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Abstract: Background: Three-dimensional facial soft tissue landmark prediction is an important
tool in dentistry, for which several methods have been developed in recent years, including a deep
learning algorithm which relies on converting 3D models into 2D maps, which results in the loss of
information and precision. Methods: This study proposes a neural network architecture capable of
directly predicting landmarks from a 3D facial soft tissue model. Firstly, the range of each organ is
obtained by an object detection network. Secondly, the prediction networks obtain landmarks from
the 3D models of different organs. Results: The mean error of this method in local experiments is
2.62 ± 2.39, which is lower than that in other machine learning algorithms or geometric information
algorithms. Additionally, over 72% of the mean error of test data falls within ±2.5 mm, and 100%
falls within 3 mm. Moreover, this method can predict 32 landmarks, which is higher than any other
machine learning-based algorithm. Conclusions: According to the results, the proposed method can
precisely predict a large number of 3D facial soft tissue landmarks, which gives the feasibility of
directly using 3D models for prediction.

Keywords: facial soft tissue landmark; deep learning; object detection; 3D face model

1. Introduction

The significance of the aesthetic facial soft tissue in orthodontic treatment has spurred a
swift advancement and progression of techniques aimed at quantifying the shape of human
facial soft tissue. The identification of landmarks within the facial soft tissue is critical for
the precise measurement, assessment, and analysis of the anatomical and morphological
characteristics of the human face. Additionally, these landmarks serve as crucial reference
points and the foundation for the diagnosis, treatment, and evaluation of clinical work [1–3].
Facial landmarks serve a crucial function in facilitating tooth alignment, establishing the
occlusal vertical distance, determining the 3D median sagittal plane, analyzing maxillofacial
asymmetry [4], aiding in preoperative analysis, surgical design, postoperative prediction,
and the efficacy evaluation of orthognathic surgery [5,6].

The orthodontic industry has witnessed significant advancements in technology, lead-
ing to the widespread adoption of 2D digital scanning as the primary method. Additionally,
3D facial soft tissue scanning technologies such as laser scanning, computerized tomog-
raphy, and stereophotogrammetry have emerged, allowing for the acquisition of intricate
details pertaining to various parameters of human facial soft tissue [7].
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The advent of 3D scanning technology forms the foundation for the prediction of
facial soft tissue landmarks. As opposed to radiographic techniques utilized to identify
facial soft tissue landmarks, the 3D optical scanning of the face circumvents issues such as
overlapping anatomical structures and image distortion [8]. The 3DMD system employs
hybrid stereophotogrammetry technology to capture three-dimensional surfaces through
the stereo-imaging of the patient. The accuracy of this system has been rigorously tested
and found to be satisfactory for clinical applications [9,10]. The work of Littlefield et al.
and Ma et al. proved that the error of 3DMD technology over space and the time span is
almost negligible, so the patient’s facial model obtained by 3DMD can be equivalent to the
real model [11,12].

The traditional marking method is manual annotation method, and the limitations of
the manual annotation are:

• High training and time cost for operators familiar with 3D software;
• High time cost for annotation of large amount of data;
• Poor consistency and repeatability of landmarks’ determination among different

operators.

The computer-implemented automated algorithm for a 3D face landmarks prediction
can effectively improve the stability of the results, reduce the dependence on human
experience, and increase the accuracy of the markers [13].

There exist three commonly utilized automatic methods for the prediction of 3D facial
soft tissue landmarks:

• Geometric information algorithm: it calculates the location of landmarks by mathe-
matical methods based on geometric features, which is primarily used to determine
landmarks with significant geometric features on the human face and can accurately
locate the position of a small number of landmarks with significant features [14].

• Model matching algorithm: it calculates the location of landmarks by constructing
candidate combinations of landmarks and utilizing topological relationships [15].

• Deep learning algorithm: it predicts the location of landmarks by building a deep
neural network. Next, we will introduce the recent related work using deep learning
methods in detail.

