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Abstract: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), causing a disease called
COVID-19, is a class of acute respiratory syndrome that has considerably affected the global economy
and healthcare system. This virus is diagnosed using a traditional technique known as the Reverse
Transcription Polymerase Chain Reaction (RT-PCR) test. However, RT-PCR customarily outputs a lot
of false-negative and incorrect results. Current works indicate that COVID-19 can also be diagnosed
using imaging resolutions, including CT scans, X-rays, and blood tests. Nevertheless, X-rays and
CT scans cannot always be used for patient screening because of high costs, radiation doses, and
an insufficient number of devices. Therefore, there is a requirement for a less expensive and faster
diagnostic model to recognize the positive and negative cases of COVID-19. Blood tests are easily
performed and cost less than RT-PCR and imaging tests. Since biochemical parameters in routine
blood tests vary during the COVID-19 infection, they may supply physicians with exact information
about the diagnosis of COVID-19. This study reviewed some newly emerging artificial intelligence
(AI)-based methods to diagnose COVID-19 using routine blood tests. We gathered information about
research resources and inspected 92 articles that were carefully chosen from a variety of publishers,
such as IEEE, Springer, Elsevier, and MDPI. Then, these 92 studies are classified into two tables
which contain articles that use machine Learning and deep Learning models to diagnose COVID-19
while using routine blood test datasets. In these studies, for diagnosing COVID-19, Random Forest
and logistic regression are the most widely used machine learning methods and the most widely
used performance metrics are accuracy, sensitivity, specificity, and AUC. Finally, we conclude by
discussing and analyzing these studies which use machine learning and deep learning models and
routine blood test datasets for COVID-19 detection. This survey can be the starting point for a
novice-/beginner-level researcher to perform on COVID-19 classification.

Keywords: COVID-19; blood tests; RT-PCR; machine learning; deep learning

1. Introduction

SARS-CoV-2 was first recognized in China, after which the severe pneumonia yielded
by the virus, called COVID-19, rapidly circulated worldwide [1,2]. COVID-19 has different
clinical symptoms, such as dyspnea, fever, cough, myalgia, fatigue, gastrointestinal compli-
cations, and headache [3,4]. This virus is risky and affects the mortality of individuals with
compromised immune systems. Medical professionals and infectious disease experts from
the entire globe are seeking a solution for the disease. COVID-19 has been the primary
source of death in many countries around the world, with the United States, Italy, and
Spain having one of the highest number of deaths [5]. Figure 1 demonstrates the global
14-day COVID-19 case notification rate per 100,000 as of 15 July 2020.
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Figure 1. The global 14-day COVID-19 case notification rate per 100,000 as of 15 July 2020.

To date, a couple of diagnostic techniques have been adopted by physicians, such as
RT-PCR [6,7], imaging resolutions and blood checks [8]. RT-PCR, which is the best measure
for the analysis of COVID-19 [9,10], tolerates a low sensitiveness (60–71%), more extended
waiting duration for the results [11], and poses extra responsibilities to the healthcare
system, demanding pricey devices [12–14]. Additionally, there is a shortage of testing kits,
reagents, and trained personnel for analysis, particularly in less-developed nations [12].
Thus, scientists have searched for extra reachable techniques of diagnosis, among which
imaging techniques have obtained remarkable attraction [15]. Chest CT and chest X-
rays are mainstream imaging alternatives for diagnosing COVID-19 infection. Chest CT
presents a better sensitivity [16], similar to RT-PCR [12]; however, it also has numerous
downsides, such as hospital-acquired infection, radiation safety, and lower access rates to
CT devices [17–19]. Chest X-ray is a less costly imaging choice and uses a lower radiation
dose than CT, while virtually every health center and most clinics will have access to X-ray
equipment [20–22]. Chest-X-ray, similar to CT, affords medical physicians with imaging
symptoms of SARS-CoV-2 contamination, e.g., ground-glass opacity, but suffers from an
increased rate of false-negative results [23–25]. Blood tests are broadly accessible and have
much lower costs than RT-PCR and imaging tests. Since biochemical parameters contained
in ordinary blood exams, for example, lactate dehydrogenase (LDH), C-reactive protein
(CRP), etc. [26], change over the course of the COVID-19 contamination, blood tests can
provide physicians with data about the diagnosis of COVID-19 [12]. Consequently, blood
tests may additionally supply a potentially precious instrument for the quick screening of
infected patients and compensate for the deficiency of RT-PCR and CT scans by providing
an initial step of detection [27].

The health industry is impatiently following new techniques and technologies to
address the growth of the COVID-19 epidemic in the international health crisis. AI is
known to be one of the grandest uses of global technology that can follow the speed and
detect the growth rate of COVID-19 and determine the risk and severity of COVID-19
patients. AI can also predict cases of death by adequately analyzing previous patient
data. Moreover, AI can help us battle this virus by testing people and providing medical
assistance, data and information, and recommendations regarding disease control [28].
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Machine learning (ML) [29–31], as a class of AI, includes the algorithmic modeling
structures of statistical models and only requires a small amount of knowledge to learn
how to handle problems [32–34]. On the other hand, deep learning (DL) [35] is a class of
ML that concentrates on making deep structural neural-network-based models that learn
from data utilizing feed-forward and back-propagation. DL has improved significantly in
the last two decades in several activities [36–38]. However, it needs a vast amount of data
to learn. Exceptional cases of DL, where large-scale datasets are not required to train, have
been generative models and transfer learning [39–41].

