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Abstract: N7-Methylguanosine (m7G) modification holds significant importance in regulating post-
transcriptional gene expression in epigenetics. Long non-coding RNAs (lncRNAs) have been demon-
strated to play a crucial role in cancer progression. m7G-related lncRNA may be involved in the
progression of pancreatic cancer (PC), although the underlying mechanism of regulation remains
obscure. We obtained RNA sequence transcriptome data and relevant clinical information from
the TCGA and GTEx databases. Univariate and multivariate Cox proportional risk analyses were
performed to build a twelve-m7G-associated lncRNA risk model with prognostic value. The model
was verified using receiver operating characteristic curve analysis and Kaplan–Meier analysis. The
expression level of m7G-related lncRNAs in vitro was validated. Knockdown of SNHG8 increased
the proliferation and migration of PC cells. Differentially expressed genes between high- and low-risk
groups were identified for gene set enrichment analysis, immune infiltration, and potential drug
exploration. We conducted an m7G-related lncRNA predictive risk model for PC patients. The model
had independent prognostic significance and offered an exact survival prediction. The research
provided us with better knowledge of the regulation of tumor-infiltrating lymphocytes in PC. The
m7G-related lncRNA risk model may serve as a precise prognostic tool and indicate prospective
therapeutic targets for PC patients.

Keywords: m7G; lncRNA; pancreatic adenocarcinoma; overall survival; prognostic signature; immune
infiltration

1. Introduction

Pancreatic cancer (PC) is one of the deadliest human diseases, ranking as the third
leading cause of tumor-related mortality in America. The 5-year survival rate of PC is only
11% [1]. Surgical resection and adjuvant chemotherapy tend to be the main opportunities to
improve the long-term prognosis of patients with pancreatic carcinoma. However, over 80%
of patients present with unresectable or metastatic disease at diagnosis as a result of vague
symptoms at the early stage of the tumor [2]. Over the past several decades, there have
been improvements in diagnostic procedures and systemic treatments for advanced disease,
which have contributed to some, although modest, progress in patient outcomes [3]. To
have a clinically significant impact, new approaches to screening high-risk individuals to
detect pancreatic cancer at earlier stages are urgently needed.

Epigenetic modifications, whether acquired or inherited, regulate gene expression at
the transcriptional level without modifying the sequence of DNA. These modifications con-
tribute to multiple pathological processes, including tumorigenesis [4]. Over 100 distinct
forms of RNA modification have been reported to date. The methylation of various RNA
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species has emerged as a crucial regulator of transcript expression [5]. N6-methyladenosine
(m6A) is the most prevalent and abundant epigenetic modification, primarily found within
the RRACH motif and distributed in the 3′UTR sections near stop codons [6]. Additionally,
two modifications that occur throughout eukaryotic mRNAs are N1-methyladenosine
(m1A) and 5-methylcytosine (m5C) [7]. Moreover, N7-methylguanosine (m7G) is described
as a methyltransferase that attaches a methyl group to the seventh N position of guanine
(G) in mRNA [8]. As one of the most prevalent kinds of posttranscriptional base alteration,
m7G modification exerts a broad influence on RNAs, including mRNA, rRNA, and tRNA.
Furthermore, it plays a key role in several biological processes, such as mRNA translation
and transcriptional elongation, and functions as a significant disease diagnostic marker [9].
Recent research has demonstrated that tumor oncogenesis and development are regulated
by m7G modification. For instance, METTL1-controlled changes to tRNA m7G made
HCC cells resistant to lenvatinib by making it easier for EGFR pathway genes to be trans-
lated. Moreover, METTL1 may be a viable resistance prediction marker and intervention
target [10]. In addition, in hepatocellular carcinoma, METTL1-mediated modification of
tRNA m7G boosts target mRNA translation with an increased frequency of m7G-related
codons. Patients with HCC have a poor prognosis as a result of ectopic expression of
METTL1 [11]. Recent bioinformatics research has shown that some cancers are caused by
the dysregulation of m7G-related genes [12–14]. However, it remains uncertain whether
m7G modification is associated with PC.

