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Abstract: This study proposes a novel method that uses electroencephalography (EEG) signals to
classify Parkinson’s Disease (PD) and demographically matched healthy control groups. The method
utilizes the reduced beta activity and amplitude decrease in EEG signals that are associated with
PD. The study involved 61 PD patients and 61 demographically matched controls groups, and EEG
signals were recorded in various conditions (eyes closed, eyes open, eyes both open and closed,
on-drug, off-drug) from three publicly available EEG data sources (New Mexico, Iowa, and Turku).
The preprocessed EEG signals were classified using features obtained from gray-level co-occurrence
matrix (GLCM) features through the Hankelization of EEG signals. The performance of classifiers
with these novel features was evaluated using extensive cross-validations (CV) and leave-one-out
cross-validation (LOOCV) schemes. This method under 10 × 10 fold CV, the method was able to
differentiate PD groups from healthy control groups using a support vector machine (SVM) with
an accuracy of 92.4 ± 0.01, 85.7 ± 0.02, and 77.1 ± 0.06 for New Mexico, Iowa, and Turku datasets,
respectively. After a head-to-head comparison with state-of-the-art methods, this study showed an
increase in the classification of PD and controls.
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1. Introduction

More than 200 years have passed since James Parkinson’s seminal article was pub-
lished and, during that time, understanding of this disease has grown substantially [1].
Parkinson’s Disease (PD) is the second most common neurodegenerative disorder after
Alzheimer’s, with an increasing prevalence with age, affecting approximately 2–3% of
people over 65 years of age [2,3]. According to the World Health Organization (WHO) [4]
and the Parkinson’s Foundation [5], the number of PD has doubled in the last 25 years,
with over 10 million individuals with PD globally.

PD is a degenerative process that affects primarily the substantia nigra which is
a structure of the basal ganglia and other brainstem-pigmented neurons. The neurons
afflicted with PD are unable to release dopamine which is a messenger substance between
the brain and the rest of the body. As a result, both motor and non-motor symptoms
develop, including mild tremor, changes in posture, walking, and facial expressions. Over
time, these symptoms progress to loss of balance and slowness of movements, frequent
falls, stiffness, hallucinations and delusions, mood and sleep disturbances, and cognitive
failures [6]. The main clinical manifestations of PD are resting tremor, bradykinesia, rigidity,
and postural reflex dysfunction [7].

The accuracy of clinical diagnoses, especially in the early stages of PD, has not signifi-
cantly improved for about 25 years, and the average accuracy of 20 studies is around 80.6%.
Correct diagnosis of PD is an essential requirement for patient counseling and therapy man-
agement [8]. Currently, the diagnosis of PD relies on the medical observation and clinical
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examination of patients by a specialist. Patients are examined according to some clinical
diagnostic criteria, for example, the Unified Parkinson’s Disease Rating Scale (UPDRS).
However, this conventional diagnostic method can be biased by a clinician and can lead
to misclassification. Furthermore, early symptoms of PD are often mild and unnoticed;
therefore, it is difficult to accurately diagnose, especially in the early stages of PD [9].

Various imaging methods can be used in the diagnosis of PD, depending on the type of
parkinsonism. There are multiple types of parkinsonism such as idiopathic, vascular, drug-
induced, and some other types. The most common type is idiopathic and it is also known as
Parkinson’s Disease (PD) and, in this study, we dealt with this type of parkinsonism which
means the cause is unknown [10]. Neuromelanin Magnetic Resonance Imaging (NM-MRI)
can detect changes in the brain structure associated with PD, such as loss of dopaminergic
neurons in the substantia nigra [11], while positron emission tomography (PET) and
single-photon emission computed tomography (SPECT) can sensitively detect dopamine
deficiency for diagnosing PD. However, these imaging techniques are expensive and require
specialized equipment, limiting their widespread use for routine clinical diagnosis [12].
Other than imaging methods, the olfactory dysfunction test, which affects 90% of patients,
can be used as an early clinical manifestation of PD [13]. Biomarker-based approaches
involve the measurement of biological markers in blood, cerebrospinal fluid (CSF), or other
bodily fluids that can provide information about disease presence and severity [14]. EEG
has also been explored as a potential diagnostic tool for PD. As a non-invasive method,
EEG-based methods offer several advantages over other diagnostic techniques, including
low cost, non-invasiveness, and high temporal resolution. The number of EEG-based
studies is increasing day by day [15,16].