This survey introduces a series of main works of AI containing ML and DL research
articles on COVID-19 diagnosis using routine blood tests. In total, we investigated 92,
of which 82 articles are ML-based, and the rest are based on DL models. Because of the rapid
growth of COVID-19 cases, we have quoted many published articles before conducting a
thorough investigation, so these articles should be analyzed for their accuracy and quality
in peer review.These articles are classified in two tables, in which, by comparing different
works, it is determined which AI algorithms or performance metrics are used more to
detect COVID-19, as well as which blood test datasets are used.

There are four main sections in this study. Section 2 discusses the procedure followed
for selecting the research articles. A summary of contemporary machine learning and
deep learning research is given in Section 3. Section 4 presents the blood features used in
previous articles. The approaches are examined, and the outcomes of various models are
discussed in Section 5. In Section 6, the article is concluded.

2. Protocol for Choosing COVID-19-Related Research Articles

To choose the research articles, the most pertinent keywords, such as COVID-19,
routine blood tests, machine learning, and deep learning, were used. Moreover, we em-
ployed digital databases, including IEEE Xplore, Elsevier, Springer, and MDPI, to collect
only English-language literature. Note that research articles about blood tests and rapid
antigen tests were not reviewed. Figure 2 shows the details of the statistics of ML and
DL publications on COVID-19. The search strategy was adjusted to obtain the maximum
number of documents. Table 1 lists the number of documents retrieved by the queries
referenced. The results were thoroughly scrutinized to seek relevant results. The queries
yielded 4785 documents.

(a)

Figure 2. Cont.
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(b)

(c)

(d)

Figure 2. Statistics on ML and DL publications in COVID-19. (a) Publication per database,
(b) COVID-19 publication, (c) Distribution of the published COVID-19 research articles, (d) COVID-
19 publication.
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The IEEE database was subject to a review of 620 studies that were evaluated according
to their titles and abstracts. This screening led to the exclusion of 459 documents, as their
material was not related to the analysis, and the remaining 161 were chosen for a full-text
review. After a full-text review of the studies, 148 were rejected, and the remaining 13 were
included in the present review. In total, the titles and abstracts of 1123 studies from the
Springer database were scanned through. After the screening process, 992 documents
were deemed unsuitable and only 131 were qualified for a full-text review. In total, 112 of
the studies were disregarded and 19 were ultimately included in this study. The titles
and abstracts of 1201 studies in the Elsevier database were examined. After the screening
was finished, 1102 documents were disregarded because they had no association with the
investigation, leaving 99 documents to be analyzed for a full-text review. From these studies,
21 were accepted and 78 rejected. A review of the MDPI database was conducted, resulting
in 337 studies, with the evaluation based on their titles and abstracts. The screening process
resulted in the elimination of 301 documents, as they were not relevant to the analysis,
while 36 were selected for a full-text review. A complete textual analysis of the studies led
to the rejection of 28, while the remaining 8 were included in the current review. Finally,
the titles and abstracts of 1504 studies in other databases were evaluated. Following the
screening, 178 documents were kept for a full-text review, since the other 1326 had no
association to the topic being studied. Out of these studies, 147 were rejected and 31 were
used for the final analysis.

This section delineates the content of the 92 studies found in the databases investigated.
The results of the research article search are summarized in Figure 3.

Table 1. Research articles identified in the databases under investigation.

Database Number of Research Articles

IEEE 620
Springer 1123
Elsevier 1201
MDPI 337
Others 1504

Total 4785

Figure 3. Summary of the research article selection process.
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3. Overview of Machine Learning and Deep Learning Methods

Routine blood tests can be used to quickly diagnose COVID-19 infection utilizing
AI-based techniques such as ML and DL. These models can uncover potential connections
between different qualities in blood test results and provide information to guide decisions.

This section contains research articles that use routine blood tests to diagnose COVID-
19 while taking into account ML and DL models. The majority of COVID-19 detection
techniques used are shown in Figure 4.

Figure 4. The most frequently used techniques for COVID-19 detection among the studies included
in this survey. The numbers in parentheses indicate the number of research articles.

3.1. Machine Learning

More focus has been placed on the potential use of ML methods to address COVID-19
diagnosis using routine blood testing. The following are some well-known ML algorithms
that have been applied for COVID-19 diagnosis [42].

Support vector machine (SVM) [43] is used for classification. The goal of SVM is to
identify the best hyperplane for differentiating the features. There are numerous ways to
draw the hyperplane and an ideal one has been discovered that best separates the dataset.
SVM is a highly accurate model, and it is very unlikely that overfitting will occur.

Random Forest (RF) [44] is another ensemble technique using decision tree that utilizes
a re-sampling process called the bagging method that creates multiple trees and handles
weak classifiers in a different way. RF is effective for highly complex problems and can
handle missing data and unbalanced datasets.

K-nearest-neighbor (KNN) [45] is a classification algorithm with which a sample’s
label can be predicted using the labels of its closest neighbors. It is necessary to choose the
parameter K and use the attribute-distance computation metric to determine which other
data points are the closest neighbors.

Logistic regression (LR) [46] is a classification algorithm. Based on the value of
independent features, LR models the probability of samples belonging to a particular class.
Then, the model can be used for predicting the probability that a given sample belongs to
a certain class. LR has simple calculations and can support continuous numerical values,
while non-linear data cannot be handled by LR.

