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Abstract: Nowadays, despite all the conducted research and the provided efforts in advancing
the healthcare sector, there is a strong need to rapidly and efficiently diagnose various diseases.
The complexity of some disease mechanisms on one side and the dramatic life-saving potential
on the other side raise big challenges for the development of tools for the early detection and
diagnosis of diseases. Deep learning (DL), an area of artificial intelligence (AI), can be an informative
medical tomography method that can aid in the early diagnosis of gallbladder (GB) disease based on
ultrasound images (UI). Many researchers considered the classification of only one disease of the GB.
In this work, we successfully managed to apply a deep neural network (DNN)-based classification
model to a rich built database in order to detect nine diseases at once and to determine the type of
disease using UI. In the first step, we built a balanced database composed of 10,692 UI of the GB
organ from 1782 patients. These images were carefully collected from three hospitals over roughly
three years and then classified by professionals. In the second step, we preprocessed and enhanced
the dataset images in order to achieve the segmentation step. Finally, we applied and then compared
four DNN models to analyze and classify these images in order to detect nine GB disease types. All
the models produced good results in detecting GB diseases; the best was the MobileNet model, with
an accuracy of 98.35%.

Keywords: artificial intelligence; deep learning; deep neural network; ultrasound images; diagnosis;
gallbladder

1. Introduction

The gallbladder (GB) is a tiny pouch and a hollow organ located beneath the liver.
Its primary role is to temporarily store bile. Bile is a fluid formed by the liver, which is
used to aid digestion. There are different types of GB disease. From gallstones to cancer,
they all have similar symptoms, but they vary widely in severity [1]. All scientists confirm
that although the exact causes of GB cancer are unknown, certain factors may increase a
person’s risk of developing GB cancer. Frequently, these factors are related to the simple
inflammation of the GB. According to the American Cancer Society (ACS) [2] and the
American Society of Clinical Oncology (ASCO) [3], the risk of GB cancer is around five
times higher in people who have a history of GB conditions, mainly gallstones, compared
to those who do not. To this end, it is crucial to diagnose the type of GB disease and how
serious it is at an early stage in order to prevent or reduce the wider spread of the disease.
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Early detection and diagnosis are the primary sources of lifesaving and are among the
most-challenging features of health surveillance. Indeed, according to the Canadian Cancer
Society (CCS), about 19% of people diagnosed with GB cancer survive for at least 5 years.
Unfortunately, only about 4% of those with stage 4 survive their cancer for 5 or more years,
compared to 50% of those diagnosed with stage 1.

To perfectly diagnose GB diseases, ultrasound imaging, as one of the most frequently
used imaging modalities, is recognized as a powerful and universal screening and diag-
nostic tool for physicians and radiologists [4]. After screening, an accurate diagnosis is
necessary to identify an appropriate disease treatment plan. Typically, diagnostic informa-
tion is collected from the patient’s history and clinical examination. Many indications and
symptoms can be ambiguous, especially those related to GB diseases, which have similar
symptoms. Therefore, ultrasound images (UI) have to be interpreted and understood by
highly qualified medical professionals. Given that diagnosis via ultrasound imaging can be
time- and labor-consuming, it can be difficult to fund and take advantage of this service in
remote locations [5]. Regretfully, many analysts refuse to work in rural areas, and some
hospitals do not have the resources to train existing medical professionals to provide this
service. As a result, an informative method is needed to simplify the UI acquisition and
evaluation process in order to recognize the organ-related pathologies and anomalies in a
widely accessible and achievable manner. In rural locations, this informative method can
be very useful in computerized healthcare structures, which is the prime motivation of
the proposed study. Indeed, if any anomalies are discovered during the initial screening
step, specialists and radiologists can detect intraabdominal organ issues and provide the
exact treatment. Unskilled radiologists can also use the produced healthcare model to build
relative research on scans for evaluating different solutions [6].

Currently, artificial intelligence (AI) techniques, ranging from machine learning (ML)
to deep learning (DL), are prevalent in healthcare for disease diagnosis, drug discovery,
drug development, and patient risk identification [7]. The advances in DL and deep neural
network (DNN)-based methods of research and development provide significant progress
in the domain of medical image analysis and understanding [8]. Moreover, with the
progress at the algorithmic level as well as the availability of high-performance computing
machines and large quantities of data, DL-based methods have become increasingly popu-
lar [9]. They are now considered to be the most commonly used and most sophisticated
algorithms for handling many computer vision tasks [10]. In addition, DL algorithms are ca-
pable of assisting analysts in the early identification, treatment, and recognition of diseases,
and they, subsequently, provide efficient methods for medical diagnostics. Indeed, DL
algorithms can directly process and automatically learn mid-level and high-level abstract
features acquired from immense quantities of raw collected data, in which higher-level
abstract features are defined by combining them with lower-level features, to achieve an
acceptable level of accuracy and, eventually, to perform automatic UI analysis tasks, such
as classification, organ segmentation, and object detection [9,11–14].

Few studies have used DL to detect GB-related conditions, despite the fact that some
of them used DL to treat various GB-related conditions [15]. In this paper, we propose an
informative medical method based on four DNN models for detecting intra-abdominal
organs as well as associated diseases using UI. This method can be used to detect nine GB
diseases, including cancer, at the same time, based on a built dataset. The used dataset
was carefully gathered from a wide variety of sources over three years. It consists of more
than 10,000 UI of the gastrointestinal tract from 1782 patients. After preprocessing the data,
we applied DL models, including VGG16, InceptionV3, ResNet152, and MobileNet, to
recognize the GB organ and the nine associated diseases. This technique has the potential
to be a game changer in the medical field, especially for radiologists and other clinicians
who deal with patient care.

In Section 2 of this paper, we briefly introduce and discuss a variety of GB pathologies.
Section 3 comprises a literature review of the existing research related to this topic. In
Section 4, the description of the datasets is presented. In Section 5, the implementation of
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the proposed informative method is discussed. In Section 6, an exploration of the results of
the proposed approach is discussed and concluded. Section 7 presents the conclusion and
future works.

2. Overview of GB Diseases

The GB is located on the lower surface of the right side of the liver and has separate
anatomic sections, including the neck, fundus, cystic duct, and infundibulum. The GB is
divided into four layers: (1) the mucosa, (2) the muscularis, (3) the perimuscular layer, and
(4) the serosa. The GB is also complicated, despite its small size [16]. In total, 10–15% of the
adult population is affected by GB disorders, so it is comparably prevalent, with the most
common pathology being cholelithiasis [17]. Next, we provide a summary of some of the
diseases that affect the GB.