EEG signals can be used to differentiate PD patients from healthy controls or patients
with other movement disorders. EEG signals are inherently complicated and nonlinear.
As a result, most linear feature extraction algorithms cannot be applied correctly to EEG
signals because these algorithms do not work well for these kinds of signals [6]. EEG
features such as reduced beta activity, non-linear features, statistical features, decrease
in amplitude or changes in spectral power have been associated with the presence and
severity of motor symptoms in PD, and machine learning algorithms have been developed
to classify EEG signals based on these features [17–20].

A novel method is proposed for the diagnosis of PD detection in this study. In this
study, we have especially used the reduced beta activity and the relative amplitude decrease
in EEG signals, characteristics associated with PD. The method we use is performed by
extracting Haralick GLCM features [21] from the Hankel matrix [22] of segmented EEG
signals, which were first introduced for PD diagnosis. With this method, classifications can
be made from very short-term EEG signal recordings.

The main contributions of this study to the literature can be listed as follows: A
proposed method for classifying PD using a large dataset that is publicly available and
frequently used has been tested. A novel feature vector has been created by using GLCM
features of the image obtained from the data matrix through the Hankelization of EEG
signals. A high-performance classification method for PD has been presented by applying
feature selection and machine learning methods to the obtained innovative feature set.

2. Materials and Methods

Datasets, preprocessing, feature extraction, and classification methods used for the
proposed method are explained in this section. respectively. All analyses were performed
on a computer using Windows-10 operating system, 3 GHz AMD Ryzen 5 4600H processor,
8 GB 3200 MHz RAM, and 4 GB NVDIA GeForce GTX 1650 graphics card. For reproducibil-
ity, all MATLAB codes had been run with the default random number generator as the
initial condition.
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2.1. Datasets

In this study, three publicly available datasets were used to classify PD. Electrode
positions were obtained in the standard 10–20 EEG layout and from 64 channels with
sintered Ag/AgCl electrodes at a 500 Hz sampling frequency for all datasets.

The first data source is from the University of New Mexico [15,23]. Hereinafter,
this data source will be named UNM. UNM contains records from a total of 54 patients,
comprising 27 PD patients and 27 control groups. There are two session records for each
patient in the PD group, taken 7 days apart. These were recorded while on the drug and
12 h after the last dose of dopaminergic medication for all individuals; thereby, there are
two types of records: eyes closed for 1 min and eyes open for 1 min.

The second data source is from the University of Iowa [15,23]. Hereinafter, this data
source will be named UI. UI contains records from a total of 28 patients, comprising
14 PD patients and 14 control groups. These records were collected only with eyes open
and on-drug.

The third data source is from the University of Turku [24]. Hereinafter, this data
source will be named UT. UT contains records from a total of 40 patients, comprising
20 PD patients and 20 control groups. These records were collected in both eyes-open and
eyes-closed sessions while on-drug.

Based on these three sources of records, seven different variants were created. Detailed
information is provided in Table 1.

Table 1. Data sources and variants with conditions.

Data Source Dataset Eyes Condition Drug Condition

UNM

UNM_ALL Open/Closed On
UNM_OPEN Open On

UNM_CLOSED Closed On
UNM_OFF Open/Closed Off

UI UI Open/Closed On

UT
UT_OPEN Open Off

UT_CLOSED Closed Off

In all 3 data sources, the PD Control group was demographically matched with the PD
group in terms of age and gender. Subjects did not differ in any measurements of education
or premorbid intelligence. Detailed information about data sources is given in Table 2.

Table 2. Parkinson’s Disease and control participant demographics.

(Mean ± STD) UNM UI UT

Condition PD Control PD Control PD Control

Sex 17 M/10 F 17 M/10 F 6 M/8 F 6 M/8 F 9 M/11 F 8 M/12 F

Age 69.5 ± 8.7 69.5 ± 9.3 70.5 ± 8.7 70.5 ± 8.7 69.8 ± 7.2 67.8 ± 6.2

MMSE 28.7 ± 1 28.8 ± 1 - - 27.8 ± 1.8 28.2 ± 1.5

MOCA - - 25.9 ± 2.7 27.2 ± 1.7 - -

UPDRS 22.2 ± 10.3 - 13.4 ± 6.6 - 28.9 ± 16.4 5.1 ± 3.5

Years from
Diagnosis 5.7 ± 4.2 - 5.6 ± 3.2 - 6.4(4.9) -

Recording
Minute 3.59 ± 1 3.63 ± 1.8 3.11 ± 1.2 3.17 ± 0.9 2.55 ± 0.06 2.51 ± 0.2