Decision tree (DT) [47] is a Supervised ML algorithm. To characterize the connections
between attributes and a class label, DT generates a tree-structured model. It divides
observations recursively based on the property with the highest gain ratio value that is the
most informative. The data are divided in the nodes and decisions are made in the leaves.

Naive Bayes (NB) [48] is a simple probabilistic classifier based on Bayes’ theorem. It
cannot handle missing data.
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Extreme Gradient Boosting (XGBoost) [49] is a machine learning algorithm based on
decision trees, which employ a gradient boosting structure. XGBoost is a library of machine
learning which uses a scalable and distributed form of Gradient-Boosted Decision Tree
(GBDT). There are many advantages to using this machine learning library, such as parallel
tree-boosting, and it is the leading machine learning library for regression, classification,
and ranking.

LGBM (LightGBM) [50] is an efficient, distributed, and high-performing gradient
boosting framework based on decision tree algorithms, used for ranking, classifying,
and other machine learning processes. LGBM is an application of the gradient boosting
framework that is based on tree-structured algorithms.

Table 2 displays the most recent machine learning models for early detection of COVID-
19 or assessing the disease severity level of COVID-19 patients based on laboratory and
clinical data.

3.2. Deep Learning

The performance enhancements of hardware components, such as graphics cards,
and the drop in unit costs are two reasons DL has grown in popularity. DL has also
been aided by machine learning and information processing studies [51–53], as well as
an increase in training data. Numerous domains, including computer vision [36,54–56],
natural language processing [57–62], and speech recognition [63], have extensively used
various deep learning architectures, such as ANN, CNN, and RNN. ANN is a method of
processing information that draws inspiration from the organic nervous system of humans.
This structure is made up of neurons, activation processes, and input, output, and hidden
layers. In an ANN, each layer comprises a hierarchy of neurons. The input for the following
layer is the layer’s output before it. From the incoming data, each layer learns increasingly
intricate relationships. A deep learning system called CNN was created to analyze visual
data, such as photographs and movies. Different layer types perform various functions
on CNN. The names of these components are the convolution layer, pooling layer, fully
connected layer, and activation function layer. In RNN structures, the outcome is influenced
by both the other and current inputs. These networks produce their results by combining
data from the past and present.

In this study, we selected 11 deep-learning-based studies, shown in Table 3. Overall,
the number of works presented based on deep models is small; however, their accuracy in
datasets with a large number of data is superior to ML methods.
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Table 2. List of ML models that diagnose COVID-19.

Ref. Dataset Source
Dataset

Size
(COVID-19)

Total
Features

(Selected)
Model Used Metric Results

[64] Lanzhou Pulmonary Hospital 253 (105) 49 (11) RF Acc: 95.95%, Sen: 95.12%,
Spe: 96.97%

[65] Hospital Sirio Libanes 1945 (545) 40 (40) RF, DT, XGBoost, GBM,
LGBM, SVM, ANN, KNN Acc: 90%

[66] Hospital Israelita Albert Einstein, Brazil 5644 (1128) 50 (17) SVM, LR, RF, DT, KNN Acc: 89.78%

[9] San Raphael Hospital in Italy 1624 (844) 72 (34) NB, LR, RF, KNN, SVM Acc: 74%, Sen: 70%,
Spe: 79%, AUC: 74%

[67] Premier Healthcare Database 2183 (1020) 29 (15) XGBoost Sen: 95.9% , AUC: 91%

[16] Taizhou hospital in China 114 (32) 14 (14) LR, NB, IBk, DT Acc: 84.21%

[68] - 55,676 (1564) 12 (10) GBM, MLP, RF, DT,
KNN, LR, SVM, XGBoost Sen: 93%, AUC: 91%

[69] Rennes academic hospital 536 (106) - (-) RF, LR, ANN AUC: 93%

[70] San Raffaele Hospital in Italy 279 (177) 15 (15) CNN and 15 supervised ML algorithms Acc: 99.28%, AUC: 98.80%

[71] - 300 (137) 8 (8) SVM, LR, XGBoost Acc: 87%

[72] Hospital Israelita Albert Einstein,
Brazil 5644 (1128) 13 (12) RF, LR, XGBoost,

SVM, KNN
Acc: 91%, Sen: 94%,
Spe: 71%, AUC: 91%

[73] University Medical Center,
Ljubljana, Slovenia 5333 (160) 117 (35) RF, ANN, XGBoost, SVM Sen: 81.90%, Spe: 97.90%,

AUC: 97%

[74] Routinely collected laboratory, clinical,
and demographic data 1040 (-) 5 (-) ANN, extra trees,

RF, XGBoost, catboost
Sen:92%, Spe: 82%,

AUC: 92%

[75] Hospital Israelita Albert Einstein, Brazil 608 (84) 108 (16) RF, DT Acc: 88%, Sen: 66%,
Spe: 91%, AUC: 86%

[76] Hospital Israelita Albert Einstein, Brazil 5644 (559) 108 (24) NB, MLP, DT,
BN, SVM

Acc: 95.15%, Sen: 96.80%,
Spe: 93.60%
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Table 2. Cont.

