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Abstract: Lung auscultation has long been used as a valuable medical tool to assess respiratory
health and has gotten a lot of attention in recent years, notably following the coronavirus epidemic.
Lung auscultation is used to assess a patient’s respiratory role. Modern technological progress
has guided the growth of computer-based respiratory speech investigation, a valuable tool for
detecting lung abnormalities and diseases. Several recent studies have reviewed this important
area, but none are specific to lung sound-based analysis with deep-learning architectures from one
side and the provided information was not sufficient for a good understanding of these techniques.
This paper gives a complete review of prior deep-learning-based architecture lung sound analysis.
Deep-learning-based respiratory sound analysis articles are found in different databases including the
Plos, ACM Digital Libraries, Elsevier, PubMed, MDPI, Springer, and IEEE. More than 160 publications
were extracted and submitted for assessment. This paper discusses different trends in pathology/lung
sound, the common features for classifying lung sounds, several considered datasets, classification
methods, signal processing techniques, and some statistical information based on previous study
findings. Finally, the assessment concludes with a discussion of potential future improvements
and recommendations.

Keywords: acoustic signal analysis; lung sound signals; deep learning; respiratory system; signal
analysis; CNN

1. Introduction

The most promising and popular machine learning technique for disease diagnosis,
and in particular for illness identification in general, is the deep learning network. It is
not surprising given the dominance of diagnostic imaging in clinical diagnostics and the
natural suitability of deep learning algorithms for image and signal pattern recognition.

Deep learning can achieve better prediction accuracy and generalization ability de-
spite requiring more training time and computational resources, which suggests that deep
learning has a better learning ability. When compared to conventional machine learning,
deep learning can quickly and automatically extract information from an image. Tradi-
tional machine learning techniques have difficulty identifying audio and images with
comparable properties, while the deep learning approach can manage this with ease [1].
Processing sound signals allows for the quick extraction of important information. Tra-
ditional machine learning involves performing learning using instructive characteristics,
such as Mel Frequency Cepstral Coefficents (MFCCs). In automatic speech and speaker
recognition, MFCCs [2] are characteristics that are frequently used. Deep learning entails
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learning end-to-end directly from data. Both MFCC and conventional machine learning are
accomplished through this. In other words, signal processing is formulated as a learning
issue in deep learning. Manyartificial intelligence (AI) engineers share this opinion [3].

Deep neural networks may be trained without supplying lesion-based characteristics
on massive databases of lung acoustic signals and spectrogram imagery with no provide
lesion-based criteria to recognize lung disease status for patients with greater specificity
and sensitivity. The key benefit of adopting this computerized illness detection method is
model uniformity (on a single input sample, a model predicts the same values every time),
high specificity, dynamic result generation, and high sensitivity. Additionally, because a
method may have some responsiveness, accuracy and operating points may be adjusted to
match the requirements of various clinical scenarios, for example, a screening system with
excellent sensitivity.

This work initially discusses the necessity with an overview and motivations of this
study field. Then, the method of the survey includes the commonly considered dataset in
the literate, sound-based lung disease classification workflow, deep learning algorithms,
preprocessing methods, feature extraction, and a comparison between studies that review
lung nodule screening. Next, lung diagnosis methods including general examination,
histopathology, and history-based techniques are explored. After that, computer-based
diagnosis methods such as the wavelet transform, convolutional neural networks (CNNs),
cybernetic technology, computer-assisted diagnosis (CAD), and image processing are also
analyzed. Finally, we present a summary of some significant literature results, research
gaps in the existing literature, and key aspects of successful deep learning models.

The breathing process of humans is separated into two stages: inspiration and expira-
tion. In order to be inspired, one must breathe air into the lungs. During inspiration, the
diaphragm lowers, and its muscles contract. As a result, the volume of the chest hollow
expands. The air force within the chest hollow drops. High-pressure oxygenated air from
outside the body flows quickly into the lungs. The alveoli are reached by oxygenated air
in the lungs. The alveoli walls are thin and are bounded by a blood vessel network. The
process of expelling air from the lungs is known as expiration. During expiration, the
diaphragm muscles relax and the diaphragm travels upward. Then, the capacity of the
chest hollow decreases. The pressure within the chest cavity rises. This causes carbon
dioxide to be discharged out of the body. This process can be demonstrated as shown in
Figure 1.

Diagnostics 2023, 13, x FOR PEER REVIEW 2 of 25 
 

 

such as Mel Frequency Cepstral Coefficents (MFCCs). In automatic speech and speaker 
recognition, MFCCs [2] are characteristics that are frequently used. Deep learning entails 
learning end-to-end directly from data. Both MFCC and conventional machine learning 
are accomplished through this. In other words, signal processing is formulated as a learn-
ing issue in deep learning. Manyartificial intelligence (AI) engineers share this opinion [3]. 

Deep neural networks may be trained without supplying lesion-based characteristics 
on massive databases of lung acoustic signals and spectrogram imagery with no provide 
lesion-based criteria to recognize lung disease status for patients with greater specificity 
and sensitivity. The key benefit of adopting this computerized illness detection method is 
model uniformity (on a single input sample, a model predicts the same values every time), 
high specificity, dynamic result generation, and high sensitivity. Additionally, because a 
method may have some responsiveness, accuracy and operating points may be adjusted 
to match the requirements of various clinical scenarios, for example, a screening system 
with excellent sensitivity. 