BDI 7.6 ± 5.3 4.8 ± 4.8 - - 8.4 ± 6.2 5.0 ± 3.0

LED 707.4 ± 448.6 - 796 ± 409 - 663.2 ± 509.1 -

NAART 45.2 ± 10.3 47.1 ± 7.5 - - - -

Abbreviations: M = male; F = female; MMSE = Mini Mental State Exam; MOCA = Montreal Cognitive Assessment;
UPDRS = United Parkinson’s Disease Rating Scale (motor); BDI = Beck’s Depression Inventory; LED = L-Dopa
equivalence dose in mg.
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2.2. Preprocessing

First, all the records were organized to facilitate processing in the MATLAB 2022a
(MathWorks, Inc., Natick, MA, USA) environment and to make them easily applicable for
analysis. The organized records were preprocessed using EEGLAB in MATLAB [25]. Only
channels that were common to all records, a total of 57 channels, were used for analysis.
Other channels were excluded. The common channel information can be found in the
Supplementary Materials, Figure S1 for the layout of EEG electrodes and Table S1 for
channel names. All the records were filtered with a 1–50 Hz band pass filter. Afterward,
the channel averages were re-referenced to the records. To remove noises from the records
such as muscle, eye, heart, and line noise, among others, that fall between 0.9–1 among
the signals, independent component analysis (ICA) [26] was performed. This process left
only components related to brain activity in the records. As an example, Figure 1 shows
the differences between the preprocessed and not preprocessed EEG records, with baseline
shift, sudden and large peaks, and non-normalized structure. The preprocessing operations
eliminated all these issues.
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Figure 1. Comparison for not preprocessed and preprocessed signal.

2.3. Feature Extraction and Selection

In the feature extraction process, the channels in the records of each subject are
segmented into a total of 50 windows determined experimentally. Afterward, segmented
data in the windows was transformed into a picture by making it 2D with a Hankel matrix
as a novel approach. Hankel matrix is created by MATLAB’s Hankel function. In this
function, a Hankel matrix of a vector signal such as an EEG record is defined as, firstly, a
segmented EEG signal (X1) flipped left to right (X2). The first column of a Hankel matrix is
X1 and the following columns are produced by shifting X1 one position at a time to the left,
and in doing this the upper triangular matrix is formed. The last row of a Hankel matrix is
X2 and the following rows are produced, shifting X2 one position at a time to the right and
in doing this the lower triangular matrix is formed. Details are given in Figure 2.

Using this Hankel matrix, GLCM was created by MATLAB’s graycomatrix function.
This function: calculates how often the gray-level intensity of the pixel of interest in an
image occurs with the gray-level intensity of the specified neighboring pixel. First, the
Hankel matrix’s number of gray levels is scaled to 8 levels with MATLAB’s default settings.
GLCM matrix is created by calculating over the scaled matrix [21,27]. Details are given in
Figure 3.

Haralick texture features were extracted from each segment using the GLCM and a
total of 19 features were obtained for each segment [21,28–30]. Brynolfsson’s MATLAB
code was used to obtain these features [31] and notations for computing Haralick texture
features and GLCM features are provided in Supplementary Materials in Tables S2 and S3.
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The features obtained from each channel’s segment were converted into a vector. Here,
for each channel, a total of 50 windows and 19 features were extracted with a length of
50 × 19, which is a total of 950 features. Each EEG recording of each subject consisted
of 57 channels, resulting in a total of 950 features, and 57 channels were extracted with a
length of 57 × 950, which is a total of 54,150 features for each subject.

To reduce the number of features in the analysis, a feature selection method was
applied using the Chi-Square (chi2) method [32,33], which uses a statistical moment to
select features that make sense for a particular model. The chi2 test was used to assess the
relative variances of two distributions and determine which features depend on the output
class label the most. The chi2 value for each feature in the dataset was calculated, and all
features were sorted using their chi2 values in decreasing order. The first 100, 250, 500,
1000, 2500, and 5000 features with the highest scores from the chi2 method were empirically
selected for the classification process.

2.4. Classification

By using the extracted and selected features, 10 × 5-fold and 10 × 10-fold cross-
validation classification was performed for feedforward network (FF), support vector
machine (SVM), and k-nearest neighbor (KNN) classifiers in MATLAB default settings.