2.1. Gallstones

The components that make up bile are numerous, with the most important being
cholesterol, bilirubin (a by-product of red blood cell degradation), and bile salts, all of
which are dissolved in water. These components are often produced by the liver and stored
in the GB.

Gallstones form as a result of an imbalance in those components, for example, in-
creased cholesterol (due to high liver output) forms cholesterol gallstones in the GB (the
most common form) (Figure 1a). The exact cause of these derangements is multifactorial
and is not the purpose of this paper. Gallstones can remain asymptomatic until the duct
that transports bile into the small intestine becomes blocked by a gallstone, which induces
a variety of symptoms depending on the anatomical location and severity of the blockage.
This often necessitates treatment, which can be in the form of elective surgical removal of
the stone and GB [18].
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Figure 1. GB diseases (a–i): (a) gallstones, (b) abdomen and retroperitoneum, (c) cholecystitis, (d) 
gangrenous cholecystitis, (e) perforation, (f) polyps and cholesterol crystals, (g) adenomyomat osis, 
(h) carcinoma, (i) GB wall thickening, and (j) normal GB. 
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secretion is known as biliary colic. This pain usually quickly subsides, but, if the obstruc-
tion persists, it can lead to cholecystitis (as shown in Figure 1c) [19,20]. Prolonged blockage 
of the cystic duct can cause inflammation in the GB, leading to GB wall thickening (Figure 
1i). This inflammation can result in fever, lethargy, and constant pain.  

2.3. Gangrenous Cholecystitis 
Cholecystitis that remains untreated eventually causes the GB to turn gangrenous 

(Figure 1d) [21]. This occurs as a result of edema, which induces vascular insufficiency to 
the GB, leading to ischemia of the GB tissue. It is a life-threatening condition due to the 
high risk of perforation (Figure 1e) [22], which may lead to hemodynamic instability 
[23,24].  

2.4. Polyps and Cholesterol Polyps  
Polyps are uncommon, with a 9%–26% frequency range based on surgery and au-

topsy sequencing data. The most common are cholesterol polyps. They occur as a result 
of a buildup of lipid within the macrophages in the lamina propria projecting into the 
inner lumen of the GB; this process is known as cholesterolosis. These are benign growths 
(Figure 1f), as they are made from cholesterol deposition rather than neoplastic growths 
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Adenomyomatosis of the GB is an illness characterized by aberrant mucosal epithe-
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chka’s crypts in the GB [26]. These crypts often house cholesterol crystals that aid in form-
ing a distinct appearance upon imaging (Figure 1h). They have a frequency rate of be-
tween 1% and 9% in cholecystectomy specimens, with a steady sex proportion. They be-
come more common after the age of 50, supporting the hypothesis that chronic inflamma-
tion is a cause.  

2.6. Carcinoma 
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body or remain confined to a specific area [30].  

3. Literature Review 

Figure 1. GB diseases (a–i): (a) gallstones, (b) abdomen and retroperitoneum, (c) cholecystitis,
(d) gangrenous cholecystitis, (e) perforation, (f) polyps and cholesterol crystals, (g) adenomyomat
osis, (h) carcinoma, (i) GB wall thickening, and (j) normal GB.

2.2. Biliary Colic and Calculous Cholecystitis

Temporary pain due to the obstruction of the cystic duct by a gallstone upon bile
secretion is known as biliary colic. This pain usually quickly subsides, but, if the obstruction
persists, it can lead to cholecystitis (as shown in Figure 1c) [19,20]. Prolonged blockage of
the cystic duct can cause inflammation in the GB, leading to GB wall thickening (Figure 1i).
This inflammation can result in fever, lethargy, and constant pain.

2.3. Gangrenous Cholecystitis

Cholecystitis that remains untreated eventually causes the GB to turn gangrenous
(Figure 1d) [21]. This occurs as a result of edema, which induces vascular insufficiency to
the GB, leading to ischemia of the GB tissue. It is a life-threatening condition due to the high
risk of perforation (Figure 1e) [22], which may lead to hemodynamic instability [23,24].

2.4. Polyps and Cholesterol Polyps

Polyps are uncommon, with a 9–26% frequency range based on surgery and autopsy
sequencing data. The most common are cholesterol polyps. They occur as a result of a
buildup of lipid within the macrophages in the lamina propria projecting into the inner
lumen of the GB; this process is known as cholesterolosis. These are benign growths
(Figure 1f), as they are made from cholesterol deposition rather than neoplastic growths [25].

2.5. Adenomyomatosis of the GB

Adenomyomatosis of the GB is an illness characterized by aberrant mucosal epithelial
hypertrophy, resulting in the pathognomonic epithelial invaginations known as Luschka’s
crypts in the GB [26]. These crypts often house cholesterol crystals that aid in forming a
distinct appearance upon imaging (Figure 1h). They have a frequency rate of between 1%
and 9% in cholecystectomy specimens, with a steady sex proportion. They become more
common after the age of 50, supporting the hypothesis that chronic inflammation is a cause.

2.6. Carcinoma

GB cancer [27] is a very rare tumor occurring in 1:100,000 of cases, mainly in those
aged over 70. It is more common in females than males (2:1). Chronic inflammation is the
most important risk factor for developing carcinoma, which is why it occurs in those with
a history of gallstones (Figure 1g) [28,29] Carcinomas can metastasize to other parts of the
body or remain confined to a specific area [30].

3. Literature Review

Early detection is one of the most important secondary prevention strategies for
diseases. Secondary prevention includes early diagnosis and prevention, which allows
medical staff to provide the required care for patients and improve their quality of life.