Long noncoding RNAs are generated by their respective genes and have a promoter
structure and polyA tail identical to those of messenger RNA. [15]. During the process of
differentiation, several lncRNAs are generated by distinct splicing mechanisms. Several
studies have demonstrated that the epigenetic, transcriptional, and posttranscriptional
levels of downstream genes can be modulated by lncRNAs. These include histone process-
ing, gene silencing, nuclear transport, transcriptional interference, and regulation, which
are directly associated with the onset of numerous human disorders [16,17]. Methylation-
related genes may impact malignant tumor growth by changing the methylation level
of lncRNAs [18–20]. Nevertheless, the role of m7G modification-related lncRNAs in the
progression of PC remains uncertain. It is thus critical to find m7G-associated lncRNA
biomarkers for the early identification and prognosis evaluation of PC.

Hence, based on PC patient data obtained from The Cancer Genome Atlas dataset
(TCGA) and bioinformatic and statistical analysis, we created an m7G-related lncRNA
prognostic signature (m7G-LPS) to reliably predict the survival probabilities of PC patients.
This model was designed to evaluate the overall survival of PC patients with a unique
prognostic model based on m7G. Next, we developed a nomogram to predict the OS
of PC patients. Additionally, we investigated the correlation between the relationship
and immunotherapy responses. Using the publicly accessible drug sensitivity database,
we finally identified potential medicines that target this m7G-related lncRNA profile. In
conclusion, our study suggests that the risk model may provide a potential predictive tool
and indicate factors that crucially regulate the dispersion of PC immune cells.

2. Materials and Methods
2.1. Preparation of Data

RNA sequence data and clinical characteristics of PC patients were downloaded from
the Cancer Genome Atlas (TCGA) database and the Genotype–Tissue Expression Project
(GTEx). The dataset contained 167 normal pancreatic tissues from GTEx and 178 PC tissues
from TCGA, along with 4 adjacent peritumoral tissues. The R package “sva” was employed
to standardize gene expression profile data from several databases in bulk. Thirty-five
m7G-related genes were identified from the gene set enrichment analysis (GSEA) website
(http://www.gsea-msigdb.org/gsea/login.jsp, accessed on 1 September 2022) and the
published literature [21]. Patients with a follow-up time of less than a month (30 days) were
omitted to eliminate bias in the subsequent analysis. Patients who lacked full clinical data
were excluded from the subsequent analysis.

http://www.gsea-msigdb.org/gsea/login.jsp


Diagnostics 2023, 13, 1697 3 of 19

2.2. Identification of Differentially Expressed m7G-Related lncRNAs in TCGA and GTEx

Gene probes of the expression matrix were annotated based on the lncRNA annota-
tion dataset obtained from GENCODE (https://www.gencodegenes.org/, accessed on 1
September 2022). The R package “limma” was utilized to evaluate and filter the differen-
tially expressed lncRNAs between the control group and the PC group. The criteria used
for selection were |log2 fold change (FC)| > 1, and false discovery rate (FDR) < 0.05, using
data from the TCGA and GTEx cohorts. As a result, 464 different lncRNAs expressed in
pancreatic cancer were selected from 171 normal tissues and 178 tumor tissues. Then, we
screened lncRNAs co-expressed with 35 m7G-related genes. With the combined matrices,
we conducted a Pearson correlation analysis (|coefficients| > 0.3, and p < 0.001) between
35 m7G-related genes and differentially expressed lncRNAs. Consequently, 169 differen-
tially expressed m7G-related lncRNAs were found between normal pancreas tissues and
PC tissues.

2.3. Construction of the Prognostic Risk Model of m7G-Related lncRNAs

We conducted a univariate Cox analysis with a threshold of p < 0.05 to identify m7G-
related lncRNAs with prognostic value. Then, multivariable Cox analysis was utilized to
construct a risk score. The following equation was employed to calculate the risk score:
risk score = coefficient (lncRNAi) × expression (lncRNAi), where coefficient (lncRNAi)
represents the survival correlation regression coefficient of every lncRNA while expression
(lncRNAi) represents each lncRNA’s expression.

2.4. Evaluation of the Risk Model of 12 m7G-Related lncRNAs as an Independent Prognostic
Factor in PC

Patients with PC were separated into two groups based on the prognostic risk score’s
median value. The whole genome, m7G-related coding genes, and m7G-related and risk
model lncRNA expression profiles were analyzed by principal component analysis (PCA).
The overall survival (OS) of PC patients was plotted using Kaplan-Meier survival curves.
To determine if the diagnostic and prognostic value of the risk score was confounded
by other clinical variables, univariate and multivariate Cox regression analyses were
performed. Clinicopathological characteristics were assessed for their diagnostic and
prognostic significance using receiver operating characteristic (ROC) curves.