2.4.1. Feed-Forward Network

Many classification problems are not linearly separable. We can separate the classes
in such nonlinear problems by introducing more hyperplanes, or threshold units. This
is usually done by adding an extra layer of threshold units, each of which does a partial
classification of the input and sends its output to a final layer, which assembles partial
classifications into a final classification. Such a network is called a multi-layer perceptron
or feed-forward network (FF) [34].
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2.4.2. Support Vector Machine

Support vector machine (SVM) is a machine learning algorithm (MLA) that minimizes
risk by offering different solutions to a number of linear and nonlinear problems. It is used
to solve binary classification problems and can also be applied to multiclass classification
problems. SVM is divided into two groups: linear SVM and nonlinear SVM, according to
the state of the data. SVM is an effective learning algorithm in complex datasets, identifying
patterns that are difficult to analyze [35].

2.4.3. K-Nearest Neighbor

K-nearest neighbor is a classification algorithm that uses learning data that is the
closest distance or most common object characteristics to classify objects. There are several
steps involved in calculating K-NN, including determining the value of K and calculating
Euclidean distance for each object from training data. Arranges objects into groups whose
smallest Euclidean distance is determined by finding the minimum value of these distances
among all objects in the group [36].

The default settings of these classifiers used in this study are given in Table 3. The aim
of this study is to determine which classifier provides the best results among others.

Table 3. Default settings for classifiers.

FF SVM KNN

Layer Size = [10]
Activation Function = Relu

Kernel Function = Linear
Kernel Scale = 1

Box Constraint = 1

1 Neighbor
Euclidean Distance

Additionally, the success of the classifier was examined by using the leave-one-out
cross-validation (LOOCV) method for each dataset.

2.4.4. Cross-Validation

Next, 5- and 10-fold cross-validation was used to evaluate the performance of the
mode, respectively. The process of this verification method is described as follows: first,
the entire dataset will be randomly divided into 5 and 10 copies; then, a single subset is
randomly selected and retained as validation data to test the model, while the remaining
4 and 9 are used as training data to train the prediction model. This process is carried
out 5 and 10 times; that is, every piece of data will be used as test data. Finally, the 5 and
10 results are averaged to obtain the final prediction [37].

2.4.5. Leave One out Cross-Validation

The success of the classifiers was examined by this method. In this method, data
are segmented based on the subjects: one subject for testing and the other remaining for
training. This process is repeated until each subject has been used for the test [38].

2.5. Performance Parameters

To evaluate the performance of these models, the area under the receiver operating
characteristics (ROC) curve (AUC), accuracy (ACC), sensitivity (SENS), specificity (SPEC),
positive predictive value (PPV), and negative predictive values (NPV) were calculated.

AUC is a performance measure that quantifies how well a binary classifier can distinguish
between two classes. A value of 1 indicates a perfect classifier, while a value of 0.5 indicates a
completely random classifier. ACC measures the proportion of correctly classified instances
among all instances. SENS measures the proportion of true positive instances among all
actual positive instances. SPEC measures the proportion of true negative instances among
all actual negative instances. PPV measures the proportion of true positive instances among
all instances that the classifier predicted as positive. NPV measures the proportion of true
negative instances among all instances that the classifier predicted as negative.
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3. Results

This study proposed a method based on the Hankelization and GLCM features to
distinguish the PD group from the demographically matched control group. The method
was validated using seven variants of datasets (UNM_All, UNM_Closed, UNM_Open,
UNM_Off, UI, UT_Closed, and UT_Open) from three different data sources (UNM, UI, and
UT). In this study, different success rates were obtained in the classifications.

Overall, the SVM method with 10 × 10 fold cross-validation using 1000 features
yielded the best classification performance among other classifiers. However, some datasets
showed better results using other classification methods. The results obtained in the SVM
method with 10 × 10 fold cross-validation using 1000 features are presented in Table 4.
When Table 4 is examined, the best results for 10 × 10 fold CV SVM were 94.9% AUC
from UNM_Open, 92.41% ACC from UNM_All, 94.29% SENS from UI, 91.85% SPEC from
UNM_All, 91.96% PPV from UNM_All, and 92.96% NPV from UNM_All. For UNM data
source UNM_All dataset results; since UI data source only has one variant, UI dataset
results; for UT data source, UT_Closed dataset; yielded better results according to Table 4
in terms of accuracy.

Table 4. Classification performance results for 10 × 10-fold cross-validation SVM.

