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Abstract: Current methods for analysing immunohistochemistry are labour-intensive and often con-

founded by inter-observer variability. Analysis is time consuming when identifying small clinically 

important cohorts within larger samples. This study trained QuPath, an open-source image analysis 

program, to accurately identify MLH1-deficient inflammatory bowel disease-associated colorectal 

cancers (IBD-CRC) from a tissue microarray containing normal colon and IBD-CRC. The tissue mi-

croarray (n = 162 cores) was immunostained for MLH1, digitalised, and imported into QuPath. A 

small sample (n = 14) was used to train QuPath to detect positive versus no MLH1 and tissue histol-

ogy (normal epithelium, tumour, immune infiltrates, stroma). This algorithm was applied to the 

tissue microarray and correctly identified tissue histology and MLH1 expression in the majority of 

valid cases (73/99, 73.74%), incorrectly identified MLH1 status in one case (1.01%), and flagged 25/99 

(25.25%) cases for manual review. Qualitative review found five reasons for flagged cores: small 

quantity of tissue, diverse/atypical morphology, excessive inflammatory/immune infiltrations, nor-

mal mucosa, or weak/patchy immunostaining. Of classified cores (n = 74), QuPath was 100% (95% 

CI 80.49, 100) sensitive and 98.25% (95% CI 90.61, 99.96) specific for identifying MLH1-deficient 

IBD-CRC; κ = 0.963 (95% CI 0.890, 1.036) (p < 0.001). This process could be efficiently automated in 

diagnostic laboratories to examine all colonic tissue and tumours for MLH1 expression. 

Keywords: QuPath; machine learning; biomarker; MLH1; colorectal cancer;  

inflammatory bowel disease; mismatch repair; immunohistochemistry; histology 

 

1. Introduction 

Accurate histological assessment including immunohistochemistry is necessary to 

confirm a diagnosis of cancer and guide treatment decisions. Tissue biomarker studies 

also depend on the accurate interpretation of immunostains. Previous studies have 

demonstrated high inter-observer variability when identifying tissue histology or as-

sessing immunostain patterns and intensities [1–3]. For example, a multicentre study re-

ported poor inter-observer agreement for HER2 immunostain interpretation in breast can-

cer, with kappa 0.2–0.6; absolute agreement for immunohistochemistry was found for 

only one out of three cases [4]. The variability in the interpretation of tissue type and 

staining can be minimised by expert pathologists and independent validation of the im-

munohistochemistry, respectively [5–7]. However, this process is still limited by human 

factors such as the subjective evaluation of immunostain intensity or perceived proportion 

of stained cells [8]. Other human factors can impact immunostain interpretation and thus 
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increase inter-observer variability. For example, Butter and colleagues recently demon-

strated that a pathologist’s personality can impact the interpretation of PD-L1 im-

munostaining in non-small cell lung cancer specimens [9]. 

It is often important to identify rare or uncommon phenomena within a larger patient 

cohort (e.g., to identify an infrequently mutated protein by immunohistochemistry within 

a biomarker discovery cohort). This is becoming especially important in the era of person-

alised medicine where specific mutations or combinations of mutations may suggest effi-

cacy of specific targeted therapies. Identifying rare staining patterns amongst thousands 

of tissue samples is labour-intensive and time consuming, even when tissue microarrays 

(TMAs) are used. With integration of clinical data, digital image analysis platforms may 

also identify important relationships between biomarker expression and clinical outcomes 

[10]. 

Artificial intelligence (AI)-assisted digital image analysis previously represented an 

expensive futuristic ideal for biomarker- and histopathology-based research. Application 

was limited by expensive and cumbersome scanning equipment, poor capacity for storing 

high-quality whole slide images, underdeveloped image processing software, and a lack 

of freely available, user-friendly AI software. These barriers have since been overcome 

and there are now several user-friendly software packages for digital pathology analysis, 

including the open-source software QuPath [11]. 

QuPath is a free, open-source, digital image analysis platform designed to allow us-

ers to view and interrogate whole slide images [11]. The software has many tumour iden-

tification and high-throughput biomarker evaluation tools available. It allows batch-pro-

cessing and has scripting functionality. QuPath also allows users to create and share soft-

ware extensions to solve new clinically relevant problems [11]. It has an easy-to-use inter-

face, meaning that computer programming skills are not required, which improves clini-

cal translational ability. Many other image analysis tools exist, such as ImageJ [12], Fiji 

[13], Icy [14] and CellProfiler [15]. Each software has its own benefits and disadvantages—

for example, ImageJ may be superior in some aspects of image analysis capability; how-

ever, it is unable to work smoothly with large whole slide images. There are no compara-

tive studies which reflect the different focus of each image analysis platform. 

