% for training and validating
and 20% for testing the systems.
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Table 1. Splitting the WBC dataset.

Phase 80% (80:20)
Testing 20%

Classes Training (80%) Validation (20%)

Eosinophil 2005 501 627
Lymphocyte 1989 497 622

Monocyte 1981 495 619
Neutrophil 2030 507 634

4.2. System Performance Metrics

The predictive performance of the proposed techniques for classifying the WBC
type dataset was measured by evaluative measures described by Equations (8)–(12). The
equations show variables that refer to correctly classified samples are called TP and TN, and
incorrectly classified samples are called FP and FN [42]. The systems produce a confusion
matrix containing all the equations’ variables.

AUC =
TPRate
FPRate

(8)

Accuracy =
TN + TP

TN + TP + FN + FP
∗ 100% (9)

Precision =
TP

TP + FP
∗ 100% (10)

Specificity =
TN

TN + FP
∗ 100 (11)

Sensitivity =
TP

TP + FN
∗ 100% (12)

4.3. Results of CNN-SVM Technique

The section discusses the results of CNN-SVM hybrid techniques for analysing blood
slide images to classify the WBC typology dataset. This technique depends on two parts:
first, the analysis of blood slide images to obtain the morphological characteristics of each
type of WBC and extract the hidden features of each image through the convolutional
layers of CNN models (VGG19, ResNet101 and MobileNet) and select the essential features
using PCA; and second, the essential features of the SVM are then distributed through
three phases, 80% for training and validation and 20% from data to test the performance of
the SVM.

The hybrid technique obtained good results for analyzing blood slide images for
classifying the WBC type dataset, as shown in Table 2 and Figure 7. SVM yielded the best
performance with the features of VGG19. The VGG19-SVM technique achieved an AUC
of 95.23%, accuracy of 96.20%, precision of 96.20%, specificity of 98.73% and sensitivity of
96.15%. While ResNet101-SVM achieved an AUC of 96.93%, accuracy of 96.10%, precision
of 96.18%, specificity of 98.40% and sensitivity of 96.08%. In contrast, MobileNet-SVM
achieved an AUC of 97.63%, accuracy of 97%, precision of 96.90%, specificity of 98.93% and
sensitivity of 96.78%.
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Table 2. Results of the VGG19-SVM, ResNet101-SVM and MobileNet-SVM techniques for classifying
the WBC dataset.

Techniques Classes of WBC AUC % Accuracy % Precision % Specificity % Sensitivity %

VGG19-SVM

Eosinophil 96.4 96.2 92.9 97.6 95.8
Lymphocyte 93.9 95.7 97.5 98.7 96.1

Monocyte 94.5 95.8 97.1 99.2 95.5
Neutrophil 96.1 97 97.3 99.4 97.2

average ratio 95.23 96.20 96.20 98.73 96.15

ResNet101-SVM

Eosinophil 97.1 96.2 92.8 97.1 96.2
Lymphocyte 96.8 95.8 97.7 98.6 96

Monocyte 98.2 96.3 96.9 99.2 95.8
Neutrophil 95.6 96.2 97.3 98.7 96.3

average ratio 96.93 96.10 96.18 98.40 96.08

MobileNet-SVM

Eosinophil 98.3 97.4 93.8 98.4 97.3
Lymphocyte 97.9 96.5 99.3 99.5 95.8

Monocyte 97.5 96.8 97.7 99.2 96.8
Neutrophil 96.8 97.2 96.8 98.6 97.2

average ratio 97.63 97.00 96.90 98.93 96.78
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Figure 7. Display performance of SVM-CNN hybrid techniques for analyzing blood slide images to
classify a WBC dataset according to the techniques.

Figure 8 shows the confusion matrix generated from the VGG19-SVM, ResNet101-SVM
and MobileNet-SVM technologies.
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(c) MobileNet-SVM.

In the confusion matrix, the numbers in the last line represent the accuracy of each
class, while the last column represents the precision of each class. The green cells located
on the main diagonal represent correctly classified images called TP, whereas the red cells
represent the misclassified images called FP and FN.

First, the VGG19-SVM technique achieved accuracy for each WBC type: accuracy for
the Eosinophil type of 96.2%, Lymphocyte type of 95.7%, Monocyte type of 95.8% and
Neutrophil type of 97%. Second, ResNet101-SVM achieved accuracy for each WBC type:
accuracy for the Eosinophil type of 96.2%, Lymphocyte type of 95.8%, Monocyte type
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of 96.3% and Neutrophil type of 96.2%. Third, the MobileNet-SVM technique achieved
accuracy for each WBC type: accuracy for the Eosinophil type of 97.4%, Lymphocyte type
of 96.5%, Monocyte type of 96.8% and Neutrophil type of 97.2%.