In recent years, deep learning has emerged as a rapidly developing and innovative
branch of automatic facial landmark prediction methods. The research on deep learning in
2D image feature recognition has reached a more mature stage [16]. Therefore, algorithms
have been developed to convert 3D facial data into various types of 2D images, such as
grayscale maps, RGB maps, geometric maps, curvature maps, etc. [17]. These algorithms
then apply existing, more mature 2D facial image feature recognition algorithms to deter-
mine landmark information before mapping the 2D features back to 3D to obtain the 3D
landmark information.

Wang et al. [18] proposed a deep learning algorithm based on the deep fusion features
of 3D geometric data, which converts 3D face data into five 2D attribute maps (including a
range map, three surface normal maps, and a curvature map), extracts the global and local
features of the data by VGG-16, and uses a coarse-to-fine algorithmic strategy to achieve
the precise localization of landmarks. The algorithm was applied to the Bosphorus 3D
face dataset to determine 22 facial landmarks with an error of 3.37 ± 2.72 mm, and to the
BU-3DFE 3D face dataset to determine 14 facial landmarks with an error of approximately
3.96 ± 2.55 mm [19]. However, the method of prediction by converting 3D models into 2D
attribute maps not only leads to the loss of original information, but also makes the models
more sensitive to subtle changes in environmental factors [20].

In order to further improve the quantity and accuracy of a 3D human facial soft tissue
landmarks prediction, we proposed a prediction algorithm directly based on a 3D model of
the human face, which can avoid various problems that occur when converting 3D models
into 2D attribute maps and increase the number of predictable landmarks as well as their
accuracy. The main contributions of this work are the following:
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• We propose a deep learning architecture for predicting the facial soft tissue landmarks
based on 3D face models instead of transforming 3D models into 2D images;

• We propose a prediction method for facial soft tissues landmarks based on 3D object
detection, which is able to significantly increase the number of predicted landmarks
to 32;

• Tested on real diagnostic data from hospitals, it achieves more landmarks of prediction
and higher prediction accuracy than previous methods.

2. Materials and Methods
2.1. Datasets

Datasets are critical in the field of the human facial soft tissue landmark prediction,
but the current database of the human facial soft tissue scans is extremely limited, with
only 100+ patients’ facial scans and 22 landmarks available [21,22]. Therefore, to train
and evaluate our method for predicting landmarks, we created a database of 3D human
facial soft tissue scan models from the Hospital of Stomatology of Xi’an Jiaotong University.
The database contains 500 patient facial scan models annotated by trained physicians
with the coordinates of 32 landmarks. Ten of the landmarks labeled in the dataset are
left–right symmetric and 22 are individually present. Theoretically, the prediction errors
of the left–right symmetric points should be similar, but since the faces are not perfectly
symmetric, they can be treated as different landmarks, which will also be given later
for verification. A total of 500 subjects between 14 and 23 years of age (228 males and
272 females) were randomly selected in our study from the Hospital of Stomatology of Xi’an
Jiaotong University, Xi’an, Shaanxi, China. The 3dMD (3dMD, Atlanta, GA, USA) of all
the samples were taken by experienced doctors for diagnosis and treatment requirements
between 2018 and 2022. The subjects were excluded if they had maxillofacial trauma, severe
asymmetry, and a history of cleft lip and palate. The dataset was divided into training set:
test set: validation set = 7:2:1. Table 1 shows the 32 landmarks and their descriptions, while
Figure 1 provides schematic diagrams.

Figure 1. The 32 landmarks predicted in this paper are labeled on the human face.
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Table 1. The organs, abbreviations, names, and definitions of the 32 landmarks predicted in this paper.

