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Abstract: Obstructive sleep apnea (OSA) severity assessment is based on manually scored respiratory
events and their arbitrary definitions. Thus, we present an alternative method to objectively evaluate
OSA severity independently of the manual scorings and scoring rules. A retrospective envelope
analysis was conducted on 847 suspected OSA patients. Four parameters were calculated from the
difference between the nasal pressure signal’s upper and lower envelopes: average (AV), median
(MD), standard deviation (SD), and coefficient of variation (CoV). We computed the parameters from
the entirety of the recorded signals to perform binary classifications of patients using three different
apnea-hypopnea index (AHI) thresholds (5-15-30). Additionally, the calculations were undertaken
in 30-second epochs to estimate the ability of the parameters to detect manually scored respiratory
events. Classification performances were assessed with areas under the curves (AUCs). As a result,
the SD (AUCs > 0.86) and CoV (AUCs > 0.82) were the best classifiers for all AHI thresholds.
Furthermore, non-OSA and severe OSA patients were separated well with SD (AUC = 0.97) and CoV
(AUC = 0.95). Respiratory events within the epochs were identified moderately with MD (AUC = 0.76)
and CoV (AUC = 0.82). In conclusion, envelope analysis is a promising alternative method by which
to assess OSA severity without relying on manual scoring or the scoring rules of respiratory events.

Keywords: sleep apnea; envelope analysis; objective analysis; nasal pressure; severity estimation;
respiratory event

1. Introduction

Obstructive sleep apnea (OSA), characterized by complete (apnea) and partial (hy-
popnea) breathing cessations, is a prevalent sleep disorder affecting nearly a billion adults
globally [1]. Currently, the diagnosis of OSA and the assessment of its severity are mainly
based on the presence of daytime sleepiness and the apnea-hypopnea index (AHI) [2,3].
Although the AHI is the most commonly used diagnostic parameter, it has several short-
comings [4]. For example, the scoring of respiratory events is performed manually based
on arbitrary and somewhat vague visual scoring rules [5]. Hence, the determination of
AHI and the evaluation of OSA severity is time-consuming and prone to human error.

To overcome some of the limitations of the AHI, more sophisticated parameters have
been developed for a better assessment of OSA severity [6-11]. However, most of these
parameters are still based on manual scorings, and thus, are limited by the arbitrary scoring
rules and the subjectivity of the scorers. Additionally, to reduce the need for manual scoring,
several different machine learning methods have been developed to automatically estimate
the severity of OSA [12-14]. Yet, the performance of these methods is still ultimately reliant
on the manual scorings which are used to train the models.

One solution to decrease the reliance on AHI and manual scoring rules could be the
evaluation of OSA severity with the help of envelope analysis of an airflow signal. The
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amplitude of an airflow signal decreases during a respiratory event [5], leading to a smaller
difference between its upper and lower envelopes. Therefore, as the nasal pressure signal
has been shown to be sensitive enough to detect even mild disturbances in respiration [15],
features of its envelopes could provide additional information on the severity of OSA.
Consequently, algorithms based on the nasal pressure signal’s envelopes have been used in
automatic and accurate respiratory event detection [16,17]. Furthermore, Diaz et al. [18]
have previously introduced a parameter computed from the upper envelope of the nasal
pressure signal which was able to quantify disordered breathing during sleep. However,
parameters calculated directly from the airflow signal envelopes have not been widely
utilized in OSA severity assessment.

The aim of the present study was to provide an alternative method for OSA severity
assessment that avoids the known issues in AHI-based estimation. The presented method
is based on the parameters calculated from the envelopes of the nasal pressure signal
that are independent of the manual scorings or scoring rules of respiratory events. We
hypothesize that smaller values and greater variation in the difference between the nasal
pressure signal upper and lower envelopes could imply more disturbed breathing and
more severe OSA. The performance of the presented envelope method was evaluated in a
large clinical OSA population.