Researchers might employ modern technologies, especially AI approaches, to help
detect diseases before they reach their late stages. To this end, several studies using AI tech-
niques for ultrasound imaging were proposed. For example, Zhang et al. [31] constructed
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a convolutional neural network (CNN) model that captures UI of fatty livers using the
scan’s gray and texture properties for sorting and classifies these UI. The results attained
an accuracy of 90%, a specificity of 92%, and a sensitivity of over 81%. Zheng et al. [32]
used deep transfer learning (DTL) approaches for the systematic organization of the kid-
neys. They identified children with genetic disorders of the kidneys and urinary tract from
UI of the kidneys, based on the transfer learning approach and imaging features. They
achieved an area under the curve (AUC) greater than 0.88. Arora and Mittal [33] proposed
image enhancement techniques for gastric disease detection using UI. They used three
types of filtering techniques, which are unsharp, wiener, and middle filters, to improve the
ultrasound scans. The authors claimed that the best visible qualities were obtained with
unsharp filtering. Selvan and John [34] described the use of form and texture functions to
recognize aberrant masses in UI. Radhakrishnan and Raghesh Krishnan [35] proposed UI
with wavelets and texture cues to classify focal and distributed liver diseases in a hybrid
manner. They established a technique based on computers to identify 10 different types of
localized and disseminated liver disorders. The unhealthy area of the UI was separated
using the active contour segmentation (ACS) approach, with an overall accuracy of 91%.
Acharya et al. [36] developed a model that uses a script for filter series and the structures of
local outline forms for the detection of breast incisions in UI. The proposed model was able
to accurately detect and classify breast lesions with 96.1% accuracy, 96.5% sensitivity, 95.3%
specificity, and 97.9% positive predictive values.

Later on, many researchers used DL techniques for the same purpose. In fact,
Liu et al. [37] discussed, in their review, the use of DL algorithms in ultrasound scan
inspections for a variety of functions, such as recognition, segmentation, and classification.
Similarly, Kumar and Bindu [38] conducted a review of image analyses by utilizing DL
approaches. Sloun et al. [39] also discussed the use of DL in health ultrasound scanning
approaches. Chen et al. [40] considered a deep CNN for biomedical scan methods in
dentistry and medicine.

As previously mentioned, many diseases may affect the GB. A well-developed AI approach
based on ultrasound GB images could increase illness detection accuracy. Urman et al. [41]
studied the bile canaliculi and bile ducts in the gallbladder using a machine learning technique.
Yao et al. [42] used a DL model to recognize gallstones while using massive amounts of data
from the Internet of things (IoT). They also created a CNN for the acquired imaging records’
functioning features. Chang et al. [43] considered the utility of a backpropagation neural
network and genetic algorithm in the detection and prediction of tumors’ signs in gallbladder
cancer patients.

Ultrasound GB images represent one of the most-common images used for the detec-
tion of biliary Artesia (BA). In fact, Zhou et al. [44] developed a deep learning approach
for BA evaluation. The model gave a specificity of 93.9% and a sensitivity of 93.1% at the
patient level. Obaid et al. [45] used deep learning approaches and ultrasound GB images to
detect BA, with specificities and sensitivities of more than 90%. Furthermore, a radiologist
may be able to spot a pulmonary nodule on a chest X-ray [46], decipher an MRI of the
knee [47], and spot a brain aneurysm on a magnetic resonance angiography based on a DL
model [48]. Unfortunately, we were unable to find any examples in the literature that used
DL to distinguish between GB diseases based on UI. Our research aims to ascertain if a DL
can aid in the differential diagnosis of GB polyps and other diagnoses using ultrasound
imaging. Therefore, this study recommends a new, precise, and trustworthy detection
system for GB diseases. In order to identify abdominal organs from ultrasound scans
utilizing NN and opacity, a sizable training setup is required, which can lead to the NN
performing erroneously. The natural recognition of abdominal organs is growing increas-
ingly difficult as a result of the inadequate quantity of findings, the disparity in media
impact, the increasing differences in organ forms and locations, and the gray-level links
of neighboring organs. Ultrasonic scans level the organ’s margins, since image denoising
filters are used, making it difficult to distinguish between the shapes of different organs.
The proposed method addresses these issues by utilizing systematic techniques at various
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working levels for intra-abdominal organ diagnosis. In contrast to systems utilizing local
mean algorithms (LMA), our approach enhances the UI using a non-local mean (NLM)
filter and a bilateral filter before segmentation, enabling the model to recognize the GB
with greater efficiency and accuracy. The NLM filter efficiently brings out the key details in
the image, making it well suited to segmentation.

4. Proposed Informative Medical Method
4.1. Contribution

The idea consists of the detection of nine GB diseases at the same time using four
DNN models, based on a large dataset of medical images. This approach may represent an
ambitious method to detect even fatal diseases at early stages.

4.2. Datasets

The dataset is composed of ultrasound images of the gallbladder organ from inside
the gastrointestinal tract. It was collected from three hospitals, Al-Nahman Teaching
Hospital, Medical City Hospital, and Jenin Al-Ahly Hospital, as well as from two centers,
Al-Amal Center and the Gastroenterology Center in Baghdad. The collection of data
was collaboratively undertaken, under the supervision of a specialist in gastroenterology.
After collection, these images were carefully sorted by a specialist in radiology at the
Gastroenterology Center of the Medical City Hospital to obtain, at the end, 10,692 useful
ultrasound images. The obtained images were then classified by the same team into nine
classes of gallbladder-related diseases, according to the pathological findings. Each class
provides nearly 1200 images. Therefore, the dataset is balanced in terms of diseases. In total,
782 patients were involved in the data collection; the number of female images was 6246,
with an average age of 63.4, while the number of male images was 4446, with an average
age of 59.6. Furthermore, 80% of the dataset (8553 images) were used for the training step,
and 20% (2139 images) were used for the testing step. When constructing a train/test
split for a dataset that includes multiple images from the same patient, it is important to
ensure that all images from a particular patient are placed in either the training or testing
set but not both. This is because if the images from the same patient are included in both
the training and testing sets, it can lead to overly optimistic results, as the model may
simply memorize features of a particular patient rather than learning more generalizable
patterns. To achieve this, one common approach is to group the images by patient ID and
then randomly assign patients to either the training or testing set, such that all images from
a given patient are placed in the same set. The following conditions were considered for
the image processing:

1. The initial values were divided by 255, and the intensity value for each pixel was
rescaled into the range of (0, 1).

2. Arbitrary zooming and shearing were performed in order to make the model more
robust with slight changes in inputs.

3. All images were horizontally flipped.

4.3. Implementation

Most of the previous works considered the classification of only one disease of the
GB, but, in our work, we focus on detecting nine diseases at once and on determining the
type of disease using UI. However, in this study, we develop a novel conceptual model for
detecting intra-abdominal organs using ultrasound imaging. The implementation of this
study is based on three steps:

Step 1: Enhancement of UI.
Step 2: Region of Interest (ROI)-based image segmentation with the help of DNN.
Step 3: Identification of intra-abdominal organs using four DNN algorithms.

