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Abstract: Facial skin analysis has attracted considerable attention in the skin health domain. The
results of facial skin analysis can be used to provide skin care and cosmetic recommendations in
aesthetic dermatology. Because of the existence of several skin features, grouping similar features and
processing them together can improve skin analysis. In this study, a deep-learning-based method
of simultaneous segmentation of wrinkles and pores is proposed. Unlike color-based skin analysis,
this method is based on the analysis of the morphological structures of the skin. Although multiclass
segmentation is widely used in computer vision, this segmentation was first used in facial skin
analysis. The architecture of the model is U-Net, which has an encoder–decoder structure. We added
two types of attention schemes to the network to focus on important areas. Attention in deep learning
refers to the process by which a neural network focuses on specific parts of its input to improve its
performance. Second, a method to enhance the learning capability of positional information is added
to the network based on the fact that the locations of wrinkles and pores are fixed. Finally, a novel
ground truth generation scheme suitable for the resolution of each skin feature (wrinkle and pore) was
proposed. The experimental results revealed that the proposed unified method achieved excellent
localization of wrinkles and pores and outperformed both conventional image-processing-based
approaches and one of the recent successful deep-learning-based approaches. The proposed method
should be expanded to applications such as age estimation and the prediction of potential diseases.

Keywords: facial skin feature segmentation; ground truth generation; facial wrinkles and pores;
semantic segmentation; positional encoding; prior information; attention

1. Introduction

The face of a person has both universality, allowing recognition of a human face,
and individuality, enabling distinction among individuals. These characteristics are used
in applications such as face detection and face recognition. Because facial skin also ex-
hibits these characteristics, facial features can be defined, classified, and analyzed. This
information can detail the skin’s health status. Facial skin images can be captured using
photographs for skin analysis or obtained by detecting the facial region in a person’s image
and cropping it to extract the region of interest.

Representative skin features include wrinkles, pores, dark circles, and hyperpig-
mentation. The analysis of such skin features is relevant to dermatology or cosmetic
recommendations for the beauty and anti-aging industries. Grouping skin features with
similar characteristics and detecting them together could be more efficient. Specifically,
wrinkles and pores can be grouped as morphological features, and dark circles, redness,
and pigmentation can be grouped as colorimetric features. In this study, we focused on
structural facial features, such as wrinkles and pores, and proposed a deep neural network
for simultaneously segmenting both effectively.

Before the advent of deep learning, image processing techniques were used for wrinkle
and pore detection. Automatic detection of wrinkles was widely performed using the
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Hessian or Gabor filter [1,2]. A Hessian matrix is defined as a square matrix of second-
order partial derivatives. Eigen vectors and their corresponding eigen values represent
the direction and magnitude at a specific position. The Gabor filter is a bio-inspired
feature extraction filter consisting of Gaussian filtering and trigonometric modulation
functions. Both filters extract features from a local area without considering a larger
area. For facial pore segmentation, image-processing-based approaches such as high-pass
filtering, k-means clustering, and morphological processing are effective [3]. In image
processing approaches, the area of interest should be predefined for detecting pores and
filter parameters should be optimized for specific images because the performance of the
approaches is highly affected by skin and lighting conditions.

Research using deep learning has begun to emerge in the facial skin analysis field
as well [4–9]. In [4], a deep learning model was used for segmenting acne, pigmentation,
and wrinkles. A study [5] suggested a two-step wrinkle removal algorithm, where the first
step is wrinkle segmentation. In both studies [4,5], U-Net++ was used as the segmentation
model, which is advantageous for capturing more contextual information by incorporating
multiple nested pathways. Furthermore, convolutional neural networks (CNNs) have
been used to detect nasolabial folds, a type of wrinkle [6,7]. Deep learning is also being
used in skin pore segmentation. For instance, in [8], U-Net with L1 loss was used for pore
segmentation, and [9] suggested a shallow CNN focusing on pores with a simple shape.