Colorectal cancer (CRC) is one of the most common malignancies worldwide, repre-

senting one in ten cancer cases and deaths [16]. Despite bowel cancer screening pro-

grammes and therapeutic advances, the 5-year survival for colorectal cancer is around 

60% [17]. Most cases of CRC are described as sporadic: they develop through the ade-

noma-carcinoma pathway, whereby normal colonic mucosal crypt epithelium neoplas-

tically transforms into adenomatous polyps with dysplasia, and a proportion of these may 

evolve into invasive adenocarcinoma [18]. The majority of sporadic CRCs are character-

ised by early and frequent APC mutations and late and moderately frequent TP53 muta-

tions [19]. Other CRC phenotypes exist and are clinically important. For example, patients 

with inflammatory bowel disease (IBD) have an increased risk of developing CRC com-

pared to the general population [20,21]. The most common IBD phenotypes are ulcerative 

colitis and Crohn’s disease. The incidence of CRC may be >60% higher in patients with 

IBD compared to the general population (95% CI for Crohn’s disease is 20–200%; 95% CI 

for ulcerative colitis is 30–200%) [22]. Patients with IBD develop more aggressive cancers 

that often present late and in younger patients [23–26]. The pathophysiology of IBD-CRC 

is different to sporadic CRC and is characterised by early TP53 mutations and late and 

infrequent APC mutations; whereas a minority of around 13–15% sporadic CRC develop 

defective DNA mismatch repair as a result of acquired promoter hypermethylation of the 

MLH1 gene that silences its expression, and these occur mostly in the right colon [27,28]. 

Patients who develop colorectal cancer on a background of inflammatory bowel disease 

(IBD-CRC) have higher recurrence rates and much poorer survival rates (two-fold in-

crease in mortality) compared with patients who develop sporadic CRC, which makes this 

an important cohort to study [24,25]. We have recently comprehensively reviewed IBD-

CRC [29]. 
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Within healthy colorectal mucosal crypt epithelium, the DNA mismatch repair 

(MMR) pathway is essential for repairing DNA replication-associated errors that include 

both base mismatches (such as A pairing with C or G, rather than with the usual T nucle-

otide) and repetitive sequence errors, often termed microsatellites (such as CACACACA 

becoming CACACACACA following DNA slippage during replication) [30]. Inactivating 

mutations or absence of MMR proteins in tumour cells can result in defective mismatch 

repair (dMMR), which increases the mutation rate due to unrepaired DNA replication 

errors within the tumour cells, elevating the likelihood of acquiring further cancer gene 

mutations [30]. MMR-deficient colorectal cancers represent approximately 13–15% of spo-

radic colorectal cancers resulting from MLH1 promoter hypermethylation, and in addi-

tion, there is a further 3% CRC due to Lynch syndrome, a genetic tumour predisposition 

syndrome conferred by inheritance of DNA variants affecting any one of the four MMR 

genes MLH1, MSH2, MSH6 and PMS2 [31–35]. We have previously reported that deficient 

MMR due to loss of MLH1 protein expression occurs in >25% of all inflammatory bowel 

disease-associated colorectal cancers [36]. MMR-deficient IBD-CRC are an important co-

hort to study as these patients have tumours with high mutation rates generating a high 

neo-epitope load indicating that they may respond well to immunotherapy [31,36]. Man-

ually identifying MLH1-deficient tumours from immunostained biopsies is time consum-

ing and labour-intensive. 

Therefore, the aim of this study is to determine whether it is possible to train QuPath 

to accurately identify MLH1-deficient IBD-CRCs from a TMA containing both normal co-

lon and IBD-CRC samples. 

2. Materials and Methods 

2.1. Tissue Microarray and Immunohistochemistry 

A previously characterised MLH1 immunostained TMA was used in this study [36]. 

In brief, 34 patients with IBD-CRC or normal colonic mucosa were identified (Supplemen-

tary Table S1). H&E-stained sections from formalin fixed paraffin embedded biopsies 

were reviewed by an expert pathologist to determine suitable areas for macro-dissection; 

0.6 mm cores were used to create the TMA (n = 147 cores + 15 ‘blank’ cores for slide special 

orientation). Immunohistochemistry for MLH1 was undertaken as previously described 

[36], and histology and staining patterns were independently assessed by an expert 

pathologist, blind to all data. 