Several researchers used DL techniques to detect intra-abdominal organs, such as the
kidneys [49], breasts [50], pancreas [51], stomach [52], liver [53], and others. Moreover, a
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DL algorithm is used to recognize the GB disease. Following the identification of this organ,
an objective technique for UI is used to split the additional ROI. The patients’ personal
information is not included in the record. The images are degraded by speckle noise and
Gaussian noise throughout the ultrasonic scan. Through the denoising of scans, it is possible
to improve the quality of UI. The scan endpoints are preserved using a bilateral filter and
an NLM filter. Nearly 20% of the data are used as a testing set for the DL algorithms. The
subdivisions below provide a detailed description of each stage of the established approach.
The flowchart of the implementation is shown in Figure 2. The role of the segmentation
task is then to determine the meaning of each pixel in an image and label it accordingly.
In order to simplify an image and analyze it more effectively, it is often separated into
different areas based on the properties of the pixels that indicate objects or borders.
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4.3.1. Step 1: Enhancement of Ultrasound Images

To enhance the ultrasound images, a bilateral filter and an NLM filter were applied to
the initially processed UI in order to detect anomalies in the intra-abdominal organs. The
use of NLM filtering restores the majority of pixels in an image, based on their similarity to
the target pixel. Compared to LMA, the use of NLM filtering can guarantee less feature loss
and significantly more post-filtering clarity. A bilateral filter adds a second layer of filtering
to protect the organ’s boundaries. A bilateral filter modifies the power of each pixel with a
weighted mean of the power values from neighboring pixels. Finally, better UI were used
to divide the ROI of the organ. To increase the quality of the UI, it is necessary to recall the
element data in the image and safeguard the edges.

4.3.2. Step 2: Region of Interest (ROI)-Based Image Segmentation

The u-net architecture was widely used in cell or tissue segmentation and achieved
very good performance on very different biomedical segmentation applications [54]. It is
especially effective with limited dataset images. In this work, we used the active contour
method for segmentation to extract the region of interest (ROI) from medical images of the
GB, followed by classification using a deep neural network (DNN) to identify the type of
GB disease. Actually, it is common practice for medical scans to have “regions of interest”
(ROI). The primary goal of organ and disease detection in an ultrasonic image analysis is to
pinpoint the ROI, so it can be used as a reference point during the segmentation process.
The ROI contains crucial diagnostic data that can be used for pathological examination
and subsequent clinical treatment. The primary goal of segmentation is, in fact, to enhance
the readability and significance of medical images. Thus, in order to determine what
part of the body has to be looked at, it is important to segment the medical image and
extract the ROI. Many rounds of morphological assessment are built into the standard
segmentation method. Therefore, we utilized the same DNN that was used for classification
to automatically segment the UI in order to localize any ROIs that contain the organ. The
first step was to segment the medical images of the GB in order to extract the region of
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interest (ROI). This was accomplished using the active contour method. The active contour
method, also known as snakes, is a technique used for detecting and delineating boundaries
in an image. It is a type of energy minimization method that relies on the curve evolution
to identify the boundaries. The method uses a curve that deforms over iterations to align
with the edges of the object in the image. The curve is attracted to the boundaries by the
internal energy of the curve, while it is repelled from other features in the image by the
external energy.

In this process, the active contour was initiated with a seed point, and the curve
evolved until it reached the boundary of the object of interest. During the evolution of the
curve, a deep neural network (DNN) was used to determine whether the masked region is
an interested part, to allow the active contour to continue and find out the complete ROI.
Each increment in the elected ROI was introduced as an input for the DNN, which yielded
a detection score of recognition. The score was positively relative to the context of the
elected ROI, which increased or decreased as an indicator of the correctness of the active
contour’s progress. Each increment of the recognition score caused the active contour to
progress further, and vice versa. For an invalid progress of the active contour, the ROI
removed the recently added section and tried to increase other sections until it reached the
maximum iteration and obtained the final ROI. The DNN model is used for classification
and diagnosis the disease. Figure 3 represents a complete workflow for using the DNN
twice, to utilize the segmentation process and improve the classification accuracy.
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4.3.3. Step 3: Identification of GB Disease Using Four DNNs

We applied many DNNs to the segmented images in order to identify the GB disease
type. To accomplish this task, we used many transfer learning DNNs’ algorithms. The
best results were detected by the following four deep CNN models: VGG16, InceptionV3,
ResNet152, and MobileNet. Each model relied on a set of pre-trained weights obtained
from ImageNet. We then added more deep layers to the models to make them more
suitable for our purpose. As a first step, the pre-trained model’s output was passed to a
flat layer, which flattened the multi-dimensional vector into a single-dimensional one. The
subsequent dense layers took this vector as the input. We used two dense layers, each
with 1024 neurons and the rectified linear unit (ReLU) activation function. This function
was used to apply the required nonlinear transformations to transform the input at each
node to the corresponding output. After these dense layers, we added a dropout layer
with the dropout rate set to 0.5 to reduce overfitting and to enable the model to generalize
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well. Finally, the output from the dropout layer was used as the input for the last dense
layer with nine neurons and the Softmax activation function, which was used to give the
probability of the input image belonging to each class. The structure of the model used is
shown in Figure 4.
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During training, it is necessary to make frequent changes to the weights of the nodes in
the network and to update these weights after each forward pass, so the gaps between the
observed and predicted values are as small as possible. The backpropagation algorithm is
used to do this task in a layer-by-layer fashion. For each iteration, the model’s performance
is evaluated, and the weights are fine-tuned based on the magnitude of the propagated
mistake. The model is obtained after 15 iterations using the Adam optimizer and a learning
rate of 0.001.

5. Results

To evaluate the proposed approach, we trained the four previously described CNN
models (VGG16, InceptionV3, ResNet152, and MobileNet) using our dataset. A total of 80%
of the dataset was used for training, while 20% was used for testing. The dataset used in
the training phase was different from the one used in the testing phase.