2.5. Functional Enrichment Analysis

After samples were split into two groups based on the risk score, highly enriched
pathways in distinct risk categories were identified with the use of GSEA. There were
1000 gene set permutations performed for each analysis. A normalized p-value of 0.05 and
a false discovery rate of 0.25 were regarded as significant gene sets. To acquire multiple
GSEA diagrams, the top seven functions enriched in the high-risk groups were visualized
with an enrichment lot. DEGs were enriched and evaluated by using KEGG and GO with
the clusterProfiler package. The results of the enrichment were then exhibited as bubble
diagrams and barplots using the ggplot2 and enrichplot packages.

2.6. Analysis of the Immune Microenvironment

CIBERSORT is a common instrument for calculating the percentage of invasive im-
mune cells by identifying marker gene expression. By integrating the transcriptome data
of all PC patients with the expression of marker genes from 22 distinct kinds of immune
cells, we utilized CIBERSORT to obtain the distribution scores of tumor-infiltrating lymph
cells. To improve the accuracy of the deconvolution algorithm, the CIBERSORT p-value and
root-mean-square error for each sample file were computed using 100 permutations of the
default signature matrix. We next filtered and chose data from PC tissues for further analy-
sis using the CIBERSORT value of p < 0.05. The immune cell distribution of PC samples
was analyzed via the CIBERSORT method. To investigate the relationship between immune
infiltrating cells and the risk score, immune cell infiltration data files were acquired from

https://www.gencodegenes.org/
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TIMER 2.0. These files were then analyzed using various R programs, including limma,
ggplot2, scales, and ggtext.

2.7. Evaluation of Drug Sensitivity

With the pRRophetic R package, we evaluated the effectiveness of the patients’ therapy
in different risk subgroups based on the half maximal inhibitory concentration (IC50).

2.8. Cell Culture and In Vitro Experiments

Two human pancreatic cancer cell lines (PANC-1 and MiaPaCa-2) and the human normal
pancreatic ductal epithelial cell line HPDE6-C7 were cultured in DMEM (Gibco, New York, NY,
USA) supplemented with 10% fetal bovine serum (Gibco, United States), 1% penicillin, and
1% streptomycin. The cell lines were maintained at 37 ◦C with 5% CO2. Total cellular RNA
was extracted by TRIzol reagent (Accurate Biology, Shanghai, China) to assess the expression
level of m7G-related lncRNAs. Reverse transcription was performed using HyperScript III
RT SuperMix for qPCR with the gDNA Remover Kit (R202, EnzyArtisan, Shanghai, China).
PCR was performed using Universal SYRB qPCR Mix (Q204, EnzyArtisan, Shanghai, China).
GAPDH expression served as an internal control to calibrate the expression level of RNA. The
relative expression levels were calculated via the 2−∆∆CT method. Each PCR was carried out
three times, and the results were analyzed with GraphPad Prism (version 9.0.0). The primer
sequences for PCR amplification are listed in Supplementary Table S1. Cell proliferation was
detected by the Cell Counting Kit-8 assay (CCK-8) and EdU assay, while cell migration was
detected by transwell and wound healing experiments.

2.9. Statistical Analysis

The expression levels of 35 m7G-related genes in 178 PC tissues and 171 normal
pancreatic tissues were compared using a one-way analysis of variance. Cytoscape was
used to establish and visualize the coexpression network of 12 prognostic m7G-related
lncRNAs and mRNAs. The correlation between the expression of 12 m7G-related lncRNAs
and clinicopathological factors was analyzed using the R package ggpubr. The OS time of
each group was compared using the Kaplan-Meier technique. The ROC curve was utilized
to evaluate the prognostic accuracy of the risk score model. A one-way ANOVA was used
to analyze the results of RT-qPCR. p < 0.05 was considered to indicate statistical significance.
R software (version 4.1.3) was utilized for bioinformatic analysis.