2.2. Patient Clinico-Pathological Characteristics 

Characteristics are summarised in Supplementary Table S1. IBD-CRC cases consisted 

of 15 (44.1%) females and 19 (55.9%) males. Sixteen (47.1%) patients had a diagnosis of 

Crohn’s disease and 18 (52.9%) patients had a diagnosis of ulcerative colitis. Median age 

at cancer diagnosis was 65 (Q1 51, Q3 73.25) years. Eight cancers were in the caecum, 1 

cancer was at the ileocaecal valve, 5 cancers were in the ascending colon, 1 cancer was at 

the hepatic flexure, 3 cancers were in the transverse colon, 1 cancer was in the right colon 

without an exact location specified, 1 cancer was at the splenic flexure, 1 cancer was in the 

descending colon, 2 cancers were in the sigmoid colon, 3 cancers were at the recto-sigmoid 

junction, 7 cancers were in the rectum, and 1 cancer was in the ano-rectum. Thirty-two 

(94.1%) cancers were adenocarcinomas, 9 (28.1%) of which had mucinous differentiation 

and 1 (3.1%) had signet ring cell morphology. Two (5.9%) cancers were squamous cell car-

cinomas arising either in the anorectum or in the caecum. At resection, 11 (32.4%) patients 

had evidence of metastasis to at least local lymph nodes. 
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2.3. Digital Image Analysis 

The MLH1-stained TMA slide was scanned using the NanoZoomer scanner (Hama-

matsu Photonics (UK) Ltd., Welwyn Garden City, UK) to generate a high-resolution 

brightfield whole slide image. This scanner is routinely used in many laboratories to pro-

vide crisp high-quality whole slide images [37]. The open-source quantitative pathology 

and bioimage analysis program QuPath (v0.2.1) was used for analysis [11]. QuPath soft-

ware was chosen for this study as it allows digital analysis of whole slide images and 

tissue microarrays with creation of novel algorithms for machine learning. These capabil-

ities are not available in most other open-source software programs. Our group has also 

previously used this software successfully [10,11]. 

The slide was uploaded into the QuPath software as a Brightfield (H-DAB) image. 

Initially, a new training image was created manually by selecting 14 representative regions 

of tissue, with a measured size of 500 μm × 500 μm. These 14 regions represented diverse 

tissue types and staining patterns. Using this training image, colour deconvolution was 

performed using the ‘estimating stain vectors’ command to optimise haematoxylin 

(0.67253, 0.56452, 0.47856), 3,3′-diaminobenzidine (DAB) (0.25141, 0.41193, 0.87585), and 

background (235, 232, 239) detections. To detect MLH1-positive cells, Positive Cell Detec-

tion was performed using a single-intensity threshold parameter of 0.2 (see Table 1 below). 

Smooth object features were added with radius (FWHM) 25 μm and restricted to objects 

with the same base classification. To detect tissue histology, the wand and brush tools were 

then used to annotate regions of tissue to classify ‘normal epithelium’ versus ‘tumour’ 

versus ‘immune cell infiltrates’ versus ‘stroma’. ‘Immune cell infiltrates’ were defined as a 

collection of immune cells, including lymphoid aggregates and lymphoid follicles, and 

were classified as separate from ‘stroma’ as their morphology is different—these separate 

classifications were to ensure the QuPath algorithm did not mistakenly identify lymphoid 

aggregates for epithelial cells or tumour cells. The object classifier was trained based on 

all prior detections using a random trees classifier, with all feature and class measure-

ments included. ‘Live update’ was used to provide real-time feedback to allow focused 

training of the software. Once complete, the classifier was saved and the training image 

closed. 

Attention then turned back to the initial image uploaded into QuPath. Using this dig-

itally scanned whole-slide TMA image, the TMA dearrayer tool was used to identify indi-

vidual cores from A1 to I18: size was set at 0.9 mm for each TMA core, there was an iden-

tification density threshold which was set at 5.0, and there was a bounds scale factor which 

was set at 105.0. Dearraying accuracy was visually assessed for every core, and the TMA 

grid was adjusted manually as and where required. Most unsuitable cores were correctly 

marked as ‘invalid’ by QuPath; however, a small number of further unsuitable cores were 

manually marked as ‘invalid’ where appropriate. 