Ref. Dataset Source
Dataset

Size
(COVID-19)

Total
Features

(Selected)
Model Used Metric Results

[77] Three datasets of routine
laboratory blood tests 2503 (1043) Many (-) SHAP, ELI5, LIME Sen: 92%, Spe: 82%,

AUC: 92%

[78] Hospitals in Zhejiang, China 912 (361) 31 (10) SVM, LR, RF, DT Acc: 91%, Sen: 87%,
Spe: 95%, AUC: 95%

[79] - 398 (-) 42 (19) XGBoost, SOM Sen: 92.50%, Spe: 97.90%

[80] West China Hospital, China 620 (211) 19 (19) Multivariate LR AUC: 87.2%

[81] 11 regions in China 659 (-) Many (-) DT Acc: 89%, AUC: 88%

[82] SMART hospitals - (-) - (-) SVM, RF, NB Acc: 93.33%

[83] Hospital Israelita Albert Einstein, Brazil 5644 (2210) Many (-) LDA Acc: 99.60%, Sen: 98.72%
Spe: 98.99%, AUC: 99.38%

[84] Hospital Israelita Albert Einstein, Brazil 598 (81) 108 (14) RF, LR, ANN Acc: 81%-87%, Sen: 43%-65%,
Spe: 81%-91%

[85] Hospital Israelita Albert Einstein, Brazil 5644 (558) Many (-) ANN, RF, Shallow learning AUC: 95%

[86] Hospital Israelita Albert Einstein, Brazil 5644 (65) Many (-) Er-CoV Sen: 70%, Spe: 85%,
AUC: 86%

[87] Kepler University Hospital 1357 (653) 28 (-) RF Acc: 86%, AUC: 74%

[88] Three Brazilian hospitals 1521 (-) 130 (-) Adaboost, SVM, XGBoost, RF Sen 96%, Spe: 93%

[89] Three Brazilian hospitals 1521 (-) 130 (-) HUST-19 Acc 94%

[90] Oxford University hospitals 1157 (349) - (-) Different ML classifiers Sen: 77%, Spe: 95%
AUC: 93%

[91] Five hospitals in New York 4098 (-) Many (-) XGBoost AUC: 89%

[92] Hospital Israelita Albert Einstein, Brazil 5644 (559) 108 (18) RF, KNN, SVM, ET Acc: 99.88%, Sen: 98.72%,
Spe: 99.99%, AUC: 99.38%

[20] San Raffaele Hospital in Italy 279 (177) -(15) KNN, ET, LR, DT,
NB, RF, SVM Acc: 82–86%, Sen: 92–95%
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Table 2. Cont.

Ref. Dataset Source
Dataset

Size
(COVID-19)

Total
Features

(Selected)
Model Used Metric Results

[93] The RT-PCR COVID-19 test on
the basis of routinely acquired blood tests 127,115 (1573) Many (100) SNN, KNN, LR, SVM, RF, XGBoost AUC: 95%

[94] New York Presbyterian Hospital 3346 (1394) 685 (33) DT, LR, RF, GBDT, DT Sen: 75.80%, Spe: 80.20%,
AUC: 85.30%

[95] Stanford Health Care, CA, USA 390 (31) -(4) LR Sen: 86%-96%, Spe: 35%-55%

[96] Hospital Israelita Albert Einstein, Brazil 5644 (558) 106 (9) LR, ANN, SVM,
RF, GB

Sen: 95% Spe: 95% ,
AUC: 95%

[97] Hospital Israelita Albert Einstein, Brazil 253 (102) 108 (15) ANN, RF, GBT, Albert LR, SVM Sen: 68%, Spe: 85%

[98] Hospital Israelita Albert Einstein, Brazil 599 (81) 108 (16) SVM Sen: 70.25%, Spe: 85.98%

[99] A case series from Wenzhou, Zhejiang, China 53 (-) 23 (-) LR, KNN, RF, DT, SVM AUC: 80%

[100] West London Hospital 398 (-) Many (-) CRM, ANN AUC: 88.1%

[101] Hospital Sirio Libanes 1945 (545) 40 (40) DT, RF, GBM, XGBoost,
SVM, LGBM, KNN, ANN Acc: 90%

[102] Tongji Hospital Affiliated to Huazhong
University of Science and Technology 137 (-) 100 (28) SVM, LR Acc: 99%

[103] 3000 examples collected
at a hospital in Poland 3114 (1941) - (-) LR, XGBoost Sen: 97%, Spe: 11%

[104] - 3819 (-) Many (-) LR, SKLearn, RF, LGBM -

[105] Hospital Israelita Albert Einstein, Brazil 5644 (558) 18 (18) XGBoost, LR

[106] UCLA Health System in Los Angeles, California 1455 (182) Many (27) RF, LR, SVM, ANN,
SGD, XGBoost, ADABoost Sen: 93%, Spe: 64%

[107] Three hospitals in the United States,
Iran, and Italy 295 (117) Many (1691) RF Sen: 96.1%, AUC: 88.4%

[108] NYU Langone Health (NYULH) 206,67 (12,47) Many (-) LR, XGBoost, MLP, RNN, GRU, LSTM Sen: 85%, Spe: 86%,
AUC: 92%
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Table 2. Cont.