3. Results
3.1. Identification of Differentially Expressed m7G-Related LncRNAs in Patients with PC

The process for risk model development and subsequent analysis is shown in Figure 1.
We gathered data for 349 samples, including 178 tumor tissues and 171 normal tissues, from
the TCGA and GTEx databases. Thirty-five m7G-related genes were selected from the GSEA
database and previous literature. As shown in Figure 2a, the expression of m7G-related
genes was considerably different between PC and normal tissues. Among m7G-related
genes, the expression of DCP2, NUDT1, NUDT10, NUDT16, NUDT16L1, AGO2, GEMIN5,
NCBP1, NCBP2, EIF4G3, IFIT5, TRMT112, and RNMT was notably elevated in the tissues
of PDAC patients (Figure S1a, p < 0.01). We also noticed that the expression of NUDT11,
NUDT3, NUDT4, EIF3D, EIF4A1, NUDT4B, NUDT5, NUDT7, NCBP2L, CYFIP2, CYFIP1,
EIF4E3, EIF4E2, EIF4E1B, EIF4E, LARP1, NCBP3, SNUPN, and METTL1 was considerably
decreased in tumor tissues compared to normal pancreas tissues (p < 0.01). However, no
noticeable variations in the expression levels of DCPS, LSM1, and WDR4 between the
groups. We then attempted to determine the associations among m7G-related genes. A PPI
network of 35 m7G-related genes was constructed by STRING (Figure 2b). The number
of nodes with more than 14 connections is depicted in Figure 2c. EIF4E, EIF4E1B, NCBP1,
NCBP2, and EIF4E2 were defined as hub genes because their node degree values were
30 or more. EIF4A1 and NCBP3 had the strongest connections, with a coefficient of 0.95
(Figure 2d). Moreover, according to the total lncRNAs available in the TCGA and GETx
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databases, 464 different expressed lncRNAs in pancreatic cancer were selected with the
criteria of |Log2FC| > 1 and p < 0.05 from 171 normal tissues and 178 tumor tissues.
Then, based on Pearson correlation analysis (|coefficients| > 0.3 and p < 0.001) and the
expression of 35 m7G-related genes, 169 differentially expressed m7G-related lncRNAs
(|log2FC| > 1 and p < 0.05) were selected, among which 62 lncRNAs were downregulated
and 107 lncRNAs were upregulated (Figure S1b).
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Figure 1. The flowchart of this study.

3.2. Construction of the m7G-Related lncRNAs Risk Model

With univariate Cox regression analysis, we obtained 27 lncRNAs that had signif-
icant correlations with OS. In addition, we performed a multivariate Cox regression
analysis. The results demonstrated that 12 of the 27 m7G-related lncRNAs had prognos-
tic relevance. The following formula was employed to calculate the risk score: risk score
= (0.61460602245472 × SNHG8) + (0.264591919818808 × U62317.1) + (−0.678414290153153
×MEG9) + (−0.816129541817646 × PTOV1-AS2) + (0.136027243890333 × LINC02086) +
(0.71803727545072 × AC090617.5) + (0.229551930361753 × UCA1) + (0.314474780097137 ×
AC136475.3) + (−1.16089458841795 × RPARP-AS1) + (0.638671859460585 × AC245041.2) +
(0.542733157457352 × AP000892.2) + (0.572444792342415 × AC098613.1). As demonstrated
in Figure 3a, we developed a coexpression network to visualize 12 m7G-related lncRNAs-
mRNAs in PC. The gene coexpressed with the most lncRNAs was CYFIP (n = 10), followed
by CYFIP1 (n = 7) and NUDT16L1 (n = 7). SNHG8 (n = 8) was shown to be coexpressed
with the highest number of mRNAs. The Sankey diagram exhibited the association be-
tween 35 m7G-related mRNAs and 12 risk lncRNAs, of which MEG9, PTOV1-AS2 and
RPARP-AS1 were protective factors, whereas the rest were risk factors (Figure 3b).
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Figure 2. Correlations between m7G-related genes. (a) Heatmap depicting the differences in m7G-
related genes expression between T and N groups. N, normal samples; T, tumor samples. (b,c) Net-
work of protein–protein interactions illustrating the relationships between differentially expressed
m7G-related genes. (d) Pearson correlation analysis of the m7G-related genes.
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Figure 3. Construction of the m7G-related lncRNAs risk model. (a,b) Coexpression network of
m7G-related lncRNAs−mRNAs. (c) Heatmap indicated the different expression of m7G-related
lncRNAs in low- and high-risk groups. (d) Kaplan−Meier survival subgroup analysis for overall
survival in high- and low-risk scores group (p < 0.001). (e,f) Risk score distribution based on the
prognostic signature of m7G-related lncRNAs and survival status in patients with PC.