AUC ACC SENS SPEC PPV NPV

UNM_All
92.84 92.41 92.96 91.85 91.96 92.96

(91.08–94.24) (90.74–94.44) (88.89–96.3) (88.89–92.59) (89.29–92.86) (89.29–96.15)

UNM_Closed
94.44 89.07 90 88.15 88.38 89.84

(92.18–95.47) (87.04–90.74) (88.89–92.59) (85.19–88.89) (85.71–89.29) (88.46–92.31)

UNM_Open 94.9 89.44 89.63 89.26 89.46 89.66
(92.87–95.61) (87.04–94.44) (85.19–92.59) (85.19–96.3) (85.71–96.15) (85.71–92.86)

UNM_Off
90.66 83.89 88.15 79.63 81.34 87.16

(87.93–92.46) (79.63–87.04) (81.48–92.59) (70.37–85.19) (75.76–85.71) (80.77–91.67)

UI
87.4 85.71 94.29 77.14 80.5 93.31

(82.14–89.8) (82.14–89.29) (85.71–100) (71.43–78.57) (76.47–82.35) (84.62–100)

UT_Closed
84 77.18 73 81.58 80.86 74.45

(77.37–88.95) (66.67–84.62) (60–85) (68.42–89.47) (70–88.89) (63.64–84.21)

UT_Open 67.85 63.25 77 49.5 60.49 68.26
(64.75–71.25) (60–67.5) (70–80) (40–55) (57.14–64) (62.5–73.33)

The classification performance results for the 10 × LOOCV SVM method used to
validate the results are presented in Table 5. When Table 5 is examined the 10 × 10 fold CV
SVM and 10 × LOOCV SVM methods had very similar results for all datasets, obtained
with accuracies of 93.7% for UNM_All, 89.26% for UNM_Closed, 87.04% for UNM_Open,
83.33% for UNM_Off, 82.5% for UI, 76.92% for UT_Closed, and 59.75% for UT_Open.

Table 5. Classification performance results for 10 × LOOCV SVM.

AUC ACC SENS SPEC PPV NPV

UNM_All
94.39 93.7 93.22 94.16 94.16 93.51

(87.72–100) (90.74–98.15) (88–100) (88.89–100) (88.46–100) (88.46–100)

UNM_Closed
94.11 89.26 92.22 86.23 87.26 91.68

(89.71–96.98) (83.33–92.59) (88–96.15) (74.07–96) (78.13–96.3) (88.89–96.67)

UNM_Open 94.55 87.04 86.23 87.76 86.88 87.23
(90.67–98.32) (77.78–92.59) (72–96.3) (81.25–95.83) (72.73–96.43) (78.79–96)

UNM_Off
91.07 83.33 87.99 78.53 80.45 87.29

(83.68–95.45) (72.22–88.89) (74.07–96.3) (70.37–90.63) (71.43–88.89) (73.08–95)

UI
85.21 82.5 88.9 75.35 79.42 85.82

(78.06–96.11) (75–92.86) (78.57–100) (57.14–94.44) (66.67–93.75) (71.43–100)

UT_Closed
83.21 76.92 73.97 80.65 80.57 73.07

(72.86–91.3) (66.67–84.62) (64–85.71) (70–93.75) (66.67–94.12) (52.63–90.48)

UT_Open 61.93 59.75 78.61 41.53 55.29 68.31
(39.64–80.3) (45–75) (47.06–89.47) (23.53–68.18) (38.1–68.18) (50–83.33)

A comparison of the classification performance with previous state-of-the-art methods
is presented in Table 6. In Table 6, the proposed method is given as the 10 × 10 LOOCV
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SVM method in order to make a general comparison to the literature. All other performance
results of classifiers are given in the Supplementary Material.

Table 6. Comparison with previous methods.

UNM_All UI UT_Closed

Shah et al. [39] 88.5 Qiu et al. [9] 96.31 Kurbatskaya et al. [40] 82.2

Anjum et al. [15] 85.2 Anjum et al. [15] 85.7 Suuronen et al. [41] 76

Chaturverdi et al. [42] 72.2 Sugden et al. [43] 83.8 Shabanpour et al. [44] 63.44

Vanneste et al. [45] 72.2 Proposed 85.71 Proposed 76.92

Yuvaraj et al. [46] 59.3

Lee et al. [47] 89.3

Sugden et al. [43] 69.2

Aljalal et al. [48] 87.04

Avvaru et al. [49] 79.25

Proposed 93.7

4. Discussion

We have designed and developed a novel method for the classification of PD from
healthy and demographically matched control groups using GLCM features obtained from
the Hankelization of EEG signals, which involves projecting a one-dimensional (1D) signal
into a two-dimensional (2D) picture. Our proposed method is capable of and can achieve
high accuracies in PD detection for these datasets and offers several advantages compared
to previous methods reported in the literature.