2. Methods
2.1. Study Population

A total of 887 suspected OSA patients had undergone type 1 polysomnography (PSG)
in the Princess Alexandra Hospital (Brisbane, Australia) during 2015-2017. The PSGs
included recordings of abdominal and thorax respiratory efforts, electroencephalography
(6 channels), electrooculogram (2 channels), electrocardiogram, chin and leg electromyogra-
phy, airflow with nasal pressure and thermocouple, photoplethysmography, body position,
snoring, sound, oxygen saturation, and transcutaneous carbon dioxide. All the signals were
recorded and analyzed with the Compumedics Grael acquisition system and Compumedics
ProFusion 4.0 software (Compumedics, Abbotsford, Australia). Approval for the data col-
lection and processing was provided by the institutional human research ethics committee
of the Princess Alexandra Hospital (HREC/16/QPAH/021 and LNR/2019/QMS/54313).
All PSGs were manually scored by the sleep technicians in compliance with the American
Academy of Sleep Medicine (AASM) guidelines using a 3% desaturation or an arousal rule
for hypopnea scoring [19]. From the full PSGs, only the nasal pressure signals were utilized
in the envelope calculations and analysis. Based on the visual inspection, patients with
failed nasal pressure recording were excluded from this study (N = 40). The recording was
considered to have failed if it consisted mostly of noise or if the nasal cannula was discon-
nected for most of the recording duration. Thus, the final study population comprised
847 patients. The demographic and PSG information of the study population is presented
in Table 1.

Table 1. The demographic and polysomnographic information of the study population.

Whole Non-OSA Mild OSA Moderate OSA Severe OSA
Population (AHI < 5) (5 < AHI < 15) (15 < AHI < 30) (AHI > 30)
Patients (N, (male%)) 847 (53.8) 131 (32.8) 239 (45.2) 204 (55.9) 273 (70.0)
Age (years) 55.8 (44.8-65.7) 44.8(31.4-58.3) 54.4 (44.8-64.1) 56.8 (48.2-66.5) 59.0 (48.0-68.5)
BMI (kg/ m?) 34.0(29.0-40.2) 30.0 (25.0-35.3) 33.6 (28.3-38.9) 33.7 (30.3-39.9) 36.2 (31.8-43.1)
AHI (events/h) 18.0 (8.2-38.4) 2.5 (1.3-3.6) 9.8 (7.2-12.2) 21.3 (17.9-25.0) 56.0 (39.4-78.0)
Duration of analyzed period (h) 7.3 (6.7-7.8) 7.4 (6.8-7.8) 7.3 (6.7-7.9) 7.3 (6.7-7.8) 7.3 (6.7-7.8)
Number of analyzed epochs (1) 737,992 114,522 208,467 177,958 237,045

Values are presented as a number (% of the population) or as a median (interquartile range). BMI: body mass
index, OSA: obstructive sleep apnea, AHI: apnea-hypopnea index.
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2.2. Signal Preprocessing

The nasal pressure signals were recorded with a 128 Hz sampling frequency. All the
segments where the nasal cannula was detached for more than a second were removed from
the signals. After artifact removal, signals were filtered with a 4th order Butterworth low-
pass filter with a 3 Hz cutoff frequency. Furthermore, as the signal amplitudes may vary
significantly between the patients and within the night due to changes in body positions
and sleep stages [19], signals were Z-score normalized using a 5-min sliding window with
a window step size of one data point. These normalized signals will be referred to as
preprocessed signals for the remainder of this paper. All the signal preprocessing steps and
analyses were conducted using Matlab (version R2022a, MathWorks, Natick, MA, USA).