Ref. Dataset Source
Dataset

Size
(COVID-19)

Total
Features

(Selected)
Model Used Metric Results

[109] Hospitals in the Mount Sinai Health
System in New York City 4098 (4098) Many XGBoost AUC: 89%

[110] A large acute care healthcare system
the Mount Sinai Health System 567 (567) 1360

338 RF AUC: 85.5%

[111] HM hospitals’ network in Madrid (Spain) 2307 (1696) 29 (25) LR, RF Sen: 81.69%, Spe: 81.46%,
AUC: 89%

[112] Patients from eight centers in
China, Italy, and Belgium 725 (-) 29 (13) LR Acc: 87.5%, Sen: 96.9%,

Spe: 88%, AUC: 93%

[113] Hospitals of Tongji Medical Colleg, Huazhong
University of Science and Technology 2520 (-) 53 (34) LR, SVM, GBDT, ANN AUC: 97.6%

[114] Korea Centers for Disease Control
and Prevention 3524 (3524) 44 (44) LR, SVM, KNN, RF, GBDT AUC: 83%

[115] Electronic Health Records 86,355 (4759) Many (-) LR, XGBoost AUC: 83.8%

[116] The ED of an urban multicenter health system 300 (300) 50 (50) RF -

[117] UK Biobank (UKBB data) 465,728 (7846) 97 (15) XGboost AUC: 81%

[118] Hospital Israelita Albert Einstein, Brazil 5644 (279) 106 (97) RF, LR, XGBoost Sen: 80%, Spe: 98%

[119] Hospital Israelita Albert Einstein, Brazil 510 (73) 108 (15) NB -

[120] - 689 (362) 43 (-) KNN, RF, SVM ACC: 97.7%

[121] Painel COVID-19 Estado Do ESPÍRITO Santo 8443 (4826) Many (-) LR, LDA, NB, KNN,
DT, XGboost, SVM

Sen: 88%, Spe: 82%,
AUC: 92%

[122] Tongji Hospital Affiliated to Huazhong
University of Science and Technology 362 (362) - (-) RF Acc: 95%

[123] Hospital Israelita Albert Einstein, Brazil 5644 (674 ) Many (-) - AUC: 94%

[124] Mass General Brigham (MGB) Healthcare 10,826 (3713) Many (-) ANN, SVM -

[125] San Raffaele Hospital (Milan, Italy) 207 (105) Many (-) LR -
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Table 2. Cont.

Ref. Dataset Source
Dataset

Size
(COVID-19)

Total
Features

(Selected)
Model Used Metric Results

[126] 24 hospitals in Hong Kong 5148 (-) Many (-) - Sen: 77.8%, Spe:98.3%,
AUC: 96.8%

[127] Tumor Center of Union Hospital affiliated
with Tongji Medical College, China 99 (11) 33 (33) - AUC: 95.3%

[128] Tongji Hospital of Wuhan, China 110 (59) 47 (7) LR Sen: 98%, Spe: 91%

[129] World Health Organization 601 (-) Many (-) XGBoost Acc: 100%, Sen: 84.6%,
Spe: 84.6%, AUC: 95.3%

[130] Hospitals in Wuhan, China 294 (208) 15 (-) RF, SVM Acc: 84%, Sen: 88%,
Spe: 80%

[131] First Medical Center, Beijing, China 132 (26) 46 (18) LR, DT, Adaboost Sen: 100%, Spe: 77.80%

[132] Hospital Israelita Albert Einstein, Brazil 5644 (520) 17 (17) DES Acc: 99.81%, AUC: 99.81%

[133]
National Center for Biotechnology Information

Gene Expression Omnibus and European
Bioinformatics Institute ArrayExpress

705 (100) - (-) LR AUC: 90%

[134] Ethics Committee of the Affiliated Yueqing
Hospital of Wenzhou Medical University 51 (51) 22 (22) KELM Acc: 100%, Sen: 100%,

Spe: 100%

[135] Seven different hospital clinical biomarker
datasets from Italy, Brazil, and Ethiopia. 1624 (844) 21 (21) LDA, XGBoost, RF, LR, KNN Acc: 91.45%, Sen: 91.44%

, Spe: 91.44%

[136] Keio University Hospital 312 (300) 35 (35) LR -

[137] Wuhan, China 485 (-) - (-) XGBoost Acc: 97%

[138] San Raffaele Hospital Milan Italia
and Hospital Israelita Albert Einstein 5644 (560) 111 (111) SVM Acc: 99.29%, Sen: 92.79%,

Spe: 100%

[139] Tongji Hospital of Wuhan, China 375 (201) 300 (3) XGBoost Sen: 83%

[140] Veterans Health Administration Sites, USA 5002 (1079) 68 (54) RF Acc: 83.30%, Sen: 83.40%
Spe: 89.80%
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Table 2. Cont.

Ref. Dataset Source
Dataset

Size
(COVID-19)

Total
Features

(Selected)
Model Used Metric Results

[141] Oxford University Hospitals, UK 40,732 (437) 74 (-) RF, LR, XGBoost Acc: 92.30%, Sen: 77.40%,
Spe: 95.70%

Table 3. List of DL models that diagnose COVID-19.

Ref. Dataset Source
Dataset

Size
(COVID-19)

Total
Features

(Selected)
Model Used Metric Results

[142] Hospital Israelita Albert Einstein, Brazil 5644 (559) 18 (18) VAE-based SVM AUC: 99.60 %

[66] Hospital Israelita Albert Einstein, Brazil 5644 (652) 50 (17) ANN, KNN Acc: 89.25%

[143] - 600 (520) 20 ANN, CNN, RNN Acc: 94.95%, AUC: 100%

[144] Hospital Israelita Albert Einstein, Brazil 5644 (559) 18 (18) ANN, CNN, LSTM, RNN ACC: 86.66%, AUC: 62.5%

[145] Tongji Hospital Affiliated to Huazhong
University of Science and Technology 181 (181) Many (56) ANN AUC: 96.8%

[146] Hospital Israelita Albert Einstein, Brazil 5644 (559) 18 (18) CNN, RF, ANN Acc: 92.52%