Organ Abbreviation Landmarks Definition

Eyes En Endocanthion (right and left) The soft tissue point located at the inner commissure of the right
eye fissure

Ex Exocanthion (right and left) The soft tissue point located at the outer commissure of the right
eye fissure

Ps Palpebrale superius (right and left) Most superior point on the margin of the upper eyelid
Pi Palpebrale inferius (right and left) Most inferior point on the margin of the lower eyelid

Nose G Glabella Most anterior midpoint on the front-to-orbital soft tissue contour.
Na Nasion Point directly anterior to the nasofrontal suture, in the midline
Pn Pronasale The most anteriorly protruded point of the apex nasi

Sn Subnasale Median point at the junction between the lower border of the nasal
septum and the philtrum area

A Subspinale The deepest point seen in the profile view below the anterior
nasal spine

Al Alare (right and left) The most lateral point on the nasal ala

Lips Ls Labiale superius Midpoint of the vermilion border of the upper lip

Sto Stomion Midline point of the labial fissure when the lips are naturally
closed, with teeth shut in the natural position

Li Labiale inferius Midpoint of the vermilion border of the lower lip

Cph Christa philtra (right and left) Point on each elevated margin of the philtrum just before projec-
tion to the vermilion line

Ch Cheilion (right and left) Outer corners of the mouth where the outer edges of the upper
and lower vermilions meet

Chin B Sublabiale Most posterior midpoint of the philtrum

Pg Pogonion Most anterior median point on the mental eminence of the
mandible

Gn Gnathion Median point halfway between pg and me
Me Menton Most inferior median point of the mental symphysis

Face Tra Tragus (right and left) The most convex point of the tragus at the external ear canal

Zv Zygion (right and left) Instrumentally determined as the most lateral point on the zygo-
matic arch

Go Gonion (right and left)
Point on the rounded margin of the angle of the mandible, bisect-
ing two lines—one following the vertical margin of ramus and
one following the horizontal margin of corpus of mandible

2.2. Architecture Overview

Given the 3D human facial soft tissue model data, denoted by G:

G =


x1 y1 z1
x2 y2 z2
...

...
...

xK yK zK

 (1)

where K is an uncertain parameter which leads to an uncertain input dimension if the
point set is used directly as the input data. Meanwhile, if a method such as FCN [23] is
used to obtain a fixed-size output as the input of the network by full convolution, it is not
possible to convolve the points adjacent to each other on the 3D space due to the order of
the point set.
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Therefore, in order to obtain a fixed input size, we transform the model into a 3D point
cloud while doing data normalization, using a 3D tensor to represent the point cloud as Ĝ:

Ĝ =




A1,1,1 A1,2,1 . . . A1,M,1
A1,1,2 A1,2,2 . . . A1,M,2

...
...

. . .
...

A1,1,M A1,2,M . . . A1,M,M

, . . . ,


AM,1,1 AM,2,1 . . . AM,M,1
AM,1,2 AM,2,2 . . . AM,M,2

...
...

. . .
...

AM,1,M AM,2,M . . . AM,M,M


 (2)

where M is a hyperparameter, it determines the coordinate granularity of the 3D point

cloud model; Ai,j,k =

{
0
1

}
is used to indicate whether a point exists at coordinates (i, j, k).

Our goal is to find N-specified landmarks, which can be denoted as S:

S =


x1 y1 z1
x2 y2 z2
...

...
...

xN yN zN

 (3)

The pipeline of this work is shown as Figure 2. The code of this paper will be released
at https://github.com/YuchenZhang-Academic/3D-Facial-Landmark, acessed on 24 April
2023. The specific pipeline is described as follows:

1. Transform the 3D human facial soft tissue model into a 3D point cloud model;
2. Input the point cloud into the object detection network to obtain the boxes of the six

organs (eyes, nose, lips, chin, right face, and left face, each box is represented by a
six-dimension vector);

3. Extract the corresponding coordinate of each organ and put them into their prediction
model to obtain the landmarks which need predicting.

Figure 2. The pipeline of the proposed work. First, the 3D model is transformed into a 3D point cloud,
which is partitioned into six parts using an object detection model, where the output vector of each
part is [x, y, z, zl, yl, zl]. After that, the points of each part are extracted from the 3D model according
to the calculated range of boxes, and the coordinates of landmarks are predicted by the prediction model.

https://github.com/YuchenZhang-Academic/3D-Facial-Landmark
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2.3. Object Detection Network

The number of human facial soft tissue landmark prediction using attribute extraction,
dimensionality reduction transformation, and geometric algorithms is generally limited
by the algorithm and model size to approximately 20 points [19,24]. To break through this
limitation, we first performed the object detection of organs on the 3D model, and then
started with each organ (also known as region of interest) separately for the landmark
predictions, and we were able to predict up to 32 landmarks.