This work initially discusses the necessity with an overview and motivations of this 
study field. Then, the method of the survey includes the commonly considered dataset in 
the literate, sound-based lung disease classification workflow, deep learning algorithms, 
preprocessing methods, feature extraction, and a comparison between studies that review 
lung nodule screening. Next, lung diagnosis methods including general examination, his-
topathology, and history-based techniques are explored. After that, computer-based diag-
nosis methods such as the wavelet transform, convolutional neural networks (CNNs), cy-
bernetic technology, computer-assisted diagnosis (CAD), and image processing are also 
analyzed. Finally, we present a summary of some significant literature results, research 
gaps in the existing literature, and key aspects of successful deep learning models. 

The breathing process of humans is separated into two stages: inspiration and expi-
ration. In order to be inspired, one must breathe air into the lungs. During inspiration, the 
diaphragm lowers, and its muscles contract. As a result, the volume of the chest hollow 
expands. The air force within the chest hollow drops. High-pressure oxygenated air from 
outside the body flows quickly into the lungs. The alveoli are reached by oxygenated air 
in the lungs. The alveoli walls are thin and are bounded by a blood vessel network. The 
process of expelling air from the lungs is known as expiration. During expiration, the di-
aphragm muscles relax and the diaphragm travels upward. Then, the capacity of the chest 
hollow decreases. The pressure within the chest cavity rises. This causes carbon dioxide 
to be discharged out of the body. This process can be demonstrated as shown in Figure 1. 
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1.1. An Overview and Motivations 

Figure 1. Diaphragm muscles during inhalation and exhalation.

1.1. An Overview and Motivations

In clinical treatment and instructional duties, medical image classification is critical.
The traditional approach, on the other hand, has reached its limit in terms of performance.
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Furthermore, using them requires a substantial amount of time and effort in terms of
extracting and selecting categorization factors. Deep neural networks are a new type of
machine learning technology that has shown promise in a wide range of categorization
challenges. Notably, CNN dominates with the greatest results for a variety of image
categorization tasks. Medical image databases, on the other hand, are difficult to find since
categorizing them necessitates extensive expert knowledge.

The primary goal of this paper is to present a comprehensive and easy-to-understand
review of the applications of deep learning in medical diagnostics. What is the significance
of this? It was discovered that a huge number of scientific papers delve into considerable
detail about various deep-learning applications. However, based on the performed survey,
few studies provide an overview of deep learning with sound-based classification methods
that are compared with this study in Table 1.

Table 1. Comparison with related review studies on sound-based respiratory disease classifica-
tion/detection using deep learning algorithms.

Ref. Discussion Lung
Diseases Literature Focus Images/Sound Highlighting

Literature Gaps
Proposing a
Solution Published Date

[4] Limited

Emerging artificial
intelligence methods
with respiratory
healthcare domain
applications

Images+ sound No No 2022

[5] Limited to
COVID-19

Deep learning for cough
audio sample-based
COVID-19 diagnosis

Sound Yes Yes 2022

This work
Extensive with
most common
diseases

Lung disease recognition
based on sound signal
analysis with
machine learning

Images + sound Yes Yes 2023

Deep learning language can be perplexing to academics that are unfamiliar with
the field. This review paper provides a brief and clear introduction to deep learning
applications in medical diagnostics, and it contributes to the current body of knowledge to
a moderate degree. As criteria for this work, the following research questions are used:

• How diverse is deep learning’s usefulness in medical diagnosis?
• Will deep learning ever be able to take the place of doctors?
• Is deep learning still relevant, or will it be phased out?

1.2. Contributions and Review Structure

This paper’s key contributions are as follows:

• This paper provides a wide assessment of the ideas and characteristics of deep learning
being used in the realm of medical lung diagnosis.

• This paper describes the terms “breath”, “respiratory”, “lung sounds” “sound signal
analysis”, and “acoustic-based classifier”.

• This survey presents a classification for diagnosis methods of lung disease in the
respiratory system and highlights the use of auscultation systems.

• A respiratory system sound diagnosis framework is also displayed, which provides a
general understanding of the inquiry of respiratory system diagnosis.

• This work makes a significant addition by presenting a complete assessment of current
research on augmentation techniques for background auscultation of the respira-
tory system.

• This review highlights the role of deep learning CNN integration in enhancing lung
auscultation screening.

• It also makes numerous recommendations for future study opportunities.
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This article is separated into three parts. The research technique is given in the first
section. Following that, a general idea of deep learning applications in medical diagnostics
is given. Finally, the findings are analyzed, conclusions are reached, and recommendations
for further research are made.

2. Lung Sound Waveforms
2.1. The Regular Lung Sound

The regular lung sound waveforms can be divided into:

• Vesicular breath or normal lung sound: The sound is more high-pitched during
inhalation than exhalation, and more intense; it is also continuous, rustling in quality,
low-pitched, and soft.