The protocol that had been optimised on the training image—to detect both MLH1 

protein expression and tissue histology type (i.e., ‘normal epithelium’ versus ‘tumour’ ver-

sus ‘immune cell infiltrates’ versus ‘stroma’)—was then applied to the TMA. This con-

sisted of colour deconvolution → positive cell detection → add smooth features → load 

object classifier. 

TMA measurements were exported for statistical analysis. A methodological sum-

mary (Figure 1) and detection/object classification examples (Figure 2) are illustrated be-

low with cell detection and object classification photomicrographs shown in Figure 2.  

Table 1. Optimised positive cell detection settings for determining MLH1 status using QuPath. 

QuPath Positive Cell Detection 

Setup Parameters 

Detection image Haematoxylin Optical Density 

Requested pixel size 0.5 μm 

Nucleus Parameters 
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Background radius 8 μm 

Median filter radius 0 μm 

Sigma 1.5 μm 

Minimum area 10 μm2 

Maximum area 400 μm2 

Intensity Parameters 

Threshold 0.1 

Maximum background intensity 2 

Split by shape Selected 

Exclude DAB (membrane staining) Not selected 

Cell Parameters 

Cell expansion 5 μm 

Include cell nucleus Selected 

General Parameters 

Smooth boundaries Selected 

Make measurements Selected 

Intensity Threshold Parameters 

Score compartment Nucleus: DAB Optical Density mean 

Threshold 1+ 0.2 

Single Threshold Selected 
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Figure 1. Protocol for identifying MLH1-deficient IBD-CRC tumours: (A) tissue microarray is im-

munostained for MLH1 (protein of interest); (B) slides are digitalised and whole slide images im-

ported into QuPath; (C) small representative regions (n = 14; each 500 μm × 500 μm) are used to 

create a training image; (D) (i) The training image is created and colour deconvolution optimised; 

(ii) positive cell detection is run and optimised, with smooth features added; (iii) wand and brush 

annotation tools define various tissue types and train the object classifier; (iv) live update function 

allows real-time feedback to improve the object classifier, which is saved; (E) using the original dig-

italised slide, the TMA dearrayer tool is applied; (F) the optimised training algorithm settings, out-

lined in (D) (i–iv) are applied along with the saved object classifier; (G) the measurement table is 

viewed and exported for statistical analysis. 
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Figure 2. QuPath software trained to recognise MLH1 status and tissue histology. Photomicrographs 

demonstrate QuPath’s potential to be trained to identify: (A) MLH1-proficient normal colonic epi-

thelium; (B) MLH1-proficient IBD-CRC; and (C) MLH1-deficient IBD-CRC. Rows represent: (i) dig-

italised MLH1 immunostained TMA cores; (ii) positive cell detection where red represents MLH1-

positive cells and blue represents MLH1-negative cells; and (iii) final cell classification where dark 

blue represents MLH1-positive normal epithelium, sky blue represents MLH1-negative normal ep-

ithelium, red represents MLH1-positive IBD-CRC, light blue represents MLH1-negative IBD-CRC, 

dark green represents MLH1-positive stroma, and light green represents MLH1-negative stroma. 

Dark (MLH1-positive) and light (MLH1-negative) purple represent immune cell infiltrates and are 

not seen in these examples. 

2.4. Statistical Analysis 

QuPath output data were exported to Microsoft Excel (V16.22) and analysed to iden-

tify the percentage of ‘normal epithelium’ and ‘tumour’ cells per core. Data were also an-

alysed to identify the percentage of MLH1-positive and MLH1-negative cells (within cells 

classified as either ‘normal epithelium’ or ‘tumour’ histology patterns only; stroma and 
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immune cell infiltrates data were disregarded). Thereafter, histological diagnosis and 

MLH1 status were confirmed/certified if ≥75% of cells were designated as either normal 

epithelium or tumour, or MLH1-positive or MLH1-negative, respectively. MLH1 status 

and tissue histology pattern (normal epithelium versus tumour) were assessed separately 

to prevent confounding. For example, if a tissue core contained ≥75% normal epithelium 

and ≥75% of cells (normal epithelium or tumour cells) were identified as proficient for 

MLH1, the core would be classified as ‘MLH1 proficient normal epithelium’. Cores were 

flagged for manual review if the 75% threshold that had been agreed prior to data analysis 

was not met. The explanatory decision tree flowchart, informed by the random tree clas-

sifier, is outlined in Figure 3. Data were then coded and exported to IBM®  SPSS®  (V25.0). 