In this study, we proposed a comprehensive deep learning approach for simultaneous
segmentation of wrinkles and pores. To the best of the authors’ knowledge, this study is
the first study focusing on detecting facial wrinkles and pores simultaneously and insights
into the simultaneous detection of similar skin attributes using neural networks. Instead
of focusing on proposing the new structural aspects of a deep neural network, we aimed
to generate ground truth (GT) data that fit the characteristics of wrinkles and pores and
propose a method that emphasizes the typical locations of each feature.

Specifically, the proposed method can be summarized by three features. First, based
on the U-Net architecture, an attention mechanism was integrated to refine feature maps
and enable their transmission to the decoding part. Second, a texture map with image
processing filters that enhance the high-frequency details for wrinkles and pores was used
to generate GT data. Finally, to improve the localization ability of the deep neural network,
a novel model was designed to focus on major areas of wrinkle and pore occurrence,
which are fixed in the facial region. This result was achieved using a computationally
lightweight zero-padding technique, which improved simultaneous detection performance
and reduced false positives.

This paper is organized as follows: Section 2 presents a review of studies related to
the proposed method. In Section 3, we propose a facial-skin-specific segmentation network.
Section 4 details the experimental results, compares them with existing image-processing-
based methods, and verifies the effectiveness of the added techniques in the network. In the
Discussion section, directions for future studies are detailed, and the paper is concluded.

2. Related Work

In this section, we briefly review the existing literature related to the proposed method-
ology.

2.1. U-Net and Its Variants

The U-Net is a U-shaped CNN that was originally devised for biomedical image
segmentation [10]. The network consists of an encoder–decoder structure with skip con-
nections that concatenate feature maps from the encoder to feature maps at the decoder to
retain high-resolution information that can be lost during contracting paths in the encoding
part. However, this simple skip connection can transfer noise from the encoder to the
decoder, which can cause performance degradation.

To address the limitation of simple skip connections, studies have considered refining
feature maps before skip connections. For example, a study [11] proposed using attention
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mechanisms to weight the feature maps from the encoder using the information from both
the encoder and decoder before concatenating them with the decoder feature maps to help
the network focus on the most relevant information and erase irrelevant information.

As another improvement strategy, dense skip connections have been used. For in-
stance, dense U-Net is a modification of the U-Net architecture that incorporates dense
skip connections between the encoder and decoder blocks, where feature maps from all
preceding encoder blocks are concatenated with feature maps from the decoder [12]. In U-
Net++ [13], the network was designed to learn complex interactions between feature maps
across various levels of the encoder and decoder. These methods improve performance
compared with U-Net, but they also increase model complexity.

2.2. Semi-Automatic Labeling for Ground Truth Generation

In a semantic image segmentation problem, each pixel is classified according to the
predefined classes. The ImageNet dataset is widely used in computer vision [14], and the
input images for this dataset typically have a size of 224× 224. For images used in skin
analysis, a considerably larger size is typically used, and pixel-level annotation accuracy is
required, rendering elaborate labeling of skin features a challenging and time-consuming
task in a supervised method.

To overcome this problem, a rough manual annotation concept was introduced [15]
for wrinkle segmentation. With regard to the generation of the GT, manual labeling is per-
formed with a thickness that sufficiently includes wrinkles first. Next, a wrinkle-enhancing
image filter is applied to the input image. Finally, the filtered image and the annotation
image are multiplied to obtain the GT with well-defined boundaries. In this study, we
expanded this concept for general morphological feature segmentation in skin images.

2.3. Use of Positional Information

A research trend is to include positional information in the learning network to
improve performance. First, positional information was used in transformers for natural
language processing tasks [16], where the position of each element is encoded in sequence
into input representation. Positional encoding has been extended to computer vision to
develop the vision transformer (ViT) [17]. In the ViT, a self-attention mechanism is applied
to image patches and positional embeddings have been used to encode spatial information,
which allows the model to capture both local and global features of an image.