• Bronchial sound breathing: The sound is high-pitched, hollow, and loud. However,
it could be a sign of a health problem if a doctor hears bronchial breaths outside the
trachea.

• Normal tracheal breath sound: It is high-pitched, harsh, and very loud.

A sample of a normal lung sound waveform is shown in Figure 2.
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2.2. The Wheezing Lung Sound

The wheezing sound is a continuous and high-pitched sound and is distinguished into:

• Squawks: A squawk is a momentary wheeze that happens while breathing in.
• Wheezes with numerous notes are called polyphonic wheezes, and they happen

during exhalation. The pitch of them may also rise as exhalation nears its conclusion.
• Monophonic wheezes can last for a long time or happen during both phases of respi-

ration. They can also have a constant or variable frequency.
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2.3. Crackles Sound

Generally speaking, crackles can be heard while inhaling. They may have a bursting,
bubbling, or clicking sound to them.

Coarse: Coarse crackles are louder, lower in pitch, and linger longer in the larger
bronchi tubes than fine crackles do. Although they usually occur during inhalation, they
can also occur during exhalation.

Medium: These are brought on by mucus bubbling up in the two tiny bronchi, which
carry air from the trachea to the lungs. The bronchi are divided into progressively smaller
channels that ultimately lead to alveoli, or air sacs.

Fine: These delicate, high-pitched noises are particular to narrow airways. Fine
crackles may occur more frequently than coarse crackles during an intake than during
an exhalation.

2.4. Rhonchi Sound

Low-pitched, continuous noises called rhonchi have a snoring-like quality. Rhonchi
can happen when exhaling or when exhaling and inhaling, but not when inhaling only.
They take place as a result of fluid and other secretions moving about in the major airways.

2.5. Stridorand Pleural Rub Sounds

• A high-pitched sound called stridor forms in the upper airway. The sound is caused
by air squeezing through a constricted portion of the upper respiratory system.

• The rubbing and cracking sound known as "pleural rub" is caused by irritated pleural
surfaces rubbing against one another.

For efficient respiratory infection therapy, early diagnosis and patient monitoring are
critical. In clinical practice, lung auscultation, or paying attention to the patient’s lung
sound by means of stethoscopes, is used to diagnose respiratory disorders. Lung sounds
are typically characterized as normal or adventitious. The majority of frequent adventitious
lung noises heard above the usual signals are crackles, wheezes, and squawks, and their
presence typically suggests a pulmonary condition [7–9].

The traditional techniques of lung illness diagnosis were detected using an AI-based
method [10] or a spirometry examination [11], both of which required photos as input to
identify the disorders. Going to a hospital for an initial analysis by X-ray or chest scan
in the event of a suspected lung condition, such as an asthma attack or heart attack, is
time-consuming, expensive, and sometimes life-threatening. Furthermore, model training
with a large number of X-ray images with high quality (HD) is required for autonomising
an AI-based system of image-based recognition, which is challenging to obtain each time.
A less and simpler resource-intensive system that is able to aid checkup practitioners in
making an initial diagnosis is required instead.

In the event of a heart attack, asthma, chronic obstructive pulmonary disease (COPD),
and other illnesses, the sounds created through the body’s inner organs vary dramatically.
Automated detection of such sounds to identify if a person is in danger of lung sickness
is inefficient and self-warning for both the doctor and patients. The technology may be
utilized by clinicians to verify the occurrence of a lung ailment. On the contrary, the future
extent of this technology consists of integration with smart gadgets and microphones to
routinely record people’s noises and so forecast the potential of a case of lung illness.

Nonetheless, the rapid advancement of technology has resulted in a large rise in the
volume of measured data, which often renders conventional analysis impractical due to the
time required and the high level of medical competence required. Many researchers have
offered different artificial intelligence (AI) strategies to automate the categorization of res-
piratory sound signals to solve this issue. Incorporating machine learning (ML) techniques
such as hidden Markov models and support vector machine (SVM) [9] (HMM), CNN,
residual networks (ResNet), long short-term memory (LSTM) networks, and recursive
neural networks (RNN) are examples of deep learning (DL) architectures [11].
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Furthermore, much research has been conducted on feature selection and extraction
approaches for automated lung sound analysis and categorization. When performing
feature extraction from lung sounds, spectrograms, MFCC, wavelet coefficients, chroma
features, and entropy-based features are some of the most typically picked features.

This work reviews the existing deep learning architectures and models to classify
adventitious and normal lung sound signals. The rationale behind this is to provide
clear insight into using deep learning networks to extract lung disease deep features from
input recorded acoustic data to decrease their dimensionality and to achieve handle data
imbalance and prediction error reduction.

3. Survey Methodology

According to the implemented survey on the diagnosis of lung and respiratory system
disease, it is possible to classify the surveyed methods by highlighting the discussed area
as shown in Figure 3.
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This work discusses the colored topics of the colored blocks in the above figure. We
divide the diagnosis methods of the respiratory system into two main methods; clinical
and computer-based methods. The clinical assessment methods can be subdivided into
three methods: general examination traditional methods, history-based, and histopathol-
ogy image-based methods. In contrast, computer-based diagnosis techniques can also
be subdivided into four common approaches including wavelet, image analysis, image
processing, and CNN studies. We highlight CNN-based audio processing as an intriguing
field since this technology automatically discovers essential elements without the need for
human intervention. The process of excluding and including references in this study is
shown in Figure 4, while further detail is illustrated in Table 2.
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Table 2. The considered search query of the selected publications.