Diagnostic agreement was assessed between our algorithm’s classification and expert 

pathologist assessment (blind to algorithm data) using sensitivity and specificity analysis 

with associated Cohen’s kappa (κ) tests. A two-tailed alpha was set at 0.05, and 95% con-

fidence intervals (CI) are supplied where appropriate.  

 

Figure 3. Decision tree flowchart illustrating steps to identify core histology and MLH1 status fol-

lowing random trees classification. 

2.5. Qualitative Analysis 

 All tissue cores that the QuPath algorithm flagged for manual review were reviewed 

by 3 observers (MJA, RJP, SD). Cores were reviewed independently by each observer and 

Normal epithelium

Tumour

Stroma

Immune infiltrate cell

Excluded from 
analysis

Included in 
analysis

Percentage of cells 
classified as 

‘Normal epithelium’

<75%

>75%
Core classified as 

‘Normal epithelium’

Percentage of cells 
classified as 
‘Tumour’

<75%

>75%
Core classified as 

‘Tumour’

Core classified as 
‘equivocal’ / flagged 
for manual review

STEP 1 – CLASSIFICATION OF CORE TISSUE HISTOLOGY PATTERN

Normal epithelium

Tumour

Stroma

Immune infiltrate

Excluded from 
analysis

Included in 
analysis

Percentage of cells 
classified as 

‘MLH1 Positive’

<75%

>75%
Core classified as 
‘MLH1 Proficient’

Percentage of cells 
classified as 

‘MLH1 Negative’

<75%

>75%
Core classified as 
‘MLH1 Deficient’

Core classified as 
‘equivocal’ / flagged 
for manual review

STEP 2 – CLASSIFICATION OF CORE MLH1 EXPRESSION STATUS

STEP 3 – FINAL CORE CLASSIFICATION

Core Histology Pattern

Normal Epithelium Tumour Equivocal

Core MLH1 Expression

MLH1 Proficient MLH1 proficient normal epithelium MLH1 proficient tumour Equivocal – flagged for review

MLH1 Deficient MLH1 deficient normal epithelium MLH1 deficient tumour Equivocal – flagged for review

Equivocal Equivocal – flagged for review Equivocal – flagged for review Equivocal – flagged for review

As MLH1 is expressed by stromal and immune cells, our pragmatic approach excluded these cells from analysis.
‘Normal epithelium’ and ‘tumour’ were analysed as one group to prevent random tree classifier assigned histology pattern confounding MLH1 expression status. 

Using raw data: random trees classifier (cells)

Using raw data: random trees classifier (cells)
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then discussed as a group to reach consensual agreement—through discussion +/- re-re-

viewing cores. A statement was written pertaining to why the core had been flagged for 

manual review by QuPath (Supplementary Table S2). This was agreed upon by all observ-

ers. One observer (RJP) reviewed these statements to identify key ‘themes’. These ‘themes’ 

were also agreed upon by all 3 observers. 

3. Results 

3.1. QuPath Identifies TMA Cores Valid for Assessment 

First, we wanted to determine whether QuPath could identify cores and tissue that 

were suitable for assessment. QuPath identified 139/162 (85.8%) cores as valid for assess-

ment and 23/162 (14.2%) cores as invalid for assessment through the TMA dearrayer func-

tion, based upon estimated tissue area. No core coded as invalid by QuPath was thought 

valid on manual review of each core. On manual review, 26 further cores were thought to 

be invalid, mostly due to lack of histologically diagnostic epithelium (e.g., cores with pre-

dominant connective tissue). Of valid cores, the TMA dearrayer template position only 

had to be adjusted slightly for three (2.65%) cores due to folded or fragmented tissue (i.e., 

atypical core appearance). 

3.2. The Trained QuPath Algorithm Accurately Identifies MLH1 Status and Core Histology 

Next, we wanted to determine whether our algorithm, which was trained from a 

small training dataset of 14 representative tissue regions (each 500 μm × 500 μm), was able 

to identify correct overall core histology (i.e., tumour versus normal epithelium) and 

MLH1 status (i.e., absent versus present) within the TMA. Accuracy was assessed against 

independent expert histopathologist review of each core, blind to QuPath data. 