The performance metrics, which were used to measure the ability of the different
models to detect GB diseases, are accuracy, sensitivity, specificity, F1 score, positive pre-
dicted value (PPV), negative predicted value (NPV), AUC, time processing, and confusion
matrix. In the confusion matrix, true positive (TP) denotes a hazardous state that has
been accurately detected, whereas true negative (TN) denotes a non-hazardous state that
has been successfully identified. A non-hazardous state that is mistakenly identified as
a hazardous state is referred to as a false positive (FP), while a precarious state that is
mistakenly identified as a non-hazardous state is referred to as a false negative (FN). A
confusion matrix can be used to determine the performance of a binary classifier.

As shown in Tables 1 and 2, we deduced that all the models gave good results, while
recognizing that MobileNet outperformed the other models when using the same dataset.
Consequently, MobileNet was selected as the optimal model for this task, with an accuracy
of 98.35%. The time processing became high as the number of layers increased, and it was
relative to all the hardware and software materials.

Figures 5 and 6 represent respectively the accuracy repartitions for each disease of
each model and the ROC curve of each used model.

Figure 7 compares the accuracy for each model.
Figure 8 shows the confusion matrix for each model.
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Table 1. The performance metrics for all models used for GB disease detection.

Metrics VGG16 InceptionV3 ResNet152 MobileNet

Accuracy 0.9778 0.8650 0.8530 0.9835
Sensitivity 0.9974 0.8372 0.8213 0.9830
Specificity 0.9795 0.9882 0.9913 0.9979

PPV 0.9795 0.8984 0.9221 0.9838
NPV 0.9970 0.9798 0.9779 0.9978

F1 score 0.9779 0.8667 0.8688 0.9834
AUC 0.8930 0.9120 0.8990 0.9340

Time processing (s) 561 651 752 540

Table 2. The accuracies attained by each model for each GB disease.

Disease Number Type of Disease VGG16 InceptionV3 ResNet152 MobileNet

Dis1 Gallstone 0.965 0.8950 0.79 0.98

Dis2 Abdomen and
retroperitoneum 0.9906 0.8350 0.9195 0.9870

Dis3 Cholecystitis 0.9746 0.91 0.84 0.998

Dis4 Gangrenous
cholecystitis 0.9498 0.88 0.866 0.969

Dis5 Perforation 0.99 0.82 0.89 0.97

Dis6 Polyps and cholesterol
crystals 0.99 0.85 0.816 0.997

Dis7 Adenomyomatosis 0.9778 0.92 0.82 0.9835
Dis8 Carcinoma 0.96 0.81 0.886 0.9935
Dis9 GB wall thickening 0.995 0.865 0.853 0.9835
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6. Discussion

According to the above findings, the VGG16, InceptionV3, ResNet152, and MobileNet
models’ parameters were strong predictors of the GB-disease-type diagnosis, using UI
as the datasets. Figure 7 shows that the proposed approach outperforms the benchmark
models in terms of accuracy, when using the same number of epochs. With regard to
the results of the different models, MobileNet represents the best model for detecting the
different types of GB disease, with an accuracy of 98.35%. Other models were used, but the
best results were produced when using the aforementioned models.

The proposed approach uses DNN to identify the organ from a set of intra-abdominal
ultrasound pictures, while the shape and texture attributes are used to identify GB abnor-
malities. By gathering comprehensive data about a larger number of patients with various
diseases proposed AI system can be developed and used for numerous other systems of
the body and other diseases.

This study successfully joins several other pieces of research that proved the aptitude
of deep learning in the detection of diseases. A variety of GB disease types were success-
fully identified, and adequate values for classifying a serious GB disease were obtained.
Therefore, this approach represents a computer-aided diagnosis.

7. Conclusions

In the last few years, many studies have been conducted for AI research in the medical
sector, to support experts in the early detection of diseases as well as in the prediction of
certain syndromes. Usually, diagnosing GB diseases is difficult for specialists, especially
beginners, so a diagnosis might be incorrect, leading to poor outcomes.

In this paper, we proposed an informative medical method using DNNs to detect the
GB and its diseases by analyzing ultrasound scans of the organ. For this, a large dataset of
intra-abdominal UI was carefully collected over three years.

To our knowledge, this is the first study using DNN to differentiate GB diseases. Thus,
the novelty of this method is the simultaneous detection of this organ and nine different
diseases affecting the GB at the same time, based on UI. In order to recognize the GB with
greater efficiency, we used a non-local mean (NLM) filter and a bilateral filter on the UI
before segmentation, enabling the model to recognize the GB with high accuracy and to
make diagnosis more objective, accurate, and intelligent. Indeed, the suggested method
used DL models, including the VGG16, InceptionV3, ResNet152, and MobileNet algorithms.
MobileNet produced the best outcomes, with an accuracy rate of 98.35%. This approach
has the potential to be a game changer in the medical field, especially for radiologists and
other clinicians who deal with patient care.

However, the low contrast between the target and the background in the images and
aberrations in ultrasound scanning could generate problems in intra-abdominal organ
segmentation, making finding all the intra-abdominal organs a difficult task. It is essential
to develop advanced automatic segmentation and ultrasound image analysis methods to
overcome this issue. In addition, 3D ultrasound scanning can provide more robust results
than 2D imaging.

Finally, our next investigations will focus on the difficult problem of detecting GB
disease in ultrasound pictures utilizing mobile phone photographs, videos, and region-
based convolutional neural network (R-CNN) technology.

Author Contributions: Conceptualization, M.K.; methodology, H.B.; software, A.M.O.; validation,
M.K., A.T. and H.B.; formal analysis, A.T.; investigation, A.M.O.; resources, A.M.O. and A.T.; data cu-
ration, A.M.O., A.A. (Abdulla AlTaee) and A.A. (Alaa Alaerjan); writing—original draft preparation,
A.M.O.; writing—review and editing, M.K., A.T. and A.A. (Alaa Alaerjan); visualization, M.K., A.T.
and H.B.; supervision, M.K. and A.T. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Diagnostics 2023, 13, 1744 13 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets generated during the simulation study are available from
the corresponding author on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gallbladder Disease. Available online: https://englewoodgi.com/conditions-and-diseases/gallbladder-disease/ (accessed on

13 April 2023).
2. American Cancer Society. Gallbladder Cancer Risk Factors. 29 March 2021. Available online: https://www.cancer.org/cancer/

gallbladder-cancer/causes-risks-prevention/risk-factors.html (accessed on 4 October 2021).
3. American Society of Clinical Oncology. Gallbladder Cancer: Risk Factors and Prevention. Available online: https://www.cancer.

net/cancer-types/gallbladder-cancer/risk-factors-and-prevention (accessed on 4 October 2021).
4. Okaniwa, S. Everything you need to know about ultrasound for diagnosis of gallbladder diseases. J. Med. Ultrason. 2021, 48,

145–147. [CrossRef]
5. Ogiela, M.; Bodzioch, S. Computer analysis of gallbladder ultrasonic images towards recognition of pathological lesions.