Search Query Database Initial Search After Remove
Repeated Ones

Exclude Based
on Title, Abstract

Not Providing
Sufficient Info. Final Selection

Title includes (audio, sound or acoustic) and
(lung and/or respiratory), and (deep learning,
machine learning, artificial intelligence)

IEEE Xplore 45 32 4 0 28

Web of science 58 49 12 2 35

Title, abstract, and keywords include (audio,
sound or acoustic) and (lung and/or
respiratory), and (deep leaning, machine
learning, artificial intelligence)

Scopus 76 79 14 7 58

Total 179 160 30 9 121

Simple statistical representation on the most popular considered reference databases
is shown in Figure 5, which shows IEEE with 22 (18%), Science Direct and Websites with
14%, MDPI with 12%, and Springer with 9%. The remaining 33% of the selected articles are
from other published sources. This indicates that such publications are widely discussed as
they touch on human health.
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3.1. The Commonly Considered Dataset in the Literate

The quality, confidence, and other features of the dataset are essential to measuring
the accuracy of training and evaluation of models and architectures that perform on the
classification of lung sounds. Several common respiratory/lung sound datasets are listed
in Table 3.

Table 3. Common respiratory/lung sound datasets in the literature.

Dataset Name Description Used by Source

Respiratory Sounds Dataset
(RSD) ICBHI 2017

Regular sound signals in addition to three kinds of adventitious
respiratory sound signals: wheezes, crackles, and a combination
between wheezes and crackles.

[12–19] [20]

HF_Lung_V1

Comprises 9765 lung sound audio files (each lasting 15 s),
18,349 exhalation labels, 34,095 inhalation labels, 15,600 irregular
adventitious sounds’ classes, and 13,883 regular adventitious
sound classes (including, 4740 rhonchus classes, 8458 wheeze
classes, and 686 stridor classes).

[21] [21]
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Table 3. Cont.

Dataset Name Description Used by Source

Respiratory-Database@TR

Each patient has 12-channel lung sounds. Short-term recordings,
multi-channel analysis, 5 COPD (chronic obstructive lung disease)
severity levels (COPD4, COPD3, COPD2, COPD1, COPD0) (At
least 17 s).

[22] [23]

Own Generated Database

The lung sounds were captured using an e-stethoscope and an
amplifier linked to a laptop. An e-stethoscope with a chest piece
that is touched by the patient and a microphone-based recording
sound signals with a 44,100 Hz sampling rate that is attached to
signal amplifiers are used in this setup. The amplifier kits extend
the signal range to about (70–2000 Hz) with respiratory sounds
(with frequency controller and control amplifier) when associated
with an earphone (to listen to live records) and a PC.

[24] [24]

Own Generated Database

Data are separated into two types: sub-interval set, which includes
complete patient set, which comprises all patients’ measures and is
classed as abnormal or normal, counting all patients’ sub-interval
measurements of any duration. It has around 255 h of measured
lung sound signals.

[25] [25]

Own Generated Database

RSs non-stationary data collection with 28 separate patient records.
For training and testing, two distinct sets of signals were employed.
Except for crackles and wheezes, which were data from six patients
each, each class in the training and test sets comprised two
recordings from distinct patients. The sampling frequency of the
recorded data was 44.1 kHz.

[26] [26]

R.A.L.E. Repository

It is a collection of digital recordings of respiratory sounds in health
and sickness. These are the breath sounds that physicians, nurses,
respiratory therapists, and physical therapists hear using a
stethoscope when they auscultate a patient’s chest. Try-R.A.L.E.
Lung Sounds, which provides a vast collection of sound recordings
and case presentations, as well as a quiz for self-assessment.

[27] [28]

R.A.L.E. Lung Sounds 3.0

It includes five regular breathing recordings, four crackling
recordings, and four wheeze recordings. To eliminate DC
components, a first-order Butterworth high-pass filter with a cut-off
frequency of 7.5 Hz was employed, followed by an eighth-order
Butterworth low-pass filter with a cut-off frequency of 2.5 kHz to
band restrict the signal.

[29] [30]

Respiratory Sound Database

It was developed by two Portuguese and Greek research teams. It
has 920 recordings. The duration of each recording varies. 126
patients were recorded, and each tape is documented. Annotations
include the start and finish timings of each respiratory cycle, as
well as if the cycle comprises wheeze and/or crackle. Wheezes and
crackles are known as adventitious noises, and their presence is
utilized by doctors to diagnose respiratory disorders.

[12,18,24,31–33] [34]

R.A.L.E. refers to (Respiratory Acoustics Laboratory Environment).