2.3. Envelope Algorithm

First, to locate the signal’s local extreme points, the preprocessed signal was smoothed
with a 0.5-s moving average filter. However, the detected locations of extreme points did
not exactly match the locations of the true local maximum and minimum values in the
preprocessed signal. Thus, the locations were corrected by searching the true maximum
and minimum values from the preprocessed signal within a 1-s window placed around the
detected extreme points. Next, the upper envelope was formed by interpolating between
the maximum points, while the lower envelope was formed by interpolating between the
minimum points using a piecewise cubic hermite interpolating polynomial [20]. Finally, a
difference envelope was formed by subtracting the lower envelope from the upper envelope.
In addition, to prevent negative difference envelope values caused by intersecting upper
and lower envelopes, difference envelope values during such periods were set to zero. In
total, 0.064 % of all the difference envelope values were adjusted to zero. An illustration of
the envelopes and the difference envelope is presented in Figure 1.

4 T T T T T T T T
Apnea Hypopnea
2 — -
0
) 1 I 1 | 1 1 1
0 20 40 60 80 100 120 140 160 180
Time (s)
—— Nasal pressure —— Upper envelope —— Lower envelope —— Difference envelope

Figure 1. An illustration of nasal pressure signal envelopes and the difference envelope.

2.4. Data Analysis

We calculated the average (AV), median (MD), standard deviation (SD), and the ratio
of SD to AV, i.e., coefficient of variation (CoV) from the difference envelope. The parameters
were computed separately from the full-night envelopes and envelopes truncated in non-
overlapping 30-s epochs.

We determined receiver operating characteristic (ROC) curves for the parameters
calculated from the full-night difference envelope to assess their ability to perform binary
classification of patients into two groups with three different AHI thresholds (AHI = 5,
15, and 30). Individual ROC curves were computed separately with each AHI threshold,
resulting in three distinct ROC curves per parameter. Moreover, an additional ROC curve
was determined to evaluate how well parameters can distinguish non-OSA patients from
severe OSA patients. For all cases, corresponding areas under the curves (AUC) were
calculated. Lastly, the correlations between the full-night difference envelope parameters
and AHI were investigated.
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ROC curves and corresponding AUCs were also determined for difference envelope
parameters calculated within 30-s epochs to estimate whether or not an epoch contains
a respiratory event based on the parameter values. An epoch was considered to contain
a respiratory event if it included at least one data point of manually scored apnea or
hypopnea. Furthermore, the percentage of epochs containing an event with a specific range
of parameter values was calculated. Moreover, the distributions of the parameter values
in the 30-s epochs were determined for each OSA severity group. Finally, the effect of
respiratory event duration on the parameter values was visualized.

3. Results
3.1. Full-Night Envelope Analyses

The AUCs for all parameters increased with increasing AHI thresholds between the
groups (Figure 2). Among the four parameters, SD displayed the best overall differentiation
ability with AUCs > 0.86, whereas AV performed the worst with AUCs < 0.77 for all
three AHI thresholds. Moreover, patients with severe OSA were distinguished extremely
well from non-OSA patients by utilizing the SD (AUC = 0.97) and CoV (AUC = 0.95).
However, the correlations between the difference envelope parameters and the AHI were
only moderate (Figure 3).
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Figure 2. Receiver operating characteristic curves and corresponding areas under the curves (AUC)
for binary classification of patients into two groups using three different AHI thresholds (AHI = 5, 15,
and 30). The classification was also assessed only between severe (AHI > 30) and non-OSA (AHI < 5)
patients. Parameters were calculated from the full-night difference envelope.
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Figure 3. Correlations between the apnea-hypopnea index (AHI) and the average (a), median (b),
standard deviation (c), and coefficient of variation (d) of the full-night difference envelope.

3.2. Epoch-by-Epoch Analyses

An epoch-by-epoch example of difference envelope parameter values from one patient
is presented in Figure 4. Parameter values varied substantially during the recording
depending on whether a respiratory event occurred in an epoch or not. Based on the ROC
analyses, parameters calculated in the 30-s epochs were able to moderately separate epochs
containing respiratory events from those without events (Figure 5). In addition, with
increasing AV and MD values a smaller percentage of epochs included events (Figure 6).
An opposite trend was observed with SD and CoV, as the percentage of epochs containing
events increased with increasing parameter values.