The goal of object detection is to obtain six 6-dimensional vectors vk(k = 0, 1, . . . , 5):

vk = [xk, yk, zk, xlk, ylk, zlk] (4)

where xk, yk, zk is the center coordinate of the ROI (organ) box; and xlk, ylk, zlk is the distance
between the face and the center of the ROI box. The output vector of the object detection
phase is shown in Figure 3. The task of the object detection network is formally described
as follows:

f (Ĝ) = [veyes, vnose, vlips, vchin, vright f ace, vle f t f ace] (5)

where the input dimension is M3 and the output dimension is 6 × 6.

Figure 3. This is a graphical representation of the output vector of the object detection phase. Here,
(x, y, z) are the coordinates of the box center and (xl, yl, zl) are the distances from the center to the
three faces.

In order to capture the interconnections between the points at the 3D level to better
extract the features of the landmarks, we mainly use 3D convolution for the construction
of the model. By capturing the features of the facial attributes within the different organs,
the network can finally give information on the locations and sizes of the boxes to which
the six organs belong. The network architecture of the object detection phase is shown in
Figure 4.

Figure 4. This is the network architecture diagram of the object detection phase. It goes through
several cycles in a structure consisting of 3D convolution, 3D maximum pooling, 3D BatchNorm, and
Sigmoid, before finally outputting a vector of 6 × 6 dimensions after a fully connected layer.

The loss function used in this phase is as follows:
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L( f ) =
∑6

i=0[λ1
√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2 + λ2(

√
xl2

i − x̂l
2
i +

√
yl2

i − ŷl
2
i +

√
zl2

i − ẑl
2
i )]

6
(6)

where λ1, λ2(λ1 + λ2 = 1) are the hyperparameters, and their ratio determines the weights
for the center error and the box size error.

2.4. Prediction Network

After the calculation of the boxes for each organ in Section 2.3, we can partition a 3D
human facial soft tissue model into six parts, and then train different network parameters
for each part to achieve higher prediction accuracy.

The goal of coordinate prediction is to obtain the coordinates of landmarks for different
organs. The normalized input dimension is the same as the object detection stage, and the
output is a vector of dimension 3 × N, where N is the number of points to be predicted in
each organ, which is shown in Table 2.

The network architecture of the coordinate prediction stage is similar to Section 2.3,
with the difference that Resnet18 [25] is added between the multiple loop convolution and
fully connected layers for the more accurate prediction of landmarks, allowing the network
to reach greater depths, which increases the training cost but improves the accuracy. The
network architecture diagram is shown in Figure 5.

Figure 5. This is the network architecture diagram of the coordinate prediction phase. It goes through
several cycles in a structure consisting of 3D convolution, 3D maximum pooling, 3D BatchNorm, and
Sigmoid; then, the data will go through the Resnet18 network, and finally output a vector of 3 × N
dimensions after a fully connected layer.

Two kinds of loss functions can be used in this phase:

L1( f ) =
∑N

i=0[
√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2]

N
(7)

Equation (7) is an error calculation formula given by the Euclidean norm; this error
calculation method tends to minimize the average error at each point.

L2( f ) =
N

max
i=0

[
√
(xi − x̂i)2 + (yi − ŷi)2 + (zi − ẑi)2] (8)

Equation (8) is an error calculation formula given by an infinity norm; this error
calculation method tends to minimize the maximum error.