3.2. Sound-Based Lung Disease Classification Workflow

The major goal of using the respiratory sound dataset is to create a model that can
distinguish between healthy and unhealthy lung sounds or to create a model that can distin-
guish between respiratory disorders by detecting sound abnormalities. The machine learning
pipeline employed by the majority of existing projects is divided into three stages. The first
is respiratory sound preprocessing using audio filtering and noise-lessening methods. The
second phase is feature extraction, which is accomplished by the use of signal processing
methods such as spectrum analysis [35–38], Cepstrum analysis [39–41], wavelet transforma-
tions [18,42,43], and statistics [44]. The third stage is classification, and the most often used
classifiers were K-nearest Neighbors [32,45–48], Support Vector Machines [49–53], Gaussian
Mixture models [54,55], and Artificial Neural Network (ANN) [49,56]. The workflow
representation from preprocessing to classification can be shown in Figure 6.
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3.3. General Methodology Diagram

Unlike transmitted voice sounds, lung sounds are produced inside the lungs and
are generated by the larynx. Lung sound signals contain breathing sounds and abnormal
or adventitious sounds detected or heard over the chest. Ordinary breathing sounds
are listened through the chest trachea or wall. Usually, physicians check chest healthy
using the diaphragm of the stethoscope. The normality of breathing sounds is assessed by
inspecting the expiration, length of inspiration, symmetry, and intensity of breath sounds.
An example of experimental identifying normal and abnormal respiratory audio waveforms
is illustrated in Figure 7, where a unique four-channel data 64 collecting device was used to
collect respiratory audio waveforms.
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Figure 7. A device for collecting lung sound signals in the back places of the chest. The numbers in
the right image correspond to the sensors on the left one.

The air path inside the chest is disrupted due to a pulmonary deficit. The data
enclosed inside the signal waveform, such as strength, timbre (or quality), and frequency
are respiratory sound features to help diagnose common lung disorders. The normal
breathing sound with its associated noises and distinct features can be classified as shown
in Figure 8.

A general framework for deep-learning-based lung sound classification can be shown
in Figure 9.
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Deep-learning CNNs (DLCNN) are being used to diagnose obstructive lung illnesses,
which is a fascinating development. DLCNN algorithms function by identifying patterns
in diagnostic test data that are possible for utilization to forecast clinical outcomes or
identify obstructive phenotypes. The goal of this study is to present the most recent
developments and to speculate on DLCNN’s future potential in the diagnosis of obstructive
lung disorders. DLCNN has been effectively employed in automated pulmonary function
test interpretation for obstructive lung disease differential diagnosis. For obstructive
pattern detection in computed tomography and associated acoustic data, deep learning
algorithms such as neural networks using convolutions are state-of-the-art techniques [57].
DLCNN has been applied in small-scale research to improve diagnostic procedures such
as telemedicine, lung sound analysis, breath analysis, andforced oscillation tests with
promising results.

Deposits in the respiratory system limit airways and induce blood oxygen deficit,
resulting in erratic breathing noises. Obtaining these respiratory sounds from test subjects,
extracting audio features, and categorizing them will aid in the detection of sputum or
other infections. These sickness stages can be accurately classified using deep learning
convolution neural network methods. Several studies reviewed DLCNN such as [58],
where its goal was to find the best CNN architecture for classifying lung carcinoma based
on accuracy and training time calculations. Backpropagation (BP) is the best feed-forward
neural network (FFNN) method, with an accuracy of 97.5 percent and training time of
12 s, and the kernel extreme learning machine (KELM) is the best feedback neural network
(FBNN) method, with an accuracy of 97.5 percent and an 18 min 04 s training time. A
common representation classifier for lung sounds based on deep learning architecture is
shown in Figure 10.
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3.4. Preprocessing

Data preprocessing begins with importing the re-sampling, cropping them, and sound
files. Because recordings are made by different research teams using different recording
equipment, sampling rates vary (4000 Hz, 44,100 Hz, and 10,000 Hz). All recordings may be
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re-sampled to a single sampling rate, such as 44,100 Hz, and every sound is typically 3–10 s
extended by zero-padding shorter segments and cropping larger ones. The respiratory
sound data are divided into distinct breaths during preprocessing by detecting the lack
of sound between breaths. Lung sounds captured from different participants will have
varying loudness levels. As a result, before processing, the signals were adjusted such that
they were roughly the same loudness regardless of the subject. The signals were normalized
before being divided into frequency sub-bands using the discrete wavelet transform (DWT).
To depict the allocation of wavelet coefficients, a set of numerical characteristics was
collected from the sub-bands. A CNN-based scheme was implemented to classify the lung
sound signal into one category: squawk, crackle, wheeze, normal, rhonchus, or stridor. The
schematic block diagram of the signal preprocessing stage is described in Figure 11.
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3.5. Deep Learning Algorithms

The majority of studies in the literature used numerous classifiers to see which one
produced the greatest accuracy results that are regarded as a main performance metric
of study. DLCNN methods such as VGG (VGG-B3, VGG-B1, VGG-V2, VGG-V1,and
VGG-D1), Res-Net, LeNet, Inception-Net, and AlexNet were applied to spectrum data for
categorization functions, and the results were analyzed and compared with one another to
improve categorization of aberrant respiratory sounds. A list of deep learning algorithms
that are employed to classify audio signals in literature is demonstrated in Table 4.
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Table 4. Deep learning algorithms for audio classification.