The distributions of epoch-wise calculated difference envelope parameter values are
shown in Figure 7. An evident difference was observed in the AV and MD values in which
the severe OSA group had a noticeable peak close to zero (Figure 7a,b). Furthermore, the
duration of a respiratory event within a 30-s epoch had a major impact on the parameter
values (Figure 8). The median values decreased for AV and MD (Figure 8a,b) and increased
for SD and CoV (Figure 8c,d) with longer event duration. However, an exception was
observed in the SD in which epochs without events and epochs with 25-30 s events had
similar values.
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Figure 4. Epoch-by-epoch illustration of difference envelope parameter values and the manually
scored respiratory events. The illustration represents a single patient whose manually determined
apnea-hypopnea index was 58.6 events/h.
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Figure 6. Relationship between percentages of the 30-s epochs containing manually scored respiratory
events and parameter values. The red bins represent all of the extreme values of each parameter.
The maximum parameter values were 11.8 for average (a), 13.2 for median (b), 14.5 for standard
deviation (c), and 33.6 for coefficient of variation (d).
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Figure 7. Distributions of the difference envelope parameter values calculated from 30-s epochs in
different obstructive sleep apnea (OSA) severity groups. The distributions were normalized by the
number of patients (N) in their respective severity groups. The last bins represent all of the extreme
values of each parameter in the OSA severity group. The maximum parameter values were 11.8 for
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Figure 8. Relationship between respiratory event duration and average (a), median (b), standard
deviation (c), and coefficient of variation (d) values calculated from difference envelope within 30-s
epochs. The red line displays the median value, the edges of the boxes show the interquartile range
(IQR), and the whisker the range of the data without outliers. Outliers were defined as values
over 1.5 times IQR from the upper quartile and values below 1.5 times IQR from the lower quartile.
Outliers are not presented.

4. Discussion

In this study, we introduced an alternative method based on the parameters calculated
from the envelopes of the nasal pressure signal to objectively assess the severity of OSA. We
found that the SD (AUCs > 0.86) and CoV (AUCs > 0.82) performed best in the classification
of patients with all three AHI thresholds. Furthermore, the manually scored respiratory
events within the 30-s epochs were detected moderately using MD (AUC = 0.76) and CoV
(AUC = 0.82). Overall, the results are in line with our hypothesis, as the mean of the
difference envelopes decreased, and the variation increased with increasing OSA severity.

In the full-night ROC analysis, the SD and CoV performed better for all AHI thresholds
compared with the AV and MD (Figure 2). For example, using the AHI threshold of 5,
the performances of the AV (AUC = 0.64) and MD (AUC = 0.70) when classifying patients
into the correct group were only moderate, whereas much better performances were
obtained with SD (AUC = 0.86) and CoV (AUC = 0.82). Furthermore, with the SD and
CoV, severe OSA patients were distinguished extremely well from non-OSA patients with
AUCs of 0.97 and 0.95, respectively. Thus, based on these results, the full-night SD and CoV
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are the most promising parameters among the four investigated variables for estimating
the severity of OSA. However, as OSA is a vastly heterogeneous disease, using a single
parameter to assess its severity is most likely insufficient [21]. Thus, a combination of
these envelope parameters, or potentially some more advanced envelope parameters, with
other relevant OSA severity metrics, could enable a more comprehensive evaluation of
its severity.

The effect of respiratory events on epoch-wise calculated envelope parameter values
is clear. The percentage of epochs containing respiratory events progressively decreased
with increasing AV and MD values and increased with increasing SD and CoV values
(Figure 6). In addition, the patients with more severe OSA had more epochs with smaller
AV and MD values (Figure 7a,b). This finding is consistent with our hypothesis that more
disturbed breathing leads to smaller AV and MD values within the epochs. Furthermore,
the duration of the respiratory events had a major effect on all of the parameter values
(Figure 8). However, as the duration of respiratory events can range from 10 s up to several
minutes [22], the 30-s epochs may be too short, especially for SD, to efficiently capture
changes in the difference envelope. This can be deduced from the observation that the
epochs without respiratory events and epochs with 25-30 s events had similar SD values
(Figure 8c). However, this is reasonable because the difference envelope values should stay
relatively stable during regular cyclical breathing and during a long respiratory event that
can last the whole 30-s epoch.