Firstly, we achieved an increase of approximately 10% in accuracy compared to previ-
ous methods. Some researchers have reported moderate accuracy results such as 88.51% by
Shah [39], 69.2% by Sugden [43], 85.4% by Anjum et al. [15], 78% by Chaturverdi et al. [42],
and 88.5% by Aljalal et al. [48]. Other researchers reported quite high accuracy results,
such as 99.2% by Lee et al. [50], 94.1% by Sugden [43], 99.58% and 99.41% by Aljalal [48,51],
94.3% by Vannesta [45], and 99.62% by Yuvaraj [46]. However, some studies in the literature
reported have had issues, such as data leakage from the training dataset to the test dataset,
unbalanced classes, demographically unmatched groups, or artificially replicated EEG
records, leading to very high accuracies. In our study, we have addressed these issues by
splitting the train and test dataset without any data leakage, using short EEG records, and
ensuring demographically matched groups, without artificially replicating EEG records,
and still achieved quite high accuracies.

Secondly, while some previous studies [42,45,46] only performed one round of cross-
validation, we confirmed the classification of the data by performing 10 rounds of cross-
validation and LOOCV.

Thirdly, we did not tune the optimization parameters of the classifiers and instead
left them at default settings. While tuning these parameters could potentially yield better
results, problems such as overfitting could become an issue.

Fourthly, we observed that our method can achieve good results on both drug and
off-drug sessions.

Finally, our feature extraction approach, which involves transforming the signal into
a picture using Hankelization and obtaining Haralick-GLCM features from EEG signals,
has not been used before in the literature and is, therefore, a very novel method. The
gold-standard diagnosis of neurodegenerative diseases such as PD requires post-mortem
assessment. Clinical vs. pathology-confirmed diagnoses are approximately 90% accurate
and results are very close in terms of the accuracy reported here.

However, this method has some limitations that need to be addressed in future studies.
Firstly, the method is time-consuming. Increasing the number of windows in the

method reduces the number of data to be segmented. In this case, the number of extracted
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features is becoming quite high. Reducing the number of windows increases the amount of
data to be segmented. In this case, the size of the segmented images obtained as a result of
the Hankelization process of the EEG segment increases considerably. In both conditions,
the processing load increases, and this causes an enhancement in the time taken for feature
extraction. In our studies, we have obtained the best result in a feature number of 1000
and standard 50 windows for acceptable time experimentally. Instead of extracting a large
number of features in the first place and then selecting features from these features, directly
extracting a small number of features and giving these features to the classifier probably
will give faster results.

Secondly, channel selection can be performed to reduce the number of features to be
extracted, making the method work faster.

Finally, in future studies, separating the EEG signals into sub-bands instead of filtering
the EEG signals globally between 1–50 Hz, may give better results for distinguishing PD
and control groups. In conclusion, our proposed method showed promising results for the
classification of PD from healthy and demographically matched control groups, and it has
several advantages compared to previous methods with these datasets. Moreover, as an
EEG-based classifier, it is low-cost, easily accessible, and widely applicable compared to
other methods. Future work with a large sample will demonstrate the true generalizability
of this method.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics13101769/s1, Figure S1: Common Electrode Locations;
Table S1: Common Channel Names List; Table S2: Notations to compute Haralick Texture Features.
All performance parameters and evaluation results in this article are given in xls format; Table S3:
GLCM Texture Features.
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3. Telarović, S. Epidemiology of Parkinson’s Disease. Arch. Psychiatry Res. 2023, 59, 147–148. [CrossRef]
4. World Health Organization. Parkinson Disease. Available online: https://www.who.int/news-room/fact-sheets/detail/

parkinson-disease (accessed on 5 March 2023).
5. Parkinson’s Foundation. Understanding Parkinson’s Statistics. Available online: https://www.parkinson.org/understanding-

parkinsons/statistics (accessed on 5 March 2023).
6. Li, K.; Ao, B.; Wu, X.; Wen, Q.; Ul Haq, E.; Yin, J. Parkinson’s disease detection and classification using EEG based on deep

CNN-LSTM model. Biotechnol. Genet. Eng. Rev. 2023, 1–20. [CrossRef] [PubMed]
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