Specifically, the QuPath algorithm was able to identify both the correct overall core 

histology and MLH1 status in (73/99, 73.74%) cases. Incorrect identification was reported 

in 1/99 (1.01%) case. 

The algorithm identified 25/99 (25.25%) cores for manual review. Cores were flagged 

for review due to uncertain overall core histology (16/99, 16.16%), uncertain overall core 

MLH1 status (8/99, 8.08%), or both (1/9, 1.01%). Cores flagged for review were excluded 

from sensitivity and specificity analysis and underwent manual review for thematic anal-

ysis. 

3.3. The Trained QuPath Algorithm Is Sensitive and Specific for Identifying Core Histology and 

MLH1 Status 

Our algorithm had very high sensitivity (100% (95% CI 80.49, 100)) and specificity 

(98.25% (95% CI 90.61, 99.96)) for identifying MLH1-deficient IBD-CRC from all other 

cores in the TMA (i.e., MLH1-deficient IBD-CRC versus MLH1-proficient normal epithe-

lium or MLH1-proficient IBD-CRC—there were no cores of MLH1-deficient normal epi-

thelium, as expected). Diagnostic agreement between QuPath and the expert GI 

pathologist was therefore very high with κ = 0.963 (95% CI 0.890, 1.036) (p < 0.001). 

3.4. Five Major Categories Were Identified as the Reason for the Trained QuPath Algorithm 

Flagging Cores for Review 

There were 25 cores that the algorithm flagged for manual review. Sixteen cores were 

flagged for histology, eight cores were flagged for MLH1 expression status, and one core 

was flagged for both histology and MLH1 expression status. Manual qualitative review of 

these 25 flagged cores revealed that the reasons for this fell into five categories: (1) small 

quantity of tissue, (2) atypical tumour morphology, (3) excessive inflammatory/immune 

infiltration, (4) normal mucosal crypts (no tumour), or (5) weak or patchy immunostain 

intensity. Often, a combination of these reasons was observed. Qualitative assessment of 

each flagged core is reported in Supplementary Data. 
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4. Discussion 

Current methods for expensively trained human histopathologist-driven accurate 

identification of specific tissue histopathological diagnoses and their associated immuno-

histochemical staining patterns are labour-intensive, time consuming, and often con-

founded by inter-observer variability [1–3]. Digital image analysis using artificial intelli-

gence (AI) algorithms, such as QuPath, has lately emerged as a beneficial tool [11]. The 

ability to use AI to screen large numbers of samples for both diagnosis of tumour versus 

not tumour as well as for immunostaining positively or negatively, based on tissue type, 

histological features, and protein expression status, has high research and clinical utility. 

However, there are no published studies describing or validating this approach. In this 

study, we demonstrate that QuPath can be trained to accurately identify both tissue histo-

pathological diagnostic patterns and MLH1 protein expression status with very high sen-

sitivity and specificity within a TMA. 

The original QuPath paper describes the software’s ability to work effectively with 

TMA whole slide images—locating, identifying, and analysing tissue cores [11]. Previous 

studies have also successfully used QuPath to identify positive and negative im-

munostained cells, for example, after immunostaining for Ki-67, mutated proteins, and 

immune cells [10,38,39]. Some studies have also trained QuPath algorithms to differentiate 

between tissue compartments [40,41]. Our study contributes to validating digital image 

analysis, via QuPath, as an important tool in the era of AI-based machine learning and 

digital image analysis. 

A recent study in this field by Reichling and colleagues demonstrates that AI software 

could classify tissue structure, tumour cell characteristics, and immune cell infiltrates, and 

this can be extrapolated to predict CRC outcomes [42]. The authors initially used QuPath 

for image analysis; however, their approach to analysis was much more complex, using a 

superpixel strategy (a complex pixel classification approach) and developing AI software. 

Indeed, using a pixel classifier may feed more information into an AI algorithm; however, 

this was suboptimal for our study where the simpler object classifier worked superiorly. 

Analysis in our study was not run or recorded after initially attempting to use a pixel-

based strategy, due to inferior performance. There are several possible reasons for this, 

such as our samples being arranged in a TMA, which means there was only a small and 

focused amount of tissue available for analysis. In summary, the simpler object classifier 

method worked effectively with a TMA, which allowed straight-forward, fast, efficient, 

and accurate analysis. Pixel classification strategies could be better suited to larger tissue 

samples, and this warrants further investigation. Nonetheless, it is important to select a 

methodological approach that suits both the tissue available and questions to be an-

swered. 