The median value of the risk score was utilized to divide the PC patients into low- and
high-risk subgroups to evaluate the validity and sensitivity of the predictive risk-related sig-
nature. The heatmap and violin plot demonstrated that all lncRNAs exhibited statistically
significant variations between high- and low-risk pancreatic tissues. These findings suggest
that m7G-related lncRNAs may be essential in PC progression (Figures 3c and S1c). The
Kaplan-Meier analysis of survival revealed that the high-risk group had a shorter survival
duration than the low-risk group (p < 0.001, Figure 3d). This demonstrates that the risk
score had prognostic significance. The association between the risk score and the related
survival status was then depicted using risk curves and scatter plots (Figure 3e,f), which
suggested that the mortality rate was positively correlated with the risk score. Thus, based
on the 12 m7G-reated lncRNAs, we discovered m7G-related lncRNAs with significant
prognostic value, and the predictive value of the m7G-LPS was established.
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3.3. Correlation between Differently Expressed m7G-Related lncRNAs and Clinical Factors

First, patients were separated into groups based on the expression of lncRNAs (high
versus low). We noted considerable variation in the OS of the patients (Figures 4a and S2a).
The OS of individuals with high expression levels of AC098613.1, AC136475.3, AC245041.2,
LINC02086, U62317.1, and UCA1 was inferior to that of individuals with low expression
levels (p < 0.05). In contrast, patients with high expression levels of AC090617.5, AP000892.2,
MEG9, PTOV1-AS2, RPARP-AS1, and SNHG8 had longer OS than those with low expres-
sion levels (p < 0.05). The heatmap demonstrated substantial differences (p < 0.001) in
m7G-LPS survival status between groups with high and low risk. However, we failed
to discover any appreciable variations by age, sex, pathological stage, grade, N stage, T
stage, or M stage (Figure 4b). The link between clinicopathological characteristics and
m7G-related lncRNAs was then thoroughly examined. We discovered that the expression of
six lncRNAs differed significantly between patients grouped by T stage. It was discovered
that four lncRNAs showed substantial differences between the two N-stage groups. Nine
and seven lncRNAs were found to exhibit considerable differences in expression in the
evaluation of patients grouped by grade and stage, respectively. Interestingly, we found
that SNHG8 expression differed between all groups above, indicating that the gene may
be the main predictive factor (Figure 4c). R0 resection rates were closely related to tumor
metastasis and tumor prognosis. To further investigate the relation between R0 resection
rates and m7G-LPS, we performed the Chi-square test. In Figure S3a, we conclude that
R0 resection rates have a negative correlation with the expression of the m7G-LPS. The
high-risk group had lower R0 resection rates than the low-risk group, which meant that
the high-risk group had a higher probability of cancer metastasis. However, no significant
difference was found between R0 resection rates and the expression of SNHG8 (Figure S3b).
In 2020, Chan-Seng-Yue et al. [2] conducted whole-genome and transcriptome analyses
on 314 specimens from pancreatic cancer patients. Researchers labeled “basal-like-A,”
“basal-like-B,” “hybrid,” “classical-A” and “classical-B”’ in pancreatic cancer. Clinically,
basal-like-A tumors are enriched in metastatic disease, whereas basal-like-B tumors are
enriched in resectable disease. The m7G-LPS may serve as a predictor of tumor invasion
and resection effects, which means the model can distinguish basal-like-A tumors from
basal-like-B tumors to some extent.