The features of CNN models were combined and fed into SVM for classification to
achieve a promising accuracy for classifying WBC species. Table 3 and Figure 9 summa-
rize the results for technologies VGG19-ResNet101-SVM, ResNet101-MobileNet-SVM and
VGG19-ResNet101-MobileNet-SVM. First, the VGG19-ResNet101-SVM technique obtained
an AUC of 98.60%, accuracy of 97.60%, precision of 97.58%, specificity of 99.08% and
sensitivity of 97.60%. Second, the ResNet101-MobileNet-SVM technique obtained an AUC
of 98.73%, accuracy of 98.10%, precision of 98.15%, specificity of 99.25% and sensitivity
of 98.08%. Third, the VGG19-ResNet101-MobileNet-SVM technique obtained an AUC
of 98.88%, accuracy of 98.40%, precision of 98.33%, specificity of 99.53% and sensitivity
of 98.58%.

Table 3. Results of the VGG19-ResNet101-SVM, ResNet101-MobileNet-SVM and VGG19-ResNet101-
MobileNet-SVM techniques for classifying the WBC dataset.

Techniques Classes of WBC AUC % Accuracy % Precision % Specificity % Sensitivity %

VGG19-ResNet101-
SVM

Eosinophil 98.6 97.4 95.8 98.1 97.2
Lymphocyte 97.9 97.7 98.5 99.6 98.4

Monocyte 99.1 97.7 98.5 99.8 98.1
Neutrophil 98.8 97.3 97.5 98.8 96.7

Average ratio 98.60 97.60 97.58 99.08 97.60

ResNet101-
MobileNet-SVM

Eosinophil 97.9 98.4 96.9 99.1 97.7
Lymphocyte 98.5 96.8 99.5 99.6 97.3

Monocyte 99.4 98.1 98.7 99.5 98.1
Neutrophil 99.1 99.2 97.5 98.8 99.2

Average ratio 98.73 98.10 98.15 99.25 98.08

VGG19-ResNet101-
MobileNet-SVM

Eosinophil 98.5 97.8 98.8 100 98.4
Lymphocyte 98.8 98.7 99.2 99.7 99.2

Monocyte 99.5 98.1 97.9 99.1 97.8
Neutrophil 98.7 98.9 97.4 99.3 98.9

Average ratio 98.88 98.40 98.33 99.53 98.58

Figure 10 shows the confusion matrix generated from the VGG19-ResNet101-SVM,
ResNet101-MobileNet-SVM and VGG19-ResNet101-MobileNet-SVM technologies. First,
the VGG19-ResNet101-SVM technique achieved accuracy for each WBC type: accuracy
for the Eosinophil type of 97.4%, Lymphocyte type of 97.7%, Monocyte type of 97.7% and
Neutrophil type of 97.3%. Second, ResNet101-MobileNet-SVM achieved accuracy for each
WBC type: accuracy for the Eosinophil type of 97.8%, Lymphocyte type of 98.7%, Monocyte
type of 98.1% and Neutrophil type of 98.9%. Third, the VGG19-ResNet101-MobileNet-SVM
technique achieved accuracy for each WBC type: accuracy for the Eosinophil type of 97.8%,
Lymphocyte type of 98.7%, Monocyte type of 98.1% and Neutrophil type of 98.9%.
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Figure 9. Display performance of SVM with hybrid features of CNN hybrid techniques for analyzing
blood slide images to classify a WBC dataset according to the techniques.

4.4. Results of FFNN with Fused Features of CNN and Handcrafted

The section discusses the results obtained by the FFNN system with features of CNN
and handcrafted features for analyzing blood slide images to classify the WBC classification
dataset. This technique is a contribution of the study, which relies on first obtaining the
features of the WBC types from the CNN models (VGG19, ResNet101 and MobileNet) and
integrating them with the handcrafted features. Second, inputting the essential features of
FFNN and then distributing them through three phases: 80% for training and validation
and 20% from data for SVM performance testing.

FFNN, based on the handcrafted features, obtained good results for the analysis of
blood slide images to classify the WBC type dataset, as shown in Table 4. FFNN yielded an
AUC of 93.25%, accuracy of 94.4%, precision of 94.45%, specificity of 98.05% and sensitivity
of 94.65%.

Table 4. Results of the FFNN with handcrafted features techniques for classifying the WBC dataset.