Based on the 30-s epoch ROC analyses, the existence of respiratory events was only
moderately identified with the epoch-wise computed parameter values (Figure 5). How-
ever, an epoch was considered to contain a respiratory event even when it included only
one data point of a manually scored event. Therefore, an epoch containing only a few
data points of a manually scored event likely does not cause any significant changes in the
parameter values, and thus, correct classification of such epochs is challenging. Moreover,
since the analyses were performed based on the manually scored respiratory events and
their arbitrary rules [5], abnormal breathing cessations and patterns which do not satisfy
the respiratory event criteria may still be classified as events by envelope parameters. Such
instances include, for example, breathing cessations lasting less than 10 s or unscored
events. However, the utilization of envelope analysis enables the detection of such abnor-
mal events rather than just classifying events into apneas and hypopneas. In addition,
envelope analysis takes into account the duration of respiratory events, unlike the AHI
Thus, although we compared the envelope parameters with the AHI, a perfect correlation
was not the desired outcome as there are several well-known weaknesses in the AHI-based
OSA severity estimation [4,23-25]. For these reasons, envelope analysis has the potential to
enhance the assessment of OSA severity by revealing its true severity in more detail.

The present study has some limitations. We restricted our analysis to the nasal pressure
signal, although breathing effort was also measured with a thermocouple and abdominal
and thorax belts. The nasal pressure signal was selected as it is sensitive enough to detect
even mild disturbances in respiration [15]. However, the presented envelope method
could also be applied to other respiratory signals requiring no or only minimal changes
in preprocessing and artifact detection. For example, applying the envelope analysis
simultaneously to the respiratory effort signals may enable the separation of obstructive
and central breathing disturbances and allow a more comprehensive evaluation of the
nature of sleep apnea. Furthermore, the patients with failed nasal pressure recording
(N = 40) were excluded from the study based on visual inspection. We opted to use visual
inspection rather than some objective criteria, as automatic signal quality and artifact
detection was not the focus of this study. In addition, as we only removed the signal
segments where the nasal cannula had been disconnected, the analyzed signals may have
contained several other artifact types which may affect the results. However, this can also
be seen as a strength of the present study as the quite straightforward envelope method
performed well without heavy signal processing. This need for minimal artifact removal
should allow the presented method to be more easily applied to other datasets without
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major modifications. In the epoch-by-epoch analyses, we used non-overlapping epochs
with a duration of 30 s. Thus, depending on the parameter, the duration of the epoch may
not be optimal, e.g., too short for SD or too long to optimally detect short events. However,
the parameter calculation would be very simple to undertake for epochs of any arbitrary
length. Finally, we evaluated the performance of the envelope analysis by comparing
parameter values with the AHI and manually scored respiratory events, despite their
known limitations. However, a comparison with the current OSA standards is appropriate
as the aim of the present study was to introduce a different approach to the evaluation of
the severity of nocturnal breathing disturbances alongside the AHI. Thus, the aim was not
to show superiority over AHI or to suggest replacing AHI-based OSA severity assessment
with the presented envelope methods.

In conclusion, envelope analysis of the nasal pressure signal performed relatively
well in evaluating OSA severity. The introduced method is completely objective as it does
not rely on the manual scoring of the respiratory events or their arbitrary scoring rules.
Hence, given the widely known issues in OSA severity assessment, the envelope analysis
of the airflow signal is a promising method that could enhance the assessment of nocturnal
breathing disturbances.
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