Network Ref. Acronym Year Other Variants

VGG [61,62] Visual Geometry Group 2014 VGG-D1, VGG-V2, VGG-V1, VGG-B3, and VGG-B1
Alex-Net [63] Krizhevsky, Alex 2012 Its architecture has sixty million parameters
ResNet [64] Residual Neural Networks 2015 An error rate of 3.6 percent
Inception Net [65–68] InceptionNet or GoogleNet 2014 With a 6.67 percent error rate, four million parameters
LeNet [69–71] Yann LeCun et al. 1998 It contains a full link layer, pooling layer, and convolutional layer.

M-CNN [72] Multi-scale CNN 2017 Several convolutional layers are stacked over the real vector to
extract the higher-level features.

ML-CNN [73] Deep-learning-based disease
NER architecture (ML-CNN) 2017 Lexicon feature, character-level, and word level. Embeddings are

concatenated as input of the CNN model

3.6. Wavelet Transform

A method for extracting and detecting characters based on lung sounds was described
in the paper [74]. The wavelet de-noised approach removes noise from the collected lung
sounds before employing wavelet decomposition to recover the wavelet features parame-
ters of the de-noised lung sound signals. Because the characteristic vectors of lung sounds
have multi-dimensional following wavelet reconstruction and decomposition, a novel tech-
nique for converting them into reconstructed signal energy was developed. They also used
linear discriminate analysis (LDA) to decrease the length of feature vectors for assessment
in order to create a more efficient recognition technique. Finally, they employed a BP
neural network to differentiate lung sounds, with 82.5 percent and 92.5 percent recognition
accuracy, respectively, using relatively high-dimensional characteristic vectors as the input
and low-dimensional vectors as the output. Wavelet Packet Transform (WPT) and classifi-
cation with an ANN were used to evaluate lung sound data in the study [75]. Lung sound
waves were separated into frequency sub-bands using WPT, and statistical parameters
were derived from the sub-bands to describe the distribution of wavelet coefficients. The
classification of lung sounds as normal, wheezing, or crackling is carried out using an ANN.
This classifier was programmed in a microcontroller to construct an automated and portable
device for studying and diagnosing respiratory function. In the study [75], a method for
distinguishing between two types of lung sounds was provided. The proposed technique
was founded on the examination of wavelet packet decomposition (WPD). Data on normal
abnormal and normal lung sounds were collected from a variety of patients. Each signal
was split into two sections: expiration and inspiration. They used their multi-dimension
WPD factors to create compressed and significant energy characteristic vectors, which they
then fed into a CNN to recognize lung sound features. Widespread investigational results
demonstrate that this characteristic extraction approach has high identification efficiency;
nonetheless, it is not yet ready for clinical use.

The role of Wavelet transform can be seen as a part of the de-noising or filtering
process as shown in Figure 12.

• As the input, a lung sound recording folder is used. Lung sounds are a combination
of lung sounds and noise (signal interference).

• As a signal, sounds can be played and written.
• The lung sounds are then examined by the scheme, saved in the data, and divided

into an array of type bytes.
• The data array is transformed into a double-sized array.
• Repeatedly decomposing array data according to the chosen degree of disintegration

creates two ranges, every half of the duration of the data range. The initial array is
known as a low-pass filter, while the second span is known as a high-pass filter.

• Wavelet transform is applied to the coefficients in each array.
• In the data array, both arrays are reconstructed, with a low-pass filter at the beginning

and a high-pass filter at the end.
• The data array is processed via a threshold, creating respiratory sound signal noise

and two arrays.
• Repeat restoration as many times as the stage of restoration is set to each array.
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• In the data array, the order of the preceding half-high-pass filter and half-low-pass
filter is reversed, with a discontinuous high-pass filter low-pass filter for every array.

• Each array’s wavelet transform parameters are re-performed.
• The data array is then transformed from a double-sized array to a byte-sized array.

The acoustic format and folder names that have been specified are functional to the
information.

• A signal (data) of a breathing sound set is restructured to a breathing sound folder,
and a data noise array is restructured to a noise beam.
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3.7. Signal-to-Noise Ratio

The signal-to-noise ratio (SNR) is a dimensionless relation of the power of a signal to
the associated power noise during recording; this can be expressed by [15]:

SNR =
Psignal

Pnoise
=

( Asignal

Anoise

)2

(1)

where Anoise denotes root mean square (RMS) of noise amplitude, Asignal represents the
RMS of signal amplitude, Pnoise denotes the mean of noise power, and the Psignal denotes
the mean of signal power.

The optimum wavelet packet foundation for feature extraction was chosen after the
space partitioning of wavelet packets [77,78]. They can perform quick random multi-scale
WPT and obtain every high-dimension wavelet parameter matrix based on the best basis.
The time-domain equal-value relationship between coefficients wavelet and signal energy
was then established. The energy was used as an eigenvalue, and vectors of characteristics
from a classification ANN were used as forms. This drastically reduces the number
of ANN input vectors. Extensive experimental results reveal that the proposed feature
extraction approach outperforms other approaches in terms of recognition performance.
The time-domain equal-value relationship between wavelet coefficients and signal energy
was then established. The energy was used as an eigenvalue, and feature vectors from a
classification ANN were used as forms. The number of ANN input vectors are considerably
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reduced as a result. Extensive experimental findings show that in terms of recognition
performance, the suggested feature extraction technique surpasses alternative approaches.