Techniques Classes of WBC AUC % Accuracy % Precision % Specificity % Sensitivity %

FFNN-handcrafted
features

Eosinophil 92.5 89.8 90.4 96.8 90.4
Lymphocyte 93.6 98.4 98.9 99.5 98.1

Monocyte 94.1 99 97.1 98.7 99.3
Neutrophil 92.8 90.7 91.4 97.2 90.8

Average ratio 93.25 94.40 94.45 98.05 94.65
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The hybrid technique of FFNN-CNN-handcrafted technique obtained good results
for blood slide image analysis to classify the WBC type dataset, as shown in Table 5 and
Figure 12. FFNN yielded the best performance with MobileNet and handcrafted features.
The FFNN-VGG19-handcrafted technique achieved an AUC of 99.40%, accuracy of 99.40%,
precision of 99.45%, specificity of 99.65% and sensitivity of 99.33%. The FFNN-ResNet101-
handcrafted technique achieved an AUC of 99.48%, accuracy of 98.90%, precision of 98.95%,
specificity of 99.50% and sensitivity of 99.05%. The FFNN-MobileNet-handcrafted tech-
nique achieved an AUC of 99.43%, accuracy of 99.80%, precision of 99.75%, specificity of
99.75% and sensitivity of 99.68%.

Table 5. Results of the FFNN with CNN-handcrafted techniques for classifying the WBC dataset.

Techniques Classes of WBC AUC % Accuracy % Precision % Specificity % Sensitivity %

FFNN with
VGG19-handcrafted

Eosinophil 99.2 99.7 99.4 99.7 99.7
Lymphocyte 99.6 98.9 99.8 99.6 98.8

Monocyte 99.4 99.8 99.2 99.5 99.6
Neutrophil 99.4 99.4 99.4 99.8 99.2

Average ratio 99.40 99.40 99.45 99.65 99.33

FFNN with ResNet101-
handcrafted

Eosinophil 99.2 99.7 97.4 99.2 99.7
Lymphocyte 99.7 98.9 99.4 99.6 98.8

Monocyte 99.4 98.4 99.5 99.7 98.5
Neutrophil 99.6 98.7 99.5 99.5 99.2

Average ratio 99.48 98.90 98.95 99.50 99.05

FFNN with MobileNet-
handcrafted

Eosinophil 99.6 100 99.5 99.8 100
Lymphocyte 99.5 99.2 99.8 99.5 99.5

Monocyte 99.7 99.8 100 99.7 99.7
Neutrophil 98.9 100 99.7 100 99.8

Average ratio 99.43 99.80 99.75 99.75 99.68
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Figure 12. Display performance of FFNN with hybrid features of CNN-handcrafted features for
analyzing blood slide images to classify a WBC dataset according to the techniques.

Figure 13 shows the confusion matrix generated by the FFNN-VGG19-handcrafted,
FFNN-ResNet101-handcrafted and FFNN-MobileNet-handcrafted technologies. First, the
FFNN-VGG19-handcrafted technique achieved accuracy for each WBC type: accuracy
for the eosinophil type of 99.7%, lymphocyte type of 98.9%, monocyte type of 99.8% and
neutrophil type of 99.4%. Second, the FFNN-ResNet101-handcrafted achieved accuracy for
each WBC type: accuracy for eosinophil type of 99.7%, lymphocyte type of 98.9%, monocyte
type of 98.4% and neutrophil type of 98.7%. Third, the FFNN-MobileNet-handcrafted
technique achieved accuracy for each WBC type: accuracy for eosinophil type of 100%,
lymphocyte type of 99.2%, monocyte type of 99.8% and neutrophil type of 100%.

There are also some tools that evaluate FFNN’s performance on the WBC dataset
as follows.

4.4.1. Error Histogram

The error histogram is one measure that shows the performance of FFNN for analysis
of blood slide images for the WBC type dataset. The network records the error between the
target and output values in each epoch during the training, testing and validation phases.
Each stage appears in a colour distinguished from the other stage, as in Figure 14. The red
colour represents the least error during data training, the green colour represents the least
error during the data validation stage, and the blue colour represents the least error during
data testing [43]. With handcrafted features, the FFNN reached the best performance
among 20 bins within the values −1.465 and 2.139. With VGG19 and handcrafted features,
FFNN achieved the best performance among the 20 bins with values of −0.95 and 0.95.
With ResNet101 and handcrafted features, FFNN achieved the best performance among
the 20 bins with the values −0.9499 and 0.95. With MobileNet and handcrafted features,
FFNN achieved the best performance among the 20 bins with values of −0.9495 and 0.95.
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4.4.2. Cross-Entropy