A novel strength of our study was our approach to interpreting the raw image anal-

ysis data in a way that can tolerate errors in cell identification and classification, which 

are inevitable when applied to real-world datasets. To this end, our algorithm flagged 

around a quarter of the TMA cores for manual review, and the main reason for this was 

due to uncertainty about core histology pattern. To our knowledge, this capability has not 

been previously demonstrated. Figure 2 represents an ideal; in reality, our random trees 

classifier misidentified ‘normal epithelium’ and ‘tumour’ cells within some cores (Supple-

mentary Data), which reduced QuPath’s ability to firmly diagnose every core. Reasons for 

uncertainty about tissue histology pattern included using a large and diverse IBD-CRC 

cohort with some atypical tumour morphologies (including poorly differentiated adeno-

carcinomas with reduced cohesion, and adenocarcinomas with mucinous differentiation 

or signet ring carcinoma cell morphology), having only a small quantity of tissue per core 

with lack of supporting stromal tissue architecture, an excessive inflammatory/ immune 

cell infiltrate, and including normal epithelium in the TMA as normal colorectal epithe-

lium had small nuclei with less distinct morphology. Reasons for uncertainty about MLH1 

expression status were more straightforward to explain: the immunostain was sometimes 
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patchy and thus suboptimal for most of these problematic cores. For MLH1 immunohisto-

chemistry, differing staining intensities could simply represent ineffective epitope re-

trieval or variation in epitope fixation (known to be a common problem for resected colo-

rectal cancers undergoing variable fixation), rather than a biologically significant phenom-

enon [43]. This is likely to confer interpretative challenges for colorectal cancer cores in 

which lymphocytes or stromal cells do not strongly express MLH1 on immunohistochem-

istry. Therefore, it is important that these sections have been flagged for manual review 

by expert pathologists. Alternatively, weak/patchy MLH1 immunostaining intensity, 

when there is strong lymphocytic or stromal cell MLH1 expression, may represent protein 

destabilisation as a genuine abnormality of mismatch protein expression and therefore 

represent an important subset of IBD-CRCs. While applying intensity thresholds could be 

an effective approach to subcategorising these samples, it would also risk incorrectly clas-

sifying cases with poorly fixed tissue [43]. As recently discussed by Campanella and col-

leagues [44], as we would assume the pathologist operates with 100% sensitivity and spec-

ificity, it is not the goal for an AI algorithm to outperform the expert. Instead, it is im-

portant to maintain very high sensitivity with an acceptable specificity and a reasonable 

manual review rate as shown here. In our study, the manual review rate may be reduced 

further if our cohort excluded normal colonic epithelium (i.e., only contained IBD-CRC 

samples). This is clinically feasible as histological diagnosis is made by an expert 

pathologist for every biopsy/resection sample.  

The AI-based algorithm misclassified 1/99 (1.01%) core as MLH1-deficient tumour 

when the diagnosis was MLH1-proficient tumour. This was because the random trees clas-

sifier did not recognise atypical tumour morphology and misclassified a large MLH1-de-

ficient ‘immune cell infiltrate’ as ‘tumour’, which confounded MLH1 assessment. Immune 

cell infiltrates could be disregarded for tissue MLH1 assessment to eliminate confounding; 

however, it was included in this instance as immune cells had been incorrectly classified 

as tumour cells. The TMA included two other cores from the same patient: in this case, 

one of these cores was correctly classified as MLH1-proficient tumour and the other core 

was flagged for manual review. This is illustrated in Figure 4. 

Therefore, to address misclassification issues, further training of the QuPath algo-

rithm may be needed to recognise atypical tumours which are very heavily infiltrated by 

immune cells. Further, future algorithms could consider analysing two biopsies from 

every patient and ‘flag for review’ any incongruous classifications. However, it is reassur-

ing that the two other cores from the aforementioned same patient were not misclassified, 

and our overall misclassification rate was very small. 
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Figure 4. Our algorithm misclassified Core 68 as an MLH1-deficient tumour when it is an MLH1-

proficient tumour. This was because the random trees classifier misclassified a large MLH1-deficient 

‘immune cell infiltrate’ as ‘tumour’, which confounded MLH1 assessment. Most immune cells were 

MLH1-negative; however, there are occasional MLH1-positive immune cells, which could represent 

proliferating lymphocytes. A small number of stromal cells were also misclassified. Immune cell 

infiltrates and stromal cells are ignored for MLH1 assessment to eliminate confounding issues; how-

ever, it was incorrectly included in this instance as immune cells had been misclassified as tumour 

cells. Core 25 was taken from the same patient as Core 68 and correctly classified by our algorithm, 

due to more accurate recognition of MLH1-positive tumour cells by the random trees classifier as 

illustrated in the annotated images. 