Moreover, the extension of positional encoding to CNNs can considerably improve
image segmentation accuracy. In CNN-based segmentation schemes, positional encoding
has been used to improve the accuracy of segmentation models. By incorporating positional
encoding into CNNs, the model can handle the spatial relationship between pixels and
generate accurate segmentation masks. CoordConv is an example of a method incorpo-
rating positional information into the CNN architecture by concatenating a coordinate
channel that encodes the x- and y-coordinates of each pixel [18]. CoordConv enables the
model to better learn the spatial relationship between pixels, which leads to more accurate
segmentation results.

In CNN applications, positional encoding is extended beyond explicit usage at input,
such as in the case of CoordConv. For instance, positional embeddings can be used not
only in the input but also in the decoding part. The decoder was equipped with positional
embeddings that were added to the output of the encoder, which allowed the decoder to
improve disentangling and reconstruction accuracy [19]. Furthermore, there are analytical
research results on whether CNNs learn implicitly positional information [20], where the
authors mention the effect of zero-padding in the CNN.

3. Materials and Methods
3.1. Shape Prior-Driven Ground Truth Generation

In this subsection, we examined wrinkles and pores from the perspective of image
signal processing. As displayed in Figure 1a, pores are clusters of small openings, whereas
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wrinkles can form straight and curved edges with varying thickness. This shape informa-
tion can be integrated into the GT generation process. GT generation in this study is based
on [15], where manual annotation was refined by multiplying with a texture map to yield
the final GT, as displayed in Figure 1b. A texture map refers to an image that highlights the
key areas of interest to be detected, such as a high-pass filtered image. Table 1 summarizes
the formulas used to generate texture maps for wrinkles and pores, respectively. Detailed
explanations for each formula are provided in the following:

Table 1. Formulation for texture map generation.

Skin Feature Formulation Eq

Wrinkle T(x, y) =
(

1− I(x,y)
1+IGσ (x,y)

)
× 255 (1)

Pore T(x, y) = t · 1|t|>Th, (2)
where t = −(L0(x, y) + Expand(L1)(x, y))

Figure 1. The first row of (a) shows examples of pores, thin wrinkles, and thick wrinkles, respectively.
In the second row of (a), edge detection algorithms make their differences more clearly visible in
grayscale. In (b), Ground Truth generation process is represented, where texture maps and manual
annotations are multiplied to generate the GT.

3.1.1. Ground Truth Generation for Wrinkles

For wrinkles, many well-known edge detection algorithms can be excellent candidates
for creating the texture map. Unlike pores, wrinkles have connected lines, so the application
of filters that emphasize coherence can be considered. In this study, we used the filter
proposed by [15]. The filter is formulated using a Gaussian kernel with parameter σ
as follows:

T(x, y) =
(

1− I(x, y)
1 + IGσ

(x, y)

)
× 255, (1)

where I is the grayscale image and T is the resultant texture map. This image filter benefits
from the smoothing effect on the surrounding area because of the Gaussian filter, which
enhances the coherence between edges and renders it computationally simple and fast.
After generating the texture map, the GT can be created by applying thresholding and
multiplying it with the manual annotation map, just as in the case of pores.

3.1.2. Ground Truth Generation for Pores

Pores are numerous small openings typically located on cheeks and nose. Each pore
consists of a few pixels with a lower signal magnitude than their surroundings. Pore
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detection starts similarly to wrinkles, by converting the image into a grayscale format.
To extract the high-frequency signal components of pores, the Laplacian pyramid technique
is used. The formula for generating a texture map of pores is as follows:

T(x, y) = t · 1|t|>Th, where t = −(L0(x, y) + Expand(L1)(x, y)), (2)

where Li represents Laplacian pyramid [21] at i-th level, and Expand denotes expanding
operator consisting of upsampling and interpolation. The texture map was obtained after
hard threshing with threshold Th, which clearly delineates the boundaries between the
pores. The negative sign at the beginning of the formula is used to make pores, which
typically have lower values compared with their surroundings in facial images, which is a
positive sign in the texture map.