3.4. Construction of the Nomogram and Verification of the Prognostic Model Built Using m7G
Related lncRNAs

We performed univariate and multivariate Cox regression analyses to determine
whether m7G-LPS might be employed as an independent prognostic factor. The risk score
was found to be a crucial predictive indicator that may be valuable independent of sex,
age, grade, TNM stage, and pathological stage. The univariate Cox regression analysis
showed that the risk score had an HR of 1.219 and a 95% confidence interval of 1.161–1.281
(p < 0.001). Moreover, in the multivariate Cox regression analysis, the HR of the risk score
was 1.244, and the 95% confidence interval was 1.178–1.314 (p < 0.001) (Figure S2b). The
distinct patterns of m7G distribution on the expression profile of all genes, the expression
profile of m7G-related genes, the expression profile of m7G-related lncRNAs, and the
expression profile of 12 risk lncRNAs between the two subgroups were identified using
PCA (Figure 5a–d). The area under the ROC curve (AUC) value of the risk score was
assessed to determine its sensitivity and specificity for forecasting the prognosis of PC
patients. We discovered that the risk score’s AUC value was 0.785, and it was higher when
compared with the results of other clinicopathological factors (Figure 5e). According to the
aforementioned findings, m7G-LPS was a highly important independent predictive factor
for PC individuals. The nomogram, which may be in clinical practice to forecast a patient’s
prognosis, was created simultaneously using the risk score (Figure 5f).
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Figure 4. The association between the expression of m7G−LPS and clinicopathological factors.
(a) Overall survival analysis of the 12 m7G-related lncRNAs between high- and low-risk groups.
(b) Heatmap displaying the relationship between clinicopathological characteristics and different
expressed m7G-related lncRNAs. (c) Box plot showing the different expression of 12 m7G-related
lncRNAs in T, N, S, and G stage groups. * p < 0.5, ** p < 0.01, and *** p < 0.001. ns, no significant.
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Figure 5. Verification of the model and establishment of a nomogram. (a–d) Principal component
analysis was performed for the low- and high-risk groups based on the entire genes, m7G-related
genes, m7G-related lncRNAs, and risk model lncRNAs. (e) ROC curves of the clinical characteristics
and risk score. (f) The nomogram predicts the probability of overall survival at 1, 3, and 5 years.

3.5. Functional Enrichment Analysis Based on the m7G-LPS

Patients were split into high- and low-risk groups based on the m7G-LPS. We used
GSEA to determine the abnormally enriched signaling pathways of m7G-related lncRNAs.
Our analysis demonstrated that several tumor-associated pathways, including P53 signal-
ing pathways, tight junction signaling pathways, and cell cycle signaling pathways, were
associated with the high expression of m7G-related lncRNAs (Figure 6a). Additionally,
the other enriched pathways of the high-risk group were strongly connected to glycolysis
and included glycolysis, gluconeogenesis, glycosphingolipid biosynthesis, the lacto and
neolacto series, and the pentose phosphate pathway. Hence, we speculate that m7G-related
lncRNAs may participate in the development of pancreatic cancer through the glycolytic
pathway. Gene Ontology functional enrichment analyses (Figure 6b) were used to annotate
the functions of DEGs. As a result, some epidermis-related biological processes (BPs), such
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as epidermal development and epithelial cell migration, were identified. In addition, the
cellular component (CC) findings revealed that the DEGs were mostly involved in the
basolateral plasma membrane, gap junction, and cell-cell junction. The molecular function
(MF) results revealed that the DEGs were involved in several serine-related processes, such
as serine-type endopeptidase activity, serine-type peptidase activity, and serine hydrolase
activity (Figure 6c–e). These findings present additional avenues to investigate the potential
functions of lncRNAs associated with m7G in PC.

3.6. Estimation of Tumor-Infiltrating Lymph Cells Using the m7G-Related lncRNA Model

In this research, we evaluated the value of the tumor immune microenvironment in
light of the risk factors associated with m7G-LPS. CD4 naïve T cells were not detected in the
high- and low-risk groups. Hence, they were eliminated using the CIBERSORT screening
tool (Figure 7a). Therefore, we investigated the relationship between the m7G-LPS score
and the 21 immune cells that had infiltrated the tumor. We discovered that among them,
memory B cells, M0 macrophages, activated dendritic cells, and activated mast cells were
more enriched in the high-risk group than in the low-risk group. In contrast, the high-
risk group had lower amounts of naive B cells, CD8 T cells, and plasma cells than the
low-risk group (p < 0.05) (Figure 7d). In addition, we examined the relationships between
21 different kinds of tumor-infiltrating cells. We discovered that follicular helper T cells
exhibited the highest correlation with resting memory CD4 T cells (r = −0.62), followed by
activated memory CD4 plasma cells (r = −0.54) and resting dendritic cells and follicular
helper T cells (r = −0.54, Figure 7c). The bubble graph illustrates the connection between
immune cells and the risk score (Figure 7b). Most immune cells, especially NK cells and M2
macrophages of QUANTISEQ, endothelial cells, CD8+ T cells, and class-switched memory
B cells of XCELL, had a negative correlation with the risk score. These results suggest that
various tumor immune cell characteristics in PC patients could be distinguished based on
the risk score of the m7G-LPS.