A limitation of this study was that we used a TMA. This meant that many cores had 

suboptimal quality or were missing, and were thus removed from assessment. While 

TMAs are widely used in research studies and clinical trials, they are not used in routine 

diagnostics. Therefore, it is important for future work to validate this methodology on 

whole tissue biopsies or resected tumour block sections immunostained for MLH1, as 

these samples are currently used for diagnostic assessment and reporting in pathology 

laboratories. Indeed, whole tumour slides have more complex tissue architecture and are 

more representative of diagnostic routines. As clinical laboratories have standardised tis-

sue processing and immunohistochemistry protocols, it is unlikely that a new algorithm 

would need to be trained for each individual sample. In addition, the use of biopsies or 

whole tumour slides may help to reduce the number of specimens flagged for manual 

review when compared with TMA cores. For example, with regards to thematic analysis 

(Section 3.4), there would be a larger quantity of diagnostic tissue available for QuPath 

assessment, and immune infiltration or lymphoid aggregates or lymphoid follicles would 

thus represent a smaller proportion of the slide. However, this requires validation in the 

clinical setting using many samples from different laboratories. To expand clinical appli-

cation, future work should also assess whether this methodology—training a new algo-

rithm—could be applied to identify other target proteins in other tissue types with similar 

sensitivity, specificity, and manual review rates. 
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It is important for histopathologists to be able to determine the mismatch repair sta-

tus (proficient versus deficient) in both colorectal cancers and endometrial cancers, the 

two major cancers seen in Lynch Syndrome, for the purpose of screening for Lynch Syn-

drome, as recommended by national guidelines [45,46]. This approach may also be appli-

cable to the much longer list of tumours at other organ sites, to which Lynch Syndrome 

also confers increased susceptibility. In addition, 13–15% of sporadic colorectal cancers 

and 25–30% of sporadic endometrial cancers are defective for mismatch repair as a direct 

result of bi-allelic promoter hypermethylation of the MLH1 gene, and this is relevant as it 

alters the prognosis of these tumours and patients with metastatic dMMR cancers may 

become eligible for immunotherapy using highly effective immune check point blockade 

agents such as anti-PD-1 (Pembrolizumab) or anti-CTLA4 (Nivolumab) monoclonal anti-

bodies [31,32,45,46]. Previously, we have shown that in excess of 25% of IBD-CRCs are 

defective for mismatch repair, mostly as a result of MLH1 gene promoter hypermethyla-

tion, with a small number of mutations affecting any one of the four MMR genes, and 

these cancers, when metastatic, may also be considered for immune checkpoint inhibition 

based on the results of MMR immunohistochemistry [36], as shown here.  

5. Conclusions 

In this proof-of-concept pilot study, an MLH1-immunostained TMA of cores of in-

flammatory bowel disease-associated colorectal cancers, we demonstrate that QuPath can 

be trained using a small tissue cohort to identify tissue histopathological diagnostic pat-

terns and MLH1 expression status with very high sensitivity and specificity. Therefore, 

this streamlined methodology, utilising QuPath, can be used to simply and efficiently 

identify a small but clinically important cohort of patients with MLH1-deficient IBD-CRC. 

This is clinically relevant as MLH1-deficient IBD-CRCs have a high neo-epitope load and 

thus may respond well to immunotherapy, such as immune check point blockade [36]. 

Therefore, our AI-based algorithm could potentially be used to screen all tissue samples 

stained with MLH1 in pathology departments to identify this important cohort of patients. 

If integrated effectively, positively identified specimens could be flagged for histo-

pathologist attention early, ultimately reducing time from biopsy to commencement of 

therapies. Further, accurate manual assessment of immunostains could reduce the need 

for labour-intensive evaluation in both clinical and research settings. This proof-of-con-

cept methodology could also be applied to other clinically relevant immunostains and 

pathological abnormalities. For example, it could be used to detect other important cancer 

biomarkers in different tissue types, such as PDL-1 positive non-small cell lung cancers or 

B-RAF positive melanomas. Large validation studies are now eagerly awaited. 
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