3.2. Implicit Learning of Occurrence Location

Because the human face has universal physical characteristics, facial landmark detec-
tion can be performed by locating predefined landmarks on the face (Figure 2a). Specific
areas of interest for analysis can be accessed through landmark detection. Facial landmarks
have attracted considerable research attention because of their potential for application in
many practical fields, such as face recognition [22].

Figure 2. Human face has universality, which allows extraction of specific locations and analysis in
those areas. (a) Example of facial landmark detection; (b) 1 (T zone): measurement areas of forehead
and glabellar wrinkles; 2: measurement areas of eye wrinkles; 3 (butterfly zone): measurement areas
of pores. (c) An example of a zero-padded input image.

Facial skin analysis can be based on the observations of universal phenomena that
appear on the face. Generally, the locations where wrinkles and pores appear are pre-
determined, unlike acne or pigmentation, which can appear in various parts of the face.
For example, wrinkles appear on the forehead, between the eyebrows (T zone), under the
eyes, and beside the eyes (crow’s feet), whereas pores are distributed in the area of the nose
and cheeks, also known as the butterfly zone. Their typical occurrence region is denoted
in Figure 2b. Based on these observations, focusing on areas with a high probability of
detecting each class can upgrade segmentation model performance.

To ensure the model focused on the areas of main occurrence, we enhanced the ability
of the CNNs to learn location information. If the positional information is better learned,
then it can not only improve segmentation performance in the regions of interest but also
reduce false positives, that is, detection in incorrect locations. Therefore, we introduced
zero-padding proposed in [20] to enhance the ability of CNN to learn location information
implicitly and enable CNN to discriminate and learn the location of each item in the
simultaneous detection of wrinkles and pores. Zero-padding is simple and does not
increase computational complexity. Through the use of zero-padding, the network can
better learn the expected locations and reduce detection errors at incorrect positions, which
is demonstrated in detail in the Results section.
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If zero-padding is the process at the input stage, attention mechanisms can improve
the segmentation performance inside the neural network. The first attention mechanism
was proposed in natural language processing to mimic human attention processes [23].
Attention allows the network to selectively focus on the target parts of an input while
processing. In the proposed method, spatial attention and additive attention modules were
proposed to emphasize processing at the target location. More details are discussed in the
following subsection.

3.3. Network Architecture

Figure 3 displays the architecture of the proposed network. The network has a U-shaped
framework, and most processing blocks apply twice the serial process of 3× 3 convolution,
batch normalization, and ReLU, as in other CNN-based networks. However, to make use of
complex networks with better performance is not within the scope of this paper. This paper
focused on learning location information within the face and produced discriminative results
from wrinkle–pore simultaneous segmentation.

Figure 3. Architecture of the proposed network. The three-channel input is zero-padded and given to
the network. The output consists of the two segmentation maps for wrinkles and pores, respectively.

The proposed network has three main features. First, zero-padded input is used to
facilitate the learning of positional information. The input to the network is zero-padded
to have size (Z + H)× (Z + W)× C, where Z represents padding size. The output size
is (Z + H)× (Z + W)× 2, where 2 denotes that the segmentation maps of wrinkle and
pore are yielded in concatenated form. The second feature is the application of spatial
attention at bottlenecks. The attention scheme is applied to focus on the interest region.
In spatial attention, max pooling and average pooling are performed on the feature map,
yielding the two-channel output by concatenating two pooled features. Next, convolution
and activation functions are used to yield a spatial attention map. Because attention was
applied at the deepest layer, the refined effect of the feature map continued to be applied
along the expanding path.