Opto-Electron. Rev. 2011, 19, 155–168. [CrossRef]
6. Selvathi, D.; Chandralekha, R. Fetal biometric based abnormality detection during prenatal development using deep learning

techniques. Multidimens. Syst. Signal Process. 2022, 33, 1–15. [CrossRef]
7. Li, B.-H.; Hou, B.-C.; Yu, W.-T.; Lu, X.-B.; Yang, C.-W. Applications of artificial intelligence in intelligent manufacturing: A review.

Front. Inf. Technol. Electron. Eng. 2017, 18, 86–96. [CrossRef]
8. Liu, X.; Gao, K.; Liu, B.; Pan, C.; Liang, K.; Yan, L.; Ma, J.; He, F.; Zhang, S.; Pan, S.; et al. Advances in Deep Learning-Based

Medical Image Analysis. Health Data Sci. 2021, 2021, 8786793. [CrossRef]
9. Wang, J.; Zhu, H.; Wang, S.-H. A review of deep learning on medical image analysis. Mob. Netw. Appl. 2021, 26, 351–380.

[CrossRef]
10. Litjens, G.; Kooi, T.; Bejnordi, B.E.; Setio, A.A.A.; Ciompi, F.; Ghafoorian, M.; van der Laak, J.A.W.M.; van Ginneken, B.; Sánchez,

C.I. A survey on deep learning in medical image analysis. Med. Image Anal. 2017, 42, 60–88. [CrossRef] [PubMed]
11. Shen, D.; Wu, G.; Suk, H.-I. Deep learning in medical image analysis. Annu. Rev. Biomed. Eng. 2017, 19, 221–248. [CrossRef]

[PubMed]
12. Zhou, S.K.; Greenspan, H.; Davatzikos, C.; Duncan, J.S.; Van Ginneken, B.; Madabhushi, A.; Prince, J.L.; Rueckert, D.; Summers,

R.M. A review of deep learning in medical imaging: Imaging traits, technology trends, case studies with progress highlights, and
future promises. Proc. IEEE 2021, 109, 820–838. [CrossRef]

13. Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer
with deep neural networks. Nature 2017, 542, 115–118. [CrossRef]

14. Shinde, S.; Kulkarni, U.; Mane, D.; Sapkal, A. Deep learning. In Health Informatics: A Computational Perspective in Healthcare;
Studies in Computational Intelligence; Springer: Singapore, 2021; pp. 19–42.

15. Hatture, S.M.; Kadakol, N. Clinical diagnostic systems based on machine learning and deep learning. In Demystifying Big Data,
Machine Learning, and Deep Learning for Healthcare Analytics; Academic Press: Cambridge, MA, USA, 2021; pp. 159–183. [CrossRef]

16. Maurer, K.J.; Carey, M.C.; Fox, J.G. Roles of Infection, Inflammation, and the Immune System in Cholesterol Gallstone Formation.
Gastroenterology 2009, 136, 425–440. [CrossRef] [PubMed]

17. Stinton, L.M.; Shaffer, E.A. Epidemiology of Gallbladder Disease: Cholelithiasis and Cancer. Gut Liver 2012, 6, 172–187. [CrossRef]
18. Lammert, F.; Gurusamy, K.; Ko, C.W.; Miquel, J.-F.; Méndez-Sánchez, N.; Portincasa, P.; van Erpecum, K.J.; van Laarhoven, C.J.;

Wang, D.Q.H. Gallstones. Nat. Rev. Dis. Prim. 2016, 2, 16024. [CrossRef]
19. Doherty, G.; Manktelow, M.; Skelly, B.; Gillespie, P.; Bjourson, A.J.; Watterson, S. The Need for Standardizing Diagnosis, Treatment

and Clinical Care of Cholecystitis and Biliary Colic in Gallbladder Disease. Medicina 2022, 58, 388. [CrossRef]
20. Gallaher, J.R.; Charles, A. Acute cholecystitis: A review. JAMA 2022, 327, 965–975. [CrossRef]
21. Jones, M.W.; Genova, R.; O’Rourke, M.C. Acute cholecystitis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023.

Available online: https://www.ncbi.nlm.nih.gov/books/NBK459171/ (accessed on 24 October 2022).
22. Derici, H.; Kara, C.; Bozdag, A.D.; Nazli, O.; Tansug, T.; Akca, E. Diagnosis and treatment of gallbladder perforation. World J.

Gastroenterol. 2006, 12, 7832–7836. [CrossRef]
23. Mishal, S.; Penny, S.M. Emphysematous cholecystitis: A deadly twist to a common disease. J. Diagn. Med. Sonogr. 2016, 32,

131–137.
24. Zafar, S.N.; Cornwell, E.E. Cholecystitis. Geriatr. Trauma Acute Care Surg. 2018, 9, 307–311.
25. Dilek, O.N.; Karasu, S.; Dilek, F.H. Diagnosis and Treatment of Gallbladder Polyps: Current Perspectives. Euroasian J.

Hepato-Gastroenterol. 2019, 9, 40–48. [CrossRef]
26. Golse, N.; Lewin, M.; Rode, A.; Sebagh, M.; Mabrut, J.-Y. Gallbladder adenomyomatosis: Diagnosis and management. J. Visc.