Cross-entropy is a measure of the performance of FFNN for analysis of blood slide
images for the WBC type dataset. The network records the error between the target and
output values during each phase. Each stage has a special colour, as in Figure 15. Red
represents the least error during data training, green represents the least error during the
validation stage, and blue represents the least error during the testing stage [44]. With the
handcrafted features, FFNN found the lowest error at epoch 32 with a value of 0.068149.
With VGG19 and handcrafted features, FFNN achieved the lowest error at epoch 13 with
a value of 0.076133. With the features of ResNet101 and handcrafted FFNN achieved the
lowest error at epoch 113 with a value of 0.14846. With MobileNet and handcrafted features,
FFNN achieved the lowest error at the epoch of 101 with a value of 0.12752.



Diagnostics 2023, 13, 1899 22 of 27

Diagnostics 2023, 13, x FOR PEER REVIEW 21 of 27 
 

 

Figure 14. Error histogram for FFNN performance measurement of WBC type dataset classification 
by FFNN with features for (a) handcrafted; (b) VGG19-handcrafted; (c) ResNet101-handcrafted; (d) 
MobileNet-handcrafted. 

4.4.2. Cross-Entropy 
Cross-entropy is a measure of the performance of FFNN for analysis of blood slide 

images for the WBC type dataset. The network records the error between the target and 
output values during each phase. Each stage has a special colour, as in Figure 15. Red 
represents the least error during data training, green represents the least error during the 
validation stage, and blue represents the least error during the testing stage [44]. With the 
handcrafted features, FFNN found the lowest error at epoch 32 with a value of 0.068149. 
With VGG19 and handcrafted features, FFNN achieved the lowest error at epoch 13 with 
a value of 0.076133. With the features of ResNet101 and handcrafted FFNN achieved the 
lowest error at epoch 113 with a value of 0.14846. With MobileNet and handcrafted fea-
tures, FFNN achieved the lowest error at the epoch of 101 with a value of 0.12752. 

 
Figure 15. Cross-entropy for FFNN performance measurement of WBC type dataset classification 
by FFNN with features for (a) handcrafted; (b) VGG19-handcrafted; (c) ResNet101-handcrafted; (d) 
MobileNet-handcrafted. 

4.4.3. Gradient and Validation Checks  
The validation checks and gradient are metrics that demonstrate the performance of 

FFNN for analysis of blood slide images for the WBC dataset. In each epoch, the network 

Figure 15. Cross-entropy for FFNN performance measurement of WBC type dataset classification
by FFNN with features for (a) handcrafted; (b) VGG19-handcrafted; (c) ResNet101-handcrafted;
(d) MobileNet-handcrafted.

4.4.3. Gradient and Validation Checks

The validation checks and gradient are metrics that demonstrate the performance
of FFNN for analysis of blood slide images for the WBC dataset. In each epoch, the
network records the gradient and failures of the FFNN, as in Figure 16. It is noted with
the handcrafted features that FFNN achieved a gradient of 0.042213 in epoch 121. With
the VGG19 and handcrafted features, the FFNN reached a gradient of 0.04985 in epoch 95.
With the ResNet101 and handcrafted features, the FFNN achieved a gradient of 0.02963
in epoch 119. With MobileNet and handcrafted features, the FFNN reached a gradient of
0.049243 in epoch 107.
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5. Discussion of the Systems Performance for Classifying WBC Types

Recognizing the type of WBC is essential to help pathologists identify the type of
disease through blood analysis. Manual analysis requires time, effort and expertise to
identify the type of WBC cells. Therefore, AI techniques play a vital role in effective WBC
type recognition. In this study, effective hybrid systems were developed to classify blood
slide images for the WBC type dataset. The images of all systems were passed to two
successive filters to improve the images.

The first technique for analyzing blood slide images is to distinguish between WBC
types by CNN-SVM hybrid techniques. WBC images are fed into VGG19, ResNet101 and
MobileNet models to extract all accurate features and fed into PCA to select the necessary
features. SVM receives the features and classifies them with high accuracy into the four
types of WBC. VGG19-SVM, ResNet101-SVM, and MobileNet-SVM techniques reached
an accuracy of 96.20%, 96.10% and 97%, respctively, for the classification of the WBC
type dataset.