[147] Hospital Israelita Albert Einstein, Brazil,
San Raffaele Hospital in Italy 7360 (1374) Many (-) DNN, KNN AUC: 88%

[148] From 18 medical centers in China. 905 (419) - CNN, LR, SVM, MLP AUC: 92%

[149] Hospital Israelita Albert Einstein, Brazil 5644 (559) 18 (15) Deep forest Acc: 99.5%, Sen: 95.28%,
Spe: 99.96%

[150] Hospital Israelita Albert Einstein, Brazil 600 (-) 18 (-) CNN + GRU, CNN + Bi-RNN,
CNN + Bi-LSTM, CNN + Bi-GRU Acc: 94.15%, AUC: 91.00%

[151] Hospital Israelita Albert Einstein, Brazil -(-) -(-) CNN, KNN, NB, DT Acc: 80%
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4. Features

The importance of features in routine blood tests for COVID-19 diagnosis is significant,
because in machine learning and deep learning, these features can be used to build predic-
tive models that can identify patterns in data, allowing for earlier detection and diagnosis
of COVID-19. Additionally, routine blood tests can be used to monitor disease progres-
sion and treatment response in patients with COVID-19. Changes in these features over
time can indicate the severity of the disease and the effectiveness of treatment. Moreover,
the identification of the most informative features from routine blood tests can help develop
models that can predict disease outcomes and mortality rates. This information can be
used to allocate resources and prioritize treatment for patients most at risk of severe illness.

The consequences of a wrong selection of features in medical diagnosis using routine
blood tests, especially for COVID-19, can have severe consequences for patient health and
treatment outcomes. Importantly, machine learning and deep learning algorithms rely
heavily on the selection of appropriate features to make accurate predictions. If the wrong
features are chosen, the accuracy and reliability of the diagnostic results can be significantly
impacted. In the case of COVID-19 diagnosis, a wrong selection of features could result
in misdiagnosis or delayed diagnosis, leading to delayed treatment and potentially worse
outcomes for patients. For example, if important features, such as inflammatory markers
or lymphocyte counts, are excluded from the model, patients with mild or asymptomatic
cases of COVID-19 may be missed, leading to the spread of the disease. Moreover, a wrong
selection of features can lead to false positives or false negatives, which can have significant
implications for patient care. False positives can lead to unnecessary medical interven-
tions or treatments, which can be costly, time-consuming, and may cause patient harm.
On the other hand, false negatives can result in delayed treatment, which can lead to the
progression of the disease and worse outcomes for the patient. Additionally, a wrong
selection of features can result in a lack of generalizability and poor performance of the
model. The model may not perform well on new data or may be specific to a particular
population or dataset, limiting its usefulness and applicability in real-world settings.

The blood features that were used by previous studies (see Table 4) are as follows [152]:

• Hematocrit: The computation of the ratio of erythrocytes (commonly referred to as red
blood cells) in the blood is carried out. When this percentage is low, it could signify
respiratory difficulties and possibly reveal the severity of COVID-19 cases [153].

• Hemoglobin: A particular material found in red blood cells carries oxygen in the
bloodstream. When someone is diagnosed with pneumonia due to COVID-19, a drop
in the level of this material (known as Hb) shortly after the diagnosis could suggest
that the pneumonia is getting worse. It is worth noting that anemia is a frequent
occurrence in COVID-19 cases as well [154].

• Red blood cell distribution width (RDW): Another term used to describe this is
the RDW coefficient of variation. It offers a way to quantify the variability in the
dimensions of erythrocytes; while initially utilized as a diagnostic tool for anemia, it
has since evolved into an indicator of infections and more severe ailments, including
cardiovascular and cancer. Although it is not a reliable indicator of the presence of
COVID-19, it has been recognized as a sign of the disease’s severity, as elevated RDW
levels have been associated with mortality in cases of COVID-19 [155].

• Mean corpuscular hemoglobin (MCH): It pertains to the mean amount of hemoglobin,
a protein that carries oxygen throughout the body, present in every individual red
blood cell [75]. Sarkar et al. [156] suggested that changes in MCH levels could indicate
the presence of COVID-19. A decrease in the MCH value typically signifies a lack of
iron in the body, known as iron deficiency anemia. In general, people with COVID-19
tend to display MCH values that are slightly below the normal range, falling within
one standard deviation.

• Mean corpuscular hemoglobin concentration (MCHC): It is a measurement that de-
termines the average hemoglobin concentration inside an individual red blood cell,
similar to MCH [75]. A low MCHC value suggests that a person’s red blood cells
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have insufficient hemoglobin, indicating anemia. According to [157], this metric aided
in the differentiation of cases of COVID-19 from pneumonia contracted within the
general community. MCV, which stands for Mean Corpuscular Volume, is an indicator
of the typical size or volume of erythrocytes [75]. Changes in the mean size of red
blood cells, whether an increase or a decrease, can signal underlying health concerns,
and research has associated such alterations with the severity of COVID-19 [158].

• Lymphocytes absolute: A reduced level can be an indication of serious COVID-19,
which can prompt early treatment or suggest a negative outcome [154]. This metric
serves as a marker for infectious processes.

• Leukocytes: The immune system’s defensive cells are called white blood cells. Research
has demonstrated that COVID-19 has the ability to attack these cells, causing them to
discharge pro-inflammatory cytokines that result in an increase in inflammation within
the affected individual [159]. Furthermore, it is possible to utilize indicators present in the
genetic composition of leukocytes to detect the existence of COVID-19 [160].