Since both the maximum and average errors are important in the prediction work of
human facial soft tissue landmarks predication, the hyperparameters λ1, λ2 were also added
to the prediction phase to adjust the weights between them. The final error calculation
formula is as follows:

L( f ) = λ1L1( f ) + λ2L2( f ), λ1 + λ2 = 1 (9)
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2.5. Experiment

We first describe the method of data preprocessing, then give the definition and
calculation of the loss between the proposed method and manual labeling; finally the
equipment used for the experiments as well as the training time and error will be described.

2.5.1. Data Preprocessing

The number of points in the 3D model of human facial soft tissue is uncertain, which
necessitates building a homogeneous mesh to accommodate the points in the point cloud.
This paper outlines the pre-processing of the data in the following steps:

1. Cleaning the data by removing any obvious occlusions, such as the physician’s hand
fixing the patient’s head, and any obviously incorrect markers;

2. Normalizing all the data to the range [−1, 1], while preserving the scaling multiplier
S of each data for error calculation.

3. Creating a three-dimensional uniform grid with a side length of M, which can accom-
modate M3 points, and the data accuracy is 2S

M ;
4. After adjusting the valid numbers of the data, iteratively setting Ai,j,k = 1 for the

locations of the points present in the grid.

By using this method, the uncertain input dimension is transformed into an input
dimension fixed at M3, which can simplify the network. Additionally, experimental
evidence has shown that, within certain limits, changing the number of effective digits of
data does not affect the integrity of the 3D model.

2.5.2. Loss Calculation

As mentioned in Section 1, the error between the face model obtained by 3DMD tech-
nology and the real model is negligible. Therefore, this article assumes that the landmarks
manually labeled by doctors are accurate values, and the error is obtained by calculating
the Euclidean distance (unit: mm) between the predicted coordinates and the manually
marked coordinates to evaluate the prediction effect of the model. Due to the normalization
of the data in the preprocessing stage, the previous scaling operation needs to be taken
into account when calculating the error. The unit of the original model is mm, so the error
calculation method used for the performance evaluation is:

L = S ·
√
(x − x̂)2 + (y − ŷ)2 + (z − ẑ)2 (10)

where (x, y, z) is the coordinate obtained by the proposed method, (x̂, ŷ, ẑ) is the manually
labeled coordinate (accurate value), and S is the scaling multiplier recorded in Section 2.5.1,
which has different values in each model.

2.5.3. Experimental Setting

In this paper, only the ResNet18 network of the prediction phase uses pre-training
parameters, while the rest of the network is trained using random initialization parameters.
The experiments conducted in this paper take the aforementioned M as M = 200, so the
dimension of both parts of the input is 200 × 200 × 200, while the output dimension of the
object detection network is 6 × 6 = 36, and the output dimension of the prediction part
changes with the corresponding organ, as shown in Table 2.

We used two GeForce 2080Ti for training, and the training time was approximately
15 h for the object detection phase and 10 h for the prediction phase, but when setting
batch_size ≤ 10, parallel training can be performed to reduce the training time.

To properly train these models, for the object detection phase, we train the models
for 600 epochs, and actually the models converge at the 400th epoch; for the prediction
phase, we train each model for 500 epochs, and actually the models converge at around the
350th generation. To avoid overfitting, we choose models that are a few epochs ahead of
convergence.
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Table 2. The output dimensions corresponding to the prediction networks of different organs.

Organ Output Dimension

Eyes 8
Nose 7
Lips 7
Chin 4

Right face 3
Left face 3

3. Results

We will evaluate the model of our work by comparing the error between our work
and manual marking and comparing our work’s performance with other works.

3.1. Comparison of Errors between Our Work and Manual Marking

First, we calculated the error between our method and manual labeling, and presented
the results in a box-line diagram in Figure 6. The landmarks belonging to the same organ are
indicated with the same background color, and the left and right landmarks are identically
ordered and colored. The diagram clearly shows that the errors are relatively uniform for
landmarks within the same organ, but more variable for those on the left and right sides of
the face. The causes of this variation are discussed in Section 4.