Surg. 2017, 154, 345–353. [CrossRef] [PubMed]
27. Dutta, U. Gallbladder cancer: Can newer insights improve the outcome? J. Gastroenterol. Hepatol. 2012, 27, 642–653. [CrossRef]

https://englewoodgi.com/conditions-and-diseases/gallbladder-disease/
https://www.cancer.org/cancer/gallbladder-cancer/causes-risks-prevention/risk-factors.html
https://www.cancer.org/cancer/gallbladder-cancer/causes-risks-prevention/risk-factors.html
https://www.cancer.net/cancer-types/gallbladder-cancer/risk-factors-and-prevention
https://www.cancer.net/cancer-types/gallbladder-cancer/risk-factors-and-prevention
https://doi.org/10.1007/s10396-021-01093-3
https://doi.org/10.2478/s11772-011-0001-y
https://doi.org/10.1007/s11045-021-00765-0
https://doi.org/10.1631/FITEE.1601885
https://doi.org/10.34133/2021/8786793
https://doi.org/10.1007/s11036-020-01672-7
https://doi.org/10.1016/j.media.2017.07.005
https://www.ncbi.nlm.nih.gov/pubmed/28778026
https://doi.org/10.1146/annurev-bioeng-071516-044442
https://www.ncbi.nlm.nih.gov/pubmed/28301734
https://doi.org/10.1109/JPROC.2021.3054390
https://doi.org/10.1038/nature21056
https://doi.org/10.1016/b978-0-12-821633-0.00011-8
https://doi.org/10.1053/j.gastro.2008.12.031
https://www.ncbi.nlm.nih.gov/pubmed/19109959
https://doi.org/10.5009/gnl.2012.6.2.172
https://doi.org/10.1038/nrdp.2016.24
https://doi.org/10.3390/medicina58030388
https://doi.org/10.1001/jama.2022.2350
https://www.ncbi.nlm.nih.gov/books/NBK459171/
https://doi.org/10.3748/wjg.v12.i48.7832
https://doi.org/10.5005/jp-journals-10018-1294
https://doi.org/10.1016/j.jviscsurg.2017.06.004
https://www.ncbi.nlm.nih.gov/pubmed/28844704
https://doi.org/10.1111/j.1440-1746.2011.07048.x


Diagnostics 2023, 13, 1744 14 of 15

28. Kee, K.-M.; Lu, S.-N. Diagnostic efficacy of ultrasound in hepatocellular carcinoma diagnosis. Expert Rev. Gastroenterol. Hepatol.
2017, 11, 277–279. [CrossRef] [PubMed]

29. Tanaka, H. Current role of ultrasound in the diagnosis of hepatocellular carcinoma. J. Med. Ultrason. 2020, 47, 239–255. [CrossRef]
[PubMed]

30. Wennmacker, S.Z.; Lamberts, M.P.; Drenth, J.P.; Gurusamy, K.S.; van Laarhoven, C.J. Transabdominal ultrasound or endoscopic
ultrasound for diagnosis of gallbladder polyps. Cochrane Database Syst. Rev. 2016, 8, CD012233. [CrossRef]

31. Zhang, L.; Zhu, H.; Yang, T. Deep neural networks for fatty liver ultrasound images classification. In Proceedings of the 31st
Chinese Control and Decision Conference, CCDC 2019, Nanchang, China, 3–5 June 2019; pp. 4641–4646. [CrossRef]

32. Zheng, Q.; Furth, S.L.; Tasian, G.E.; Fan, Y. Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract
in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features. J.
Pediatr. Urol. 2019, 15, 75.e1–75.e7. [CrossRef]

33. Arora, H.; Mittal, N. Image Enhancement Techniques for Gastric Diseases Detection using Ultrasound Images. In Proceedings of
the 3rd International Conference on Electronics and Communication and Aerospace Technology, ICECA 2019, Coimbatore, India,
12–14 June 2019; pp. 251–256. [CrossRef]

34. Precious, J.G.; Selvan, S. Detection of Abnormalities in Ultrasound Images Using Texture and Shape Features. In Proceedings of the
2018 International Conference on Current Trends towards Converging Technologies (ICCTCT), Coimbatore, India, 1–3 March 2018;
pp. 1–6. [CrossRef]

35. Krishnan, K.R.; Radhakrishnan, S. Hybrid approach to classification of focal and diffused liver disorders using ultrasound images
with wavelets and texture features. IET Image Process. 2017, 11, 530–538. [CrossRef]

36. Acharya, U.R.; Meiburger, K.M.; Koh, J.E.W.; Ciaccio, E.J.; Arunkumar, N.; See, M.H.; Taib, N.A.M.; Vijayananthan, A.; Rahmat,
K.; Fadzli, F.; et al. A Novel Algorithm for Breast Lesion Detection Using Textons and Local Configuration Pattern Features with
Ultrasound Imagery. IEEE Access 2019, 7, 22829–22842. [CrossRef]

37. Liu, S.; Wang, Y.; Yang, X.; Lei, B.; Liu, L.; Li, S.X.; Ni, D.; Wang, T. Deep Learning in Medical Ultrasound Analysis: A Review.
Engineering 2019, 5, 261–275. [CrossRef]

38. Kumar, E.S.; Bindu, C.S. Medical Image Analysis Using Deep Learning: A Systematic Literature Review. Commun. Comput. Inf.
Sci. 2019, 985, 81–97. [CrossRef]

39. Van Sloun, R.J.G.; Cohen, R.; Eldar, Y.C. Deep Learning in Ultrasound Imaging. Proc. IEEE 2019, 108, 11–29. [CrossRef]
40. Mupparapu, M.; Chen, Y.-C.; Hong, D.-K.; Wu, C.-W. The Use of Deep Convolutional Neural Networks in Biomedical Imaging: A

Review. J. Orofac. Sci. 2019, 11, 3–10. [CrossRef]
41. Urman, J.M.; Herranz, J.M.; Uriarte, I.; Rullán, M.; Oyón, D.; González, B.; Fernandez-Urién, I.; Carrascosa, J.; Bolado, F.;

Zabalza, L.; et al. Pilot Multi-Omic Analysis of Human Bile from Benign and Malignant Biliary Strictures: A Machine-Learning
Approach. Cancers 2020, 12, 1644. [CrossRef] [PubMed]

42. Yao, C.; Wu, S.; Liu, Z.; Li, P. A deep learning model for predicting chemical composition of gallstones with big data in medical
Internet of Things. Futur. Gener. Comput. Syst. 2018, 94, 140–147. [CrossRef]

43. Chang, Y.; Wu, Q.; Chi, L.; Huo, H.; Li, Q. Adoption of combined detection technology of tumor markers via deep learning
algorithm in diagnosis and prognosis of gallbladder carcinoma. J. Supercomput. 2021, 78, 3955–3975. [CrossRef]

44. Zhou, W.; Yang, Y.; Yu, C.; Liu, J.; Duan, X.; Weng, Z.; Chen, D.; Liang, Q.; Fang, Q.; Zhou, J.; et al. Ensembled deep learning
model outperforms human experts in diagnosing biliary atresia from sonographic gallbladder images. Nat. Commun. 2021, 12, 1259.
[CrossRef]

45. Obaid, A.M.; Turki, A.; Bellaaj, H.; Ksontini, M. Detection of Biliary Artesia using Sonographic Gallbladder Images with the help
of Deep Learning approaches. In Proceedings of the 2022 8th International Conference on Control, Decision and Information
Technologies (CoDIT), Istanbul, Turkey, 17–20 May 2022; IEEE: New York, NY, USA, 2022; Volume 1, pp. 705–711. [CrossRef]

46. Horry, M.; Chakraborty, S.; Pradhan, B.; Paul, M.; Zhu, J.; Loh, H.W.; Barua, P.D.; Arharya, U.R. Debiasing pipeline improves deep
learning model generalization for X-ray based lung nodule detection. arXiv 2022, arXiv:2201.09563.