The final feature is the suggestion of an additive attention module. Additive attention
originally had the following form [24]:

f (q, v) = vTσ(W1k + W2q + b), (3)

where q, k, and v represent query , key, and value, respectively. Here, σ denotes the activation
function. In [11], additive attention was applied as the “attention gate”. Additive attention
was used in this study, and we suggest the additive attention module (AAM), as in the
green box in Figure 3 and described in detail in Figure 4.
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Figure 4. Schematic of the additive attention module. Input and output arrows follow the same
convention as the network architecture in Figure 3.

As displayed in Figure 4, the feature maps from the decoding part serve as the query,
while the feature maps from the encoder take the roles of key and value. The feature maps
from the decoder go through upsampling, convolution, batch normalization, and ReLU
activation in sequence. Next, an additive attention map is generated and multiplied with the
feature maps from the encoder. Then, the two feature maps are concatenated and passed as
input to the next block. By using these three techniques, a network was constructed to learn
facial positions more accurately and emphasize important positions in a simple manner.

4. Results
4.1. Experimental Setup

For the dataset, we collected 314 facial images acquired from skin diagnosis devices,
such as Lumini Kiosk V2 [25]. The images were cropped to include the forehead, eye,
and butterfly zone, and then resized to 768× 640. Among the cropped images, 264 images
were selected for training, and the remaining 50 images were used for validation. Data
labeling was performed by trained annotators. The input is a color image of size H×W×C,
where C is the number of RGB channels. The output is a group of grayscale segmentation
maps with size H ×W × 2, resulting in wrinkle and pore segmentation maps together in
concatenated form. For training, MSE loss was selected to consider the pixel magnitude on
GT. We trained our model using PyTorch with an NVIDIA GeForce RTX 3060.

4.2. Comparison with Existing Methods

Figure 5 displays the comparison results of the representative image processing
method, U-Net++, and the proposed method on wrinkle area. Each column represents
a different subject. For image processing, a Hessian-based Frangi filter was selected [26].
Figure 5a displays the result on the forehead region. As displayed in the third row of the
left column, the Frangi filter detects thick wrinkles well. However, if the lighting conditions
are varied and wrinkles do not seem clear, the performance of the filter is poor. The results
are not free from numerous false positives. By contrast, U-Net++ and the proposed method
segment wrinkles well under various lighting and skin conditions, similar to the marking
on GT. Figure 5b displays the result in the eye region. As presented in the second row
of GTs, the thickness of wrinkles varies among the three data points. The data in the
leftmost column predominantly demonstrate thin wrinkles, and the data in the middle
column demonstrate numerous wrinkles of medium thickness. Finally, the rightmost
has fewer wrinkles, but they are thicker in size. Image processing approaches reveal
degraded performance, especially when wrinkles have various thicknesses in the image.
Deep-learning-based approaches (U-Net++, proposed) exhibit consistent performance for
both thin and thick wrinkles under various light and skin conditions.
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Figure 5. Comparison of wrinkle segmentation on (a) the forehead and (b) the eye regions. Each row
represents the original image, GT, the result of the Frangi filter [26], the result of U-Net++, and the
proposed network, respectively.

Figure 6 displays the results of pore detection on the left cheek area in the butterfly
zone. The two rows represent two types of data. The third column of Figure 6 details
the result of an image processing approach [3]. To implement the idea, high-frequency
component extraction, k-means clustering, and morphological processing were applied
one after the other. Therefore, most pores are detected well, but other high-frequency
structures other than pores are also detected. The fourth and fifth columns detail the
results of U-Net++ and the proposed network, respectively. Deep-learning-based methods
demonstrate pore distribution that is similar to the GT.
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Figure 6. Comparison results of pore segmentation on the left cheek region. Each column represents
the original image, GT, the result using the idea of [3], the result of U-Net++, and the result of the
proposed network. Two rows indicate different subjects.