The second technique analyses blood slide images to discriminate between WBC types
by hybrid methods of CNN-SVM based on fused features. WBC images are fed into VGG19,



Diagnostics 2023, 13, 1899 24 of 27

ResNet101 and MobileNet models to extract all accurate features and fed into PCA to
select the necessary features. Fused features were obtained by combining the features of
VGG19-ResNet101, ResNet101-MobileNet and VGG19-ResNet101-MobileNet models. SVM
receives fused features and classifies them with high accuracy into the four types of WBC.
VGG19-ResNet101-SVM, Res-Net101-MobileNet-SVM and VGG19-ResNet101-MobileNet-
SVM techniques reached an accuracy of 97.60%, 98.10% and 98.40%, respectively, for the
classification of WBC type dataset.

The third technique is to analyze blood slide images to discriminate between WBC
types by hybrid methods based on handcrafted features alone, as well as combining them
with CNN models’ features. The WBC images are input into the GLCM, LBP, DWT and
FCH methods of extracting the features, merging them, and then inputting them into FFNN
for classification achieving an accuracy of 94.4%. The images were analyzed by VGG19,
ResNet101 and MobileNet models to extract all the accurate features and input them into
PCA to select the necessary features. The VGG19, ResNet101 and MobileNet features are
separately integrated with the Handcrafted features. SVM receives melted features and
classifies them with high accuracy into the four types of WBC. VGG19-handcrafted-FFNN,
ResNet101-handcrafted-FFNN and MobileNet-handcrafted-FFNN techniques reached an
accuracy of 99.40%, 98.90% and 99.80%, respectively, for the classification of the WBC
type dataset.

Table 6 and Figure 17 summarize the systems performance metrics for classifying
the WBC dataset. The systems achieved impressive results in categorizing each type of
WBC. FFNN, when fed with the hybrid MobileNet and handcrafted features, achieved the
best performance compared to the rest of the systems, which reached an accuracy of 100%,
99.2%, 99.8%, and 100% for the classification of Eosinophil, Lymphocyte, Monocyte and
Neutrophil, respectively.
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Figure 17. Display of systems performance for classifying the WBC dataset.
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Table 6. Results of systems for analysis of blood slide images for the WBC type dataset.

Techniques Features Eosinophil Lymphocyte Monocyte Neutrophil Accuracy %

SVM

VGG19-PCA 96.2 95.7 95.8 97 96.2
ResNet101-PCA 96.2 95.8 96.3 96.2 96.1
MobileNet-PCA 97.4 96.5 96.8 97.2 97

Fusion features
VGG19-ResNet101 97.4 97.7 97.7 97.3 97.6

ResNet101-MobileNet 98.4 96.8 98.1 99.2 98.1
VGG19-ResNet101-

MobileNet 97.8 98.7 98.1 98.9 98.4

FFNN

Handcrafted features 89.8 98.4 99 90.7 94.4

Fusion features
VGG19-hancrafted 99.7 98.9 99.8 99.4 99.4

ResNet-101-handcrafted 99.7 98.9 98.4 98.7 98.9
MobileNet-handcrafted 100 99.2 99.8 100 99.8

6. Conclusions

WBC diseases are a serious health problem. However, several treatments are available
that can help improve the quality of life for people with WBC diseases. AI has the potential
to improve the diagnosis and treatment of WBC diseases. Deep learning models can be used
to extract characteristics from microscopic images of blood smears on glass slides. These
characteristics can then be used to determine the type of WBC and distinguish between
blood diseases. Artificial intelligence techniques are not a substitute for doctors, but rather
help them make accurate diagnoses. Thus, this study dealt with several artificial intelligence
systems based on hybrid technologies with hybrid features to classify WBC types. The
first technique demonstrates that using individual CNN models combined with SVM can
achieve high accuracy in classifying WBC types. The MobileNet model outperformed the
other two models with an accuracy of 97%. The second technique improves upon the first
technique by combining features from multiple models, resulting in higher accuracy. The
fused feature approach using VGG19-ResNet101-MobileNet achieved the highest accuracy
of 98.40%. The third technique incorporates both handcrafted features and features from
CNN models, resulting in even higher accuracy. By combining the two types of features,
the accuracy significantly improves, with the MobileNet-handcrafted-FFNN technique
achieving the highest AUC of 99.43%, accuracy of 99.80%, precision of 99.75%, specificity
of 99.75% and sensitivity of 99.68%. Overall, the results suggest that using CNN models
in combination with SVM or FFNN can effectively classify WBC types in blood slide
images. Furthermore, the combination of features from multiple models or the fusion of
handcrafted and CNN features can lead to improved accuracy in WBC classification. The
highest accuracy achieved was 99.80% using the MobileNet-handcrafted-FFNN technique.
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