47. Hassanpour, S.; Langlotz, C.P.; Amrhein, T.J.; Befera, N.T.; Lungren, M.P. Performance of a Machine Learning Classifier of Knee
MRI Reports in Two Large Academic Radiology Practices: A Tool to Estimate Diagnostic Yield. Am. J. Roentgenol. 2017, 208,
750–753. [CrossRef]

48. Terasaki, Y.; Yokota, H.; Tashiro, K.; Maejima, T.; Takeuchi, T.; Kurosawa, R.; Yamauchi, S.; Takada, A.; Mukai, H.; Ohira, K.; et al.
Multidimensional Deep Learning Reduces False-Positives in the Automated Detection of Cerebral Aneurysms on Time-of-Flight
Magnetic Resonance Angiography: A Multi-Center Study. Front. Neurol. 2022, 12, 2442. [CrossRef]

49. Li, D.; Xiao, C.; Liu, Y.; Chen, Z.; Hassan, H.; Su, L.; Liu, J.; Li, H.; Xie, W.; Zhong, W.; et al. Deep Segmentation Networks for
Segmenting Kidneys and Detecting Kidney Stones in Unenhanced Abdominal CT Images. Diagnostics 2022, 12, 1788. [CrossRef]
[PubMed]

50. Balkenende, L.; Teuwen, J.; Mann, R.M. Application of Deep Learning in Breast Cancer Imaging. Semin. Nucl. Med. 2022, 52,
584–596. [CrossRef] [PubMed]

51. Goyal, H.; Sherazi, S.A.A.; Gupta, S.; Perisetti, A.; Achebe, I.; Ali, A.; Tharian, B.; Thosani, N.; Sharma, N.R. Application of artificial
intelligence in diagnosis of pancreatic malignancies by endoscopic ultrasound: A systemic review. Ther. Adv. Gastroenterol. 2022,
15, 1–11. [CrossRef] [PubMed]

https://doi.org/10.1080/17474124.2017.1292126
https://www.ncbi.nlm.nih.gov/pubmed/28162003
https://doi.org/10.1007/s10396-020-01012-y
https://www.ncbi.nlm.nih.gov/pubmed/32170489
https://doi.org/10.1002/14651858.CD012233
https://doi.org/10.1109/ccdc.2019.8833364
https://doi.org/10.1016/j.jpurol.2018.10.020
https://doi.org/10.1109/iceca.2019.8822148
https://doi.org/10.1109/icctct.2018.8551174
https://doi.org/10.1049/iet-ipr.2016.1072
https://doi.org/10.1109/ACCESS.2019.2898121
https://doi.org/10.1016/j.eng.2018.11.020
https://doi.org/10.1007/978-981-13-8300-7_8
https://doi.org/10.1109/JPROC.2019.2932116
https://doi.org/10.4103/jofs.jofs_55_19
https://doi.org/10.3390/cancers12061644
https://www.ncbi.nlm.nih.gov/pubmed/32575903
https://doi.org/10.1016/j.future.2018.11.011
https://doi.org/10.1007/s11227-021-03843-z
https://doi.org/10.1038/s41467-021-21466-z
https://doi.org/10.1109/codit55151.2022.9804084
https://doi.org/10.2214/AJR.16.16128
https://doi.org/10.3389/fneur.2021.742126
https://doi.org/10.3390/diagnostics12081788
https://www.ncbi.nlm.nih.gov/pubmed/35892498
https://doi.org/10.1053/j.semnuclmed.2022.02.003
https://www.ncbi.nlm.nih.gov/pubmed/35339259
https://doi.org/10.1177/17562848221093873
https://www.ncbi.nlm.nih.gov/pubmed/35509425


Diagnostics 2023, 13, 1744 15 of 15

52. Lin, Z.; Li, Z.; Cao, P.; Lin, Y.; Liang, F.; He, J.; Huang, L. Deep learning for emergency ascites diagnosis using ultrasonography
images. J. Appl. Clin. Med. Phys. 2022, 23, e13695. [CrossRef] [PubMed]

53. Survarachakan, S.; Prasad, P.J.R.; Naseem, R.; de Frutos, J.P.; Kumar, R.P.; Langø, T.; Cheikh, F.A.; Elle, O.J.; Lindseth, F. Deep
learning for image-based liver analysis—A comprehensive review focusing on malignant lesions. Artif. Intell. Med. 2022, 130, 102331.
[CrossRef] [PubMed]

54. Olaf, R.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image
Computing and Computer-Assisted Intervention—MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015;
Part III 18; Springer International Publishing: Berlin/Heidelberg, Germany, 2015.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/acm2.13695
https://www.ncbi.nlm.nih.gov/pubmed/35723875
https://doi.org/10.1016/j.artmed.2022.102331
https://www.ncbi.nlm.nih.gov/pubmed/35809970

	Introduction 
	Overview of GB Diseases 
	Gallstones 
	Biliary Colic and Calculous Cholecystitis 
	Gangrenous Cholecystitis 
	Polyps and Cholesterol Polyps 
	Adenomyomatosis of the GB 
	Carcinoma 

	Literature Review 
	Proposed Informative Medical Method 
	Contribution 
	Datasets 
	Implementation 
	Step 1: Enhancement of Ultrasound Images 
	Step 2: Region of Interest (ROI)-Based Image Segmentation 
	Step 3: Identification of GB Disease Using Four DNNs 


	Results 
	Discussion 
	Conclusions 
	References