Table 2 presents the intersection over union (IoU) values for wrinkles and pores,
respectively. IoU is a measure that counts the overlap between the prediction and the GT.
IoU is defined as follows:

IoU
(
X, X̂

)
=
|X ∩ X̂|
|X ∪ X̂|

, (4)

where X and X̂ represent the GT and prediction, respectively. IoU values close to 1 denote
superior prediction. For U-Net++ and the proposed algorithm, IoU values were calculated
on the whole inference image. For image processing methods, the ROI of the target area
was cropped in advance, and the IoU was calculated for selected images. As presented
in Table 2, both deep-learning-based algorithms exhibited IoU values superior to image
processing methods. In the comparison among deep learning algorithms, the proposed
network exhibited slightly higher IoU values than U-Net++.

Table 2. Comparison of IOU values.

Image Processing U-Net++ Proposed

IoU of Wrinkles 0.0833 0.2160 0.2341

IoU of Pores 0.2886 0.3669 0.4032

4.3. Model Evaluation

In Section 4.2, we compared the complete form of the proposed network with image-
processing-based methods and a novel deep learning model, U-Net++. In this subsection,
we investigate the effects of attention and zero-padding in the proposed network, which
were introduced in Section 3.3. Figure 7 details the comparison results of the deep networks
for pore segmentation. First, the result of the vanilla U-Net [27] was generated. The second
model is a combination of the reduced U-Net and attention techniques. The reduced U-Net
represents the small U-Net by halving the number of channels, resulting in a 1/4-sized
model. Here, attention is termed to encompass both spatial attention and AAM. The
fourth column displays the results of U-Net++. The proposed model in the fifth column
is a combination of a downsized U-Net, attention modules, and zero-padding applied to
the input.
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Figure 7. Compared results of deep neural networks for pore segmentation. Each row represents the
different ROI of pore segmentation.

The first row of Figure 7 reveals that the U-Net and U-Net++ detect the pores between
eyebrows. Although they may appear as pores in a local area, a human annotator may not
consider this during labeling because the area is in the T zone. No labels are visible in this
area, as observed in the GT, as indicated by the blue arrow. By contrast, the reduced U-Net
with attention and the proposed network do not detect these pores. The second row also
exhibits a similar trend. The U-Net detects unwilling pores under the nose, as indicated by
the red arrow. Although not as much as U-Net, U-Net++ also exhibits some degree of false
positives. The remaining two models, the reduced U-Net with attention and the proposed
one, do not detect false positives.

This observation reveals that attention mechanisms enable the model to focus on the
areas that are most important, following the repetitive patterns of object locations in the
GT images. However, with the reduction in false positives, a side effect of decreasing the
detection area has been observed. In the third row of Figure 7, the area is indicated by a black
arrow in the result of the reduced U-Net with attention. Even U-Net++ exhibits a similar
reduction in the detection area. However, U-Net does not exhibit such a phenomenon.
By contrast, the proposed method detected pores that were distributed very similarly to
those in the GT without such a narrowing effect.

Table 3 presents the quantitative results of those models by ablation study. Two
metrics, validation loss and IoU, are compared. A small loss indicates that the model is
performing well in training and is making accurate predictions. The basic U-Net has the
largest model size but the poorest performance among the evaluated models. The reduced
U-Net with attention exhibited similar losses to the basic U-Net but considerably higher
IoU values. Finally, the proposed model exhibited a significant improvement in both loss
and IoU values, even with fewer parameters than U-Net. These qualitative and quantitative
comparisons confirmed that the proposed network exhibited superior performance with a
smaller capacity. These results alleviate concerns regarding the simultaneous detection of
various features.
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Table 3. Ablation study.