• Basophils absolute: They are crucial cells of the immune system, and their levels
tend to rise during prolonged inflammation or allergic reactions. However, research
has shown that individuals infected with COVID-19, particularly those with severe
cases, experience a significant decrease in basophil counts [161]. Similarly, eosinophils,
which play a role in defending the body against parasites and infections, also exhibit
reduced levels in COVID-19 patients [162].

• Platelets: The bone marrow produces these cells that aid in the process of blood coag-
ulation. Keeping a close eye on this measurement is crucial because a rise in its levels
may not always be indicative of COVID-19, but can instead point to complications
related to the disease, including thrombosis [163].

• Monocytes absolute: The protection against different microorganisms and viruses
is provided by monocytes and macrophages, which are essential constituents of the
immune system [164]. Macrophages exist in bodily tissues, whereas monocytes can
be found in the bloodstream and are identifiable through blood counts. Despite their
beneficial characteristics, these cells can have harmful effects on those with COVID-19,
leading to lung infections and lesions. Several studies have revealed a reduction in the
number of monocytes in people with COVID-19 [164]. According to other research,
such as Meidaninikjeh et al. [165], it is proposed to create novel methods to detect the
migration of these cells towards the lungs as a potential sign of COVID-19, and to
utilize suitable treatments to reduce lung harm.

• SARS_CoV2_PCR: It is dependable in verifying the existence of a COVID-19 infection
because it detects the virus’s genetic material. The variable under consideration will
be allocated a value of 0, which indicates negative instances, and 1, which signifies
positive instances.

Table 4. List of blood features selected by previous research articles.

Feature Refs. Number of Research Articles

Hematocrit [9,16,64–67,67,72,77,79,81–83,87–89,96,98,111,112,126,129,131,134,138,139,144,151] 28

Hemoglobin [9,16,64,66,67,79,83,86,87,98,111,122,134,139,151] 15

RDW All 92

MCH [9,64,67,68,77,79,111,131,138,144] 10

MCHC [9,16,20,65–68,72–74,77–79,82,83,86,88–
90,94,96,98,101,102,106,112,118,120,122,126,128,129,131,132,134,135,137–139,144,146] 41

Lymphocytes absolute All 92

Leukocytes [9,67,111,126,141] 5

Basophils absolute [65–68,72,78,79,86,87,89,95,111,112,129,131,137,144,150] 18

Platelets All 92

Monocytes absolute [67,72,77,79,82,87,88,90,96,98,106,111,112,126,129,131,134,137–139] 20

SARS_CoV2_PCR [66–68,88,98,111,128,131,134,135,141] 11
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5. Discussion and Analysis

It is challenging to diagnose coronavirus using routine blood testing. Researchers
have employed numerous preprocessing strategies, feature extraction approaches, and clas-
sification models [166]. Identifying a single strategy or set of methodologies that produce
the best outcomes for detecting COVID-19 from regular blood tests is challenging. Most
research articles showed accuracy rates of more than 90%, which may be extremely high.
Nevertheless, the goal would be to raise the accuracy to about 100%, as inaccurate disease
classification, even in a small number of cases, is wholly unacceptable. On the other hand,
generalization capacity poses a serious issue for all learning-based methodologies. It results
from both the procedures themselves and the diversity of the training dataset. As a result,
deep learning has had a significant impact on how routine blood tests are applied, and we
anticipate that it will become a more effective methodology in the future [167].

Different techniques of ML and DL have been used in 92 reviewed studies. The ML
or DL methods utilized are displayed in Figure 4. Figure 5 shows that with a percentage
of 16%, Random Forest is the most used machine learning method, followed by LR (14%),
SVM and XGBOOST (11%), KNN and ANN (7%), DT (6%), etc.

Four metrics, including accuracy, sensitivity (recall), specificity, and AUC, were used
to diagnose COVID-19 and to evaluate and compare the performance of the suggested
methods quantitatively. These four performance metrics used in the literature of COVID-19
diagnosis are shown in Table 5. Accuracy indicates that how many samples are classified
properly (ratio of true predictions over all predictions ). Sensitivity or recall refers to the
rate of the number of correctly classified COVID-19-positive samples to the total number of
suspected samples. Specificity refers to the rate of identifying negative samples correctly.
The area under the ROC curve is represented by AUC, from (0, 0) to (1, 1).

Figure 5. ML and DL techniques used for COVID-19 diagnosis.

Table 5. Performance metrics used in the research articles.

Performance Metrics Refs. Number of Research Articles

Accuracy [9,16,20,64–66,70,72,75,76,78,81–
84,87,89,92,101,102,102,112,120,122,129,130,132,134,135,137,138,140,141,143,144,146,149–151] 39

Sensitivity [9,20,64,67,68,72–79,83,84,86,88,90,92,94–98,103,106–108,111,112,118,121,126,128–
131,134,135,138–141,149] 44

Specificity [9,64,72–79,83,84,86,88,90,92,94–98,103,106,108,111,112,118,121,126,128–
131,134,138,140,141,149] 38