3.8. Extracting Features

MFCC was employed as sound clip characteristics [79,80]. Speech recognition sys-
tems frequently employ MFCCs [81]. They have also been extensively employed in prior
employment on the recognition of unexpected respiratory sound signals because they
give an indication of the time domain short-term power spectrum of the sounds. Because
multiple adventitious sounds might appear in the same tape at different periods and have
varied durations, both the frequency and time content are significant in distinguishing
between them. As a result, MFCC is useful for recording a signal’s transform in frequency
components during the time. Frequencies are allocated to MEL scales that are nonlinear
frequencies with equal distance in the human auditory system. Before further processing,
MFCC generates a two-dimensional vector feature (frequency and time) that is compressed
into an array of one-dimensional scale. The MFCC computation technique is depicted
in Figure 13, while Figure 14 shows a model production of the MFCC content of sounds
featuring various adventitious noises.
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4. Lung Sound Characteristics and Types

During a chest examination, sound signals released by the lung are heard from the
chest wall throughout the process of inhalation and exhalation. Because these signals
are not fixed, the frequency component fluctuates over time [83,84]. In general, there are
three types of respiratory noises: normal (normal) sounds, episodic sounds (wheezing
and snoring), and aberrant sounds (chronic diseases such as asthma and lung fibrosis).
Figure 15 shows an illustration of the breathing process and its frequency ranges.
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Studies Review Lung Nodule Screening

The studies [57,85,86] provided a survey of cutting-edge deep-learning-based respira-
tory nodule analysis and screening algorithms, with an emphasis on their presentation and
medical applications. The study [85] compared the network performance, limitations, and



Diagnostics 2023, 13, 1748 17 of 24

potential trends of lung nodule investigation. The review [86] evaluated why molecular
and cellular processes are of relevance. DLCNN has been used in different diagnostic
procedures such as lung sound analysis, forced oscillation test, telemedicine, and breath
analysis, with encouraging outcomes in small-scale investigations, according to [57].

In the same context, the papers [84,87–91] reviewed cancer diagnosis of the lung using
medical picture analysis. Lung cancer is the foremost source of mortality globally, with
“1.76 million related deaths recorded in 2018,” according to [89]. In addition, “Lung has
the highest incidence rate of cancer death in both men and women, accounting for over a
quarter of all cancer fatalities globally” [90].

Many published journal papers review and proposed original methods to assess lung
disease using deep learning CNN as an artificial intelligence technique. For highlighting
the importance of these publications, this review briefly provides a table that lists the
analyzed sample, the CNN algorithm type, tested data (sound or image samples), and their
significant findings as seen in Table 5.

Table 5. List of the analyzed sample, the CNN algorithm type, tested data (sound or image samples),
and their significant findings for the publications that have been surveyed.

Study Method Splitting Strategy
Performance

Specificity Sensitivity Accuracy Score

Demir et al. [92] VGG16 10-fold CV - - 63.09% -
Serbes et al. [93] SVM official 60/40 - - 49.86% -

Sen I, et al. [94] GMM
Classifier - 90% 90% 85.00% -

Saraiva et al. [95] CNN random 70/30 - - 74.3% -
Yang et al. [96] ResNet + SE + SA official 60/40 81.25% 17.84% - 49.55%

Ma et al. [97] bi-ResNet official 60/40
random 10-fold CV

69.20%
80.06%

31.12%
58.54%

52.79%
67.44%

50.16%
69.30%

Pham et al. [98] CNN-MoE
official 60/40
random
5-fold CV

68%
90%

26%
68% - 47%

97%

Gairola et al. [99] official
60/40 CNN official 60/40

interpatient 80/20
72.3%
83.3%

40.1%
53.7% - 56.2%

68.5%
Liu et al. [100] CNN random 75/25 - - 81.62% -
Acharya and Basu [101] CNN-RNN interpatient 80/20 84.14% 48.63% - 66.38%
Allahwardiand
Altan et al. [102]

Deep Belief Networks
(DBN) - 93.65%

73.33%
93.34%
67.22%

95.84%
70.28%

Kochetov et al. [103] RNN interpatient
5-fold CV 73% 58.4% - 65.7%

Minami et al. [104] CNN official 60/40 81% 28% - 54%

Georgios Petmezas et al. [12] CNN-LSTM with FL Interpatient 10-fold CV
LOOCV

84.26%
-

52.78%
60.29%

76.39%
74.57%

68.52%
-

Chambres et al. [105] HMM
SVM official 60/40 56.69%

77.80%
42.32%
48.90%

49.50%
49.98%

39.37%
49.86%

Oweis et al. [26] ANN - 100% 97.8% 98.3% -
Jakovljevi’c and
Lonˇcar-Turukalo [106] HMM official 60/40 - - - 39.56%

Bahoura [27] GMM - 92.8% 43.7% 80.00% -

Emmanouilidou D et al. [25] RBF SVM
Classifier - 86.55 (±0.36) 86.82 (±0.42) 86.70% -