Overall, our method achieved a mean error of 2.62 ± 2.39 mm compared to manual
labeling, with 72.73% of the landmarks automatically located within a mean error of 2.5 mm
and 100% within 3 mm. These results demonstrate the effectiveness of our approach in ac-
curately predicting the coordinates of human facial soft tissue landmarks. The comparison
of our results with other works is presented in Table 3.

Figure 6. The figure is a box-line diagram of the error between our work and manual labeling, where
points that are in the same organ are labeled with the same background color (where the left face
and right face are considered as the same organ). The overall error is 2.62 ± 2.39 mm, while 72.73%
landmarks are located within a mean loss of 2.5 mm and 100% landmarks are within mean loss 3 mm.
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Table 3. The table shows the error of our work compared to the five remaining methods and compared
to manual annotation. All of these are deep learning-based methods except Baksi et al.’s method [24].
Since our work additionally makes predictions for some landmarks, the remaining method gaps are
filled with -. The best method for each point is marked in bold.

Landmark Baksi1 [24] Fanelli [26] Zhao [27] Sun [28] Wang [19] Our Method

Endocanthion
(right) 3.13 ± 0.84 2.80 ± 2.00 2.90 ± 1.36 3.27 ± 5.51 3.11 ± 2.24 2.12 ± 0.98

Endocanthion
(left) 3.80 ± 1.43 2.60 ± 1.80 2.93 ± 1.40 3.35 ± 5.67 2.79 ± 1.63 1.72 ± 1.08

Exocanthion
(right) 3.44 ± 1.47 4.00 ± 2.80 4.07 ± 2.00 3.73 ± 6.14 4.20 ± 2.18 1.87 ± 1.24

Exocanthion (left) 4.45 ± 2.29 3.60 ± 2.40 4.11 ± 1.89 3.89 ± 6.38 3.58 ± 2.27 2.25 ± 1.20

Palpebrale
superius (right) - - - - - 1.81 ± 0.99

Palpebrale
superius (left) - - - - - 2.22 ± 1.11

Palpebrale
inferius (right) - - - - - 1.80 ± 0.99

Palpebrale
inferius (left) - - - - - 2.31 ± 1.27

Glabella 6.35 ± 3.32 - - - - 2.70 ± 1.58

Nasion - - - - - 2.20 ± 1.21

Pronasale 2.00 ± 0.90 - - - - 2.76 ± 0.53

Subnasale 1.65 ± 0.88 - - - - 2.72 ± 0.99

Subspinale 1.41 ± 0.56 - - - - 2.55 ± 1.16

Alare (right) 4.20 ± 1.63 4.10 ± 2.20 3.62 ± 1.91 3.43 ± 3.74 4.98 ± 2.63 2.71 ± 1.01

Alare (left) 3.44 ± 1.38 3.90 ± 2.00 3.32 ± 1.94 3.60 ± 4.01 3.77 ± 1.87 2.54 ± 0.62

Labiale superius 1.51 ± 0.71 3.50 ± 2.50 4.19 ± 2.34 3.09 ± 3.06 2.94 ± 1.35 2.92 ± 1.51

Stomion 1.84 ± 1.08 - - - - 2.87 ± 2.33

Labiale inferius 2.35 ± 0.78 5.20 ± 5.20 8.82 ± 7.12 4.36 ± 6.03 3.73 ± 2.97 2.72 ± 1.04

Christa philtra
(right) 2.77 ± 1.69 - - - - 3.92 ± 1.95

Christa philtra
(left) 3.81 ± 1.30 - - - - 3.58 ± 1.97

Cheilion (right) 1.93 ± 0.93 4.90 ± 3.60 7.52 ± 4.57 3.76 ± 4.05 3.94 ± 2.96 2.65 ± 1.30

Cheilion (left) 3.35 ± 2.59 4.70 ± 3.50 7.15 ± 4.64 3.95 ± 4.17 3.88 ± 2.86 2.56 ± 1.18