AUC [9,67–70,72–75,77,78,80,81,83,85–87,90–94,96,99,100,107–
115,117,121,123,126,127,129,132,133,142–145,147,148,150] 49
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A lot of AI knowledge is needed to implement a standard ML-based diagnosis.
The most crucial step is identifying the distinctive features that can help with COVID-
19 diagnosis. Because of the absence of adequate hardware resources and data availability,
the development of DL systems for the diagnosis of COVID-19 has been a difficult endeavor.
Although websites such as Google Colab already provide researchers with powerful com-
puting processors, applying and employing these approaches in the real world presents
many challenges. While DL and ML models hold great potential for improving COVID-19
diagnosis using routine blood tests, there are still several limitations that must be addressed
before they can be used widely in clinical settings: (1) DL and ML models rely on large
amounts of diverse data to train and learn from. However, data on COVID-19 are still
relatively limited, especially in terms of routine blood tests. This can make it difficult to
develop accurate models that apply to different populations and settings. (2) Routine blood
tests can be affected by many factors, such as age, sex, underlying medical conditions,
and medications. ML models may struggle to account for these factors and may generate in-
accurate predictions as a result. (3) ML models are only as good as the data they are trained
on and must be carefully validated and tested before they are used in clinical settings. This
requires extensive testing and validation of the model on large and diverse datasets. (4) DL
models are often described as “black boxes”, because it is difficult to interpret how they
arrive at their predictions. This can make it difficult for healthcare providers to understand
and trust the predictions generated by these models. (5) ML models used in healthcare are
subject to regulatory approval, and there are strict requirements for validation and testing.
This can slow down the adoption of these models in clinical settings.

Although we conducted a search in four of the most major databases and found over
4785 documents, there are some drawbacks to this research. The first one is the possibility of
selection bias because only English-language research articles were chosen. The keywords
used for the queries also influence the results that are obtained. Another limitation of
this research is the time frame in which the search was conducted. As with any rapidly
evolving field, new research is constantly being published, and the results of this study
may not reflect the most recent findings. Additionally, the scope of the search may have
been too narrow, focusing only on research articles related to a specific aspect of the topic.
Moreover, the quality of the research articles selected in the review may vary, as not all
research articles undergo the same level of peer review or scrutiny. It is possible that some
of the research articles chosen may have had limitations in their methodology or analysis,
which could impact the validity of the conclusions drawn from the review.

We want to take note that the primary benefit of the current study is that it gives
the reader a comprehensive list of recent research articles that use various forecasting
approaches based on routine blood tests. The reader gets access to a method-based catego-
rization of publications (ML and DL). For anyone interested in this subject, the research
articles given in this study would be a good place to start and would hasten their learning
in this area of study. For everyone involved in a literature review, the flowchart shown in
Figure 3 would be useful. There are two primary drawbacks to this study. We have only
considered studies published within the last one to two years. This survey has not covered
the material from other captivating databases. This is because of the overwhelming volume
of publications that authors would have had to manage.

6. Conclusions

Millions of people’s lives have been gravely threatened by the ongoing COVID-19
pandemic in a short amount of time. As the CT scan technique is more expensive and
time-consuming than routine blood tests, it is apparent that routine blood tests are more
broadly accessible than the CT image dataset. As a result, the majority of researchers
used standard blood testing to identify COVID-19. After reviewing the literature in this
field, we discover that there is a dearth of annotated data on those impacted by COVID-
19. The performance of the aforementioned data-hungry models can be significantly
improved by enhancing high-quality datasets of COVID-19 patients. ML and DL can detect
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the coronavirus using AI techniques when applied to routine blood testing. This study
compares some recent research utilizing ML and DL algorithms to detect coronaviruses
from routine blood tests obtained from multiple open-source datasets. This study only
covers the 92 studies examined, while numerous studies have recently been undertaken
based on these findings.

After reviewing 4785 research articles, only 92 were deemed pertinent to the topic
under investigation for this study. This can provide the reader with a sense of how
uncommon this topic is in the studied field. The application of ML and DL to the prediction
of COVID-19 using routine blood tests remains unexplored. It should be noted that 559
full-text research articles were examined for this revision work. In order to appeal to
readers, the authors suggest that any upcoming research should take into consideration
other databases in the literature review, such as Emerald, Scopus, and Web of Science.
In addition, the authors suggest researchers consider using open-source datasets to train
and test ML and DL models for predicting COVID-19 using routine blood tests. Open-
source datasets can provide a standardized and accessible platform for researchers to
develop and test their models. This can also facilitate collaboration and sharing of data and
results among researchers in the field. The authors also recommend that future research
should explore the potential of using ML and DL in combination with other medical
technologies, such as imaging and genomics, to develop more accurate and comprehensive
diagnostic tools for COVID-19. By leveraging multiple sources of data, researchers can
develop more holistic approaches to predicting and treating the disease.
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Abbreviations
The following abbreviations are used in this study:

ML machine learning
DL deep learning
Acc accuracy
Sen sensitivity
Spe specificity
AUC area under the curve
RF random forest
DT decision tree
XGBoost gradient boosting
GBM gradient boosting machine
LGBM light gradient boosting machine
SVM support vector machine
ANN artificial neural network
KNN k-nearest neighbor
LR logistic regression
NB naive Bayes
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IBk lazy-classifier
MLP multilayer perceptron
BN Bayesian network
SOM self-organizing-map
LDA linear discriminant analysis
ET extra trees
GBDT gradient boosted decision trees
GB gradient boosting
GBT gradient boosting trees
CRM Cox regression model
SGD stochastic gradient descent
RNN recurrent neural network
GRU gated recurrent units
LSTM long short-term memory
DES dynamic ensemble selection
KELM kernel extreme learning machine
VAE variational autoencoder
CNN convolutional neural network
IEEE institute of electrical and electronics engineers
MDPI multidisciplinary digital publishing institute
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