#Params Loss IoU of Wrinkle IoU of Pore

U-Net 17.3 M 1.243 0.2078 0.3601

Reduced U-Net 4.3 M 1.250 0.2147 0.3646

Reduced U-Net,
Attentions 5.2 M 1.242 0.2250 0.3714

Reduced U-Net,
Attentions,

Zero-padding
(Proposed)

5.2 M 1.145 0.2341 0.4032

5. Discussion

The proposed network involved training the model to learn that wrinkles and pores
are concentrated in certain facial zones, such as the T zones or butterfly zones, which are
well-known areas for their appearance, and to use this information to improve detection
accuracy. Examples of other research that considers the locations where the segmentation
target is detected can be found in computer vision for autonomous driving purposes [28].
In [28], for multiclass segmentation environments for autonomous driving vehicles, certain
classes have a defined range of locations they occupy. For instance, because cars cannot
fly in the sky, they are predominantly distributed below a certain height in the image.
To achieve this result, height-driven attention methods (HANET) have been proposed and
have shown improved performance.

HANET and the proposed method utilize the location information of the segmentation
target to improve model performance. However, HANET focuses on assigning higher
weights to the locations where the segmentation target appears frequently. We enhanced
CNN’s ability to learn location information. We introduced the zero-padding proposed
in [20] to enhance the ability of CNN to learn location information implicitly and enable the
CNN to better discriminate and learn the location of each item in the simultaneous detection
of wrinkles and pores. Zero-padding is simple and does not increase computational
complexity. Through the use of zero-padding, the network can better learn the expected
locations and reduce detection errors at incorrect positions, as demonstrated in Section 4.3.

As mentioned in the introduction, skin attribute segmentation using deep learning
techniques has attracted considerable research attention [4–9]. Although considerable
advancements have been achieved in the application of state-of-the-art networks and
their integration with a generative model to expand the scope of application, the unique
characteristics of skin are yet to be incorporated into the network itself. The proposed
study stands out from other approaches by considering the characteristics of skin in terms
of generating GT based on image processing, designing the model to better learn the
occurrence locations of skin features, and creating a compact model based on reduced U-
Net. These methods incorporate the unique aspects of skin while leveraging state-of-the-art
networks, which provides distinctiveness compared with other methods that simply adopt
the latest networks.

The segmentation results of various skin features distributed on the face can be used
to analyze skin characteristics. For example, severity scores can be assigned based on the
area occupied by detected wrinkles or pores in a designated ROI. Alternatively, a score
network can be connected to the segmentation network that starts from the deepest feature
map of the segmentation network to directly train severity scores. These scores can be used
for further analysis of skin characteristics. Furthermore, segmented results can also be
used to calculate abstract measures, such as surface skin age, skin elasticity, and roughness.
In the future, the segmentation results can be extended to automated skin analysis.

As a final point, we discuss the limitations of our proposed method and future di-
rections for improvement. First, although the proposed method was designed for the
simultaneous segmentation of wrinkles and pores, we did not analyze the severity of
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the detected results. In our subsequent research, we will aim to propose an end-to-end
integrated model of segmentation and analysis. Second, GT can be improved. The cur-
rent semi-automatic labeling approach generates GT with somewhat uneven boundaries.
Therefore, creating a more coherent GT using additional post-processing filters for wrinkles
can improve performance. For pores, prior information, such as round shape, can be
considered in creating a GT. Finally, we believe that it is necessary to consider an improved
loss function. In this proposed method, we used L2 loss (MSE) to consider the magnitude
information of the texture map, but we will investigate improved loss functions, such as
Dice loss, which considers the imbalance of the GT, or a weighted loss function, which
assigns weight to the loss of wrinkles and pores separately, in the future.

6. Conclusions

In this study, the first deep neural network for simultaneous segmentation of facial
wrinkles and pores was proposed. The proposed model incorporates zero-padding and
attention mechanisms to better learn positional information, and a novel ground truth
generation scheme suitable for each skin feature was devised. The experimental results
revealed that the proposed network outperforms existing methods, and the reinforcement
of positional information in the network was confirmed to enhance the network’s ability to
better learn the location of features within the face. In the future, we plan to extend the
improved segmentation performance to automatic skin analysis, such as skin elasticity and
roughness, using the proposed method.
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