Sublabiale 4.34 ± 3.22 - - - - 3.29 ± 1.41

Pogonion 3.50 ± 2.94 - - - - 3.70 ± 1.65

Gnathion 4.85 ± 3.10 - - - - 4.56 ± 1.22

Menton - - - - - 2.76 ± 0.93

Tragus (right) - - - - - 1.82 ± 0.36

Tragus (left) - - - - - 1.72 ± 0.49

Zygoin (right) - - - - - 1.76 ± 0.60

Zygoin (left) - - - - - 1.24 ± 0.52

Gonion (right) - - - - - 4.03 ± 1.42

Gonion (left) - - - - - 3.49 ± 0.72

Mean results 3.21 ± 1.65 4.22 ± 2.99 5.05 ± 3.01 4.02 ± 5.32 3.96 ± 2.55 2.62 ± 2.39

3.2. Comparison of Errors between Our Work and Other Works

To further investigate the performance of 3D human facial soft tissue landmark predic-
tion based on object detection, we compared the landmark errors in our experiment with
those of other works. The specific comparison results are presented in Table 3. The calcu-
lation method of the error is documented in Section 2.5.2. Our work achieves the highest
precision for almost all comparable points, while predicting at least 13 additional land-
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marks. It should be noted that not all the predicted landmarks by the methods mentioned
in the table are shown, such as some landmarks around the brows.

4. Discussion

We conducted an experiment and analyzed the results based on the organs, symmetry,
and maximum and minimum error values.

Regarding organs, the error distribution of landmarks in the eyes, nose, and lips
showed a relatively uniform distribution with an error fluctuation of approximately 1 mm.
This could be attributed to the good symmetry of these organs and the similar geometric
features of each point. As a result, the model was able to effectively extract their features
through 3D convolution. In the training process, the error of each point was uniformly
reduced to achieve a lower average error. However, the error distribution of landmarks in
the chin and face was not uniform due to the lack of obvious geometric features in most of
these landmarks and the significant differences in their geometric features.

Regarding symmetry, the errors of most landmarks, except those around the eyes,
were uniform, with an error fluctuation of approximately 0.5 mm. The errors of landmarks
around the eyes showed fluctuations of about 1 mm, but the errors of the landmarks near
the left and right eyes were relatively uniform. This might be due to the 3D model’s
asymmetry resulting from an angular deviation due to it not being squarely posed to the
camera, causing the yOz plane to divide the model unevenly.

Regarding the maximum and minimum error values, Gonion showed the highest error
value, which could be attributed to the susceptibility of this point’s geometric features to
individual differences such as the face shape and facial muscle fullness. In contrast, the
two other landmarks in the face showed the minimum error values, despite having similar
geometric features to Gonion with large angular variation. The geometric features of Tragus
and Zygoin were less susceptible to individual differences, and the error calculation tended
to minimize the average error of landmarks in an organ. Hence, both the landmarks with
the largest and smallest errors appeared in the face organ.

Based on the results of the comparison, the proposed method exhibits the best mean
loss among all compared methods. Compared with other methods, the mean error has been
reduced by at least 0.59 mm (18.38%) and at most by 2.43 mm (48.12%). In the comparison
of a single point, our method achieves the highest accuracy among all methods with 75%
(24/32) of the landmarks and 100% of the landmarks with the highest accuracy among the
deep learning-based methods. The notable landmarks in this study include Glabella and
Cheilion (Left). The proposed method in this paper has significantly improved the accuracy
of these two points by 57.48% (from 6.35 mm to 2.70 mm) and 23.58% (from 3.35 mm
to 2.56 mm), respectively. Furthermore, in comparison to deep learning methods, the
accuracy improvement on Cheilion (left) ranges from a minimum of 34.02% (from 3.88 mm
to 2.56 mm) to a maximum of 64.20% (from 7.15 mm to 2.56 mm). These two representative
landmarks visually demonstrate the performance of our method in predicting all landmarks.
From the perspective of symmetry, our method achieved the lowest average error at the
Endocanthion, Exocanthion, Alare, and Cheilion points. Furthermore, it ensures that
the errors of the two symmetrical points are nearly identical, thereby demonstrating the
method’s ability to maintain both accuracy and stability in predictions. Notably, some
points in the methods based on geometric information have accuracies exceeding our
methods, such as subnasale and subspinale, which are closer in distance and do not have
distinct geometric features. However, by considering their definitions as the median
point and the deepest point, we can greatly improve their prediction accuracy. This
demonstrates the importance of the interrelationship between landmarks and the model,
therefore extracting the global as well as local attributes of the model is an effective method
to improve the prediction accuracy.