Ma et al. [107] ResNet + NL official 60/40
interpatient 5-fold CV

63.20%
64.73%

41.32%
63.69% - 64.21%

52.26%
Nangia et al. [24] CNN - - - 94.24% 93.6%
Pramono RX et al. [29] SVM - 83.86% 82.06% 87.18% 82.67%

Nguyen and Pernkopf [108] ResNet official 60/40
official 60/40

79.34%
82.46%

47.37%
37.24%

-
73.69%

58.29%
64.92%

Bardou D et al. [7] CNN - - - 95.56% -
Aykanat M et al. [109] ANN - 86% 86% 76.00% -
Chamberlain et al. [110] - - 0.56 - 86% Wheeze -

The table shows a classification of some published articles and their achievements.
The studies [111–114] created a problem-based architecture that saves image data for
identifying consolidation in a Pediatric Chest X-ray dataset. They designed a three-step pre-
processing strategy to improve model generalization. An occlusion test is used to display
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model outputs and identify the observed relevant area in order to check the reliability of
numerical findings. To test the universality of the proposed model, a different dataset
is employed as additional validation. In real-world practice, the provided models can
be used as computer-aided diagnosis tools. They thoroughly analyzed the datasets and
prior studies based on them, concluding that the results could be misleading if certain
precautions are not followed.

ANNs are widely used for sentiment analysis, regression issues, and classification.
ANNs are a developing field with numerous subtypes. They differ due to a number of
factors, including data flow, density, network architecture, and complexity. However, all
of the many types aim to mimic and simulate neuronal function in order to enhance deep
learning models.

The properties of the frequency and amplitude affect how the sound signal is an-
alyzed.The visual representation of the audio signal’s frequency spectrum is called a
spectrogram. These spectrograms are widely employed in a variety of fields, including
voice recognition, linguistic analysis, audio classification, and signal processing. There are
many potential applications for combining deep learning with audio signal processing.
One may use deep learning models to interpret and evaluate the data by turning an audio
file’s raw waveform into spectrograms.

A binary classification is typically used in audio classification so that it is feasible to
tell if the input signal is the desired audio or not. With the use of a deep learning framework
such as TensorFlow [115], the incoming noise signal aggregated during data gathering is
transformed into a waveform that can be used for additional processing and analysis. After
the waveform has been successfully acquired, it is possible to turn it into a spectrogram,
which is a visual representation of the waveform that is available. A deep learning CNN
can be used to assess these spectrograms appropriately by building a deep learning model
to produce a binary classification result because these spectrograms are visual images.

5. Existing Literature Gaps

Some difficulties encountered by researchers during acoustic signal analysis and iden-
tification include; (1) previous analysis approaches, particularly non-CNN based deep
learning, require very sophisticated analysis architectures that are source-intensive [116].
This suggests that it needs high-end calculation capability, which may involve significant
infrastructure expenses. If no infrastructure investment is made, illness prediction and
training might consume an extremely long period. Existing approaches, such as physical
identification by a physician, also require a lengthy time and multiple hospital appoint-
ments to determine if a patient has COPD or not. (2) In many circumstances, the amount of
respiratory audio samples is uneven in terms of illness [117]. There is a constant require-
ment to balance the database as every architecture trained on imbalanced data can forecast
the disease with the most samples. (3) The respiratory acoustic samples often contain
numerous noises [118]. It should be attended to in a diversity of ways. Key characteristics
of effective deep learning models can be listed as follows:

1. Dataset selection: because the whole model is built on it, obtaining and maintaining a
noise-free database is crucial. The training data must be properly preprocessed.

2. Algorithm choice: it is significant to grasp the study’s function. A variety of algorithms
may be tried to see which ones produce results that are closest to the objective.

3. Feature extraction strategies: it is also an important task in the development of
successful models. It is effective when high model accuracy is required, as well as
optimum feature selection, which aids in the creation of redundant data throughout
each data analysis cycle.

6. Conclusions

Deep learning convolutional neural networks (DLCNN) are being used to diagnose
obstructive lung illnesses, which is a fascinating development. DLCNN algorithms function
by identifying patterns in diagnostic test data that can be applied to forecast and identify
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obstructive phenotypes or clinical outcomes. DLCNN will require consensus examination,
data analysis, and interpretation techniques as it matures as medical technology. To enable
big clinical trials and, ultimately, minimize ordinary clinical use, such tools are required
to compare, understand, and reproduce study findings from and among diverse research
organizations. It is necessary to make recommendations on how DLCNN data might be
used to generate diagnoses and influence clinical decision-making and therapeutic planning.
This review looks at how deep learning can be used in medical diagnosis. A thorough
assessment of several scientific publications in the field of deep neural network applications
in medicine was conducted. More than 200 research publications were discovered, with
77 of them being presented in greater detail as a result of various selection techniques.
Overall, the use of a DLCNN in the detection of obstructive lung disorders has yielded
promising results. Large-scale investigations, on the other hand, are still needed to validate
present findings and increase their acceptance by the medical community. We anticipate
that physicians and researchers working with DLCNN, as well as industrial producers of
this technology, will find this material beneficial.
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