We also acknowledge the performance of other methods that effectively predict 3D
human facial soft tissue landmarks. Wang et al. (2022) utilized the Heatmap Regression
with the Graph Convolutional Network method on the BU-3DFE and FRGCv2 databases to
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predict eight landmarks, achieving an error of 1.97 ± 1.50 and 2.54 ± 1.64, respectively. This
demonstrates the ability to extract interrelationships between landmarks using the graph
convolutional neural Network [29]. In 2018, Terada et al. proposed a CNN-based method
that experimentally predicted 14 landmarks. Through comparative experiments, they
found that the ResNet34+Data Augmentation approach yielded optimal results. Although
this method involved transforming the 3D model into a 2D attribute map, the experimental
results still provided valuable insights [30].

This work provides an alternative approach for predicting human facial soft tissue
landmarks that surpasses the translation of 3D models into 2D images. Our findings indi-
cate that superior results can be achieved by directly predicting on 3D models. Moreover,
we demonstrate the effectiveness of coarse-to-fine methods such as object detection. The
direct manipulation of the 3D model is also feasible in the dental clinical field, such as
for landmark prediction in CBCT models, and coarse-to-fine models can be utilized in
similar fields.

However, we identified several areas where similar approaches have the potential for
further improvement:

1. Existing algorithms do not fully extract the complex interrelationships between points
in the 3D model;

2. The data used in this study are insufficient for clinical practice. The further application
of this method on a larger patient population is necessary to ensure reliable results.
We plan to integrate the development of a 3D human facial soft tissue model database
to expand the patient dataset;

3. It is essential to conduct additional research to validate and establish the proposed
method as a reliable tool in clinical practice. This entails conducting more compre-
hensive studies that evaluate its effectiveness, accuracy, and potential limitations in
diverse clinical settings.

4. The proximity of some landmarks is so close that, if the error in prediction is not
sufficiently small compared to the distance to its nearest point, the prediction of a
point becomes meaningless. However, this method of evaluation is not currently
employed in corresponding works;

5. There are numerous clinically significant landmarks present in both human facial soft
tissue and CBCT images that existing methods are unable to predict due to limitations
in algorithms and the corresponding databases.

These are critical issues that require further consideration in future research.

5. Conclusions

In this paper, we propose a novel method for predicting the coordinates of 3D human
facial soft tissue landmarks. Our approach first performs object detection on the 3D model
and divides it into six parts: eyes, nose, lips, chin, left face, and right face. Then, each model
of these six parts is used for landmark prediction. Experimental results on real datasets
show that the proposed method has a lower mean error and predicts more landmarks
than other methods. It has achieved a high accuracy for most landmarks and has good
stability. Additionally, we created and continuously updated a database to address the
issue of insufficient data in the current 3D human facial soft tissue database. Overall, our
method provides a 3D model-based prediction method for 3D human facial soft tissue
landmark prediction, and experimentally demonstrates the feasibility of the method and
some advantages over other methods in terms of accuracy, stability, and the number
of predictions.

In our future research, we plan to further investigate the two-part neural network
by exploring the use of graph neural networks (GNNs) [31] and self-cure networks [32].
Moreover, we intend to increase the scale of the network and implement a Transformer
architecture [33]. We will also introduce an evaluation method that uses the ratio of the
prediction error of a point to the distance from its nearest point as an indicator to provide
confidence in the prediction. Furthermore, we will continue to update the database of
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3D human facial soft tissue models. Additionally, we consider extracting the attributes of
landmarks with high errors and incorporating them into the model as a potential method
to improve the accuracy rate.
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