3.7. Clinical Application of the Risk Model

To evaluate the clinical applicability of the risk model, differences in drug sensitivity
among different risk groups were investigated (Figure 8). As we can see from the figure, PC
patients in different groups showed different drug treatment tendencies. The half maximal
inhibitory concentration (IC50) was often used to test a drug’s ability to induce apopto-
sis. The sensitivity of tumor cells to the drug is inversely proportional to the IC50, with
lower IC50 values indicating higher sensitivity. In view of the results, patients in high-risk
categories responded favorably to docetaxel, paclitaxel, erlotinib, and AKT inhibitor VIII,
while patients in the low-risk group were more sensitive to camptothecin and etoposide.
According to GSEA and GO enrichment analysis, the cell cycle pathway was enriched in
PC patients with high-risk scores. Some of the drugs that were effective in the high-risk
group are typical antitumor drugs for pancreatic cancer, such as docetaxel and paclitaxel,
whose antitumor mechanisms primarily target the cell cycle. Erlotinib is a targeted in-
hibitor of the epidermal growth factor receptor (EGFR) [22], which is crucial for cancer
proliferation. Previous research has demonstrated the significant activation of the AKT
signaling pathway in pancreatic cancer. This activation leads to alterations in cancer cell
metabolism, increased cell cycle, and decreased apoptosis. These changes are closely asso-
ciated with a poor prognosis in patients with pancreatic cancer [23–25]. The AKT inhibitor
VIII was developed based on 2, 3-diphenylquinoxaline, which was discovered through a
high-throughput screening effort to identify compounds capable of inhibiting all three AKT
isoforms [26]. This inhibitor effectively decreased cell proliferation and increased apoptosis
by translocation of phosphatidylserine (PS) and induction of cleaved caspase-9, caspase-3,
and PARP [27]. Therefore, AKT inhibitor VIII may serve as a promising new anticancer
drug for PC patients.
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Figure 6. Functional enrichment analysis based on the m7G−LPS. (a) Gene set enrichment analysis
shows seven significant enrichments of GO in the high-risk group. (b–e) The barplot and bubble
chart illustrate the GO enrichment analysis among the differentially expressed genes.
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Figure 7. Immune landscape associated with the m7G-related lncRNA signature. (a) Heatmap of
tumor−infiltrating immune cells in high- and low-risk groups. (b) Bubble graphic illustrating the corre-
lation between risk score and immune cells. (c) Spearman correlation analysis of 21 tumor−infiltrating
immune cells. (d) Violin plot showing the distribution of immune cells in high- and low-groups.
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3.8. Verification of Expression Level in PC Cells

In vitro qRT-PCR experiments were performed on one normal pancreatic ductal ep-
ithelial cell and two pancreatic cancer cell lines to assess the relative expression of lncRNAs
(Figure 9a). The in vitro findings were not entirely in line with the TCGA data. In both PC
cell lines, the expression of SNHG8, PTOV1-AS2, AC090617.5, and RPARP-AS1 was down-
regulated. Based on these results and the survival plots of patients categorized according to
the expression of these factors, it was observed that high expression levels were associated
with better survival, indicating that these factors may act as tumor suppressor genes. MEG9
was upregulated in PANC-1 cells and downregulated in MIAPaCa-2 cells, while UCA1 was
downregulated in PANC-1 cells and upregulated in MIAPaCa-2 cells. For other lncRNAs,
AC245041.2 was downregulated in both PC cell lines, and its low expression predicted
worse survival. The expression of AP000892.2 was higher in both PC cell lines than in
normal pancreatic duct cell lines. Interestingly, its high expression was associated with
better survival outcomes, although the specific mechanism underlying this observation
remains unclear and requires further investigation. Four lncRNAs (U62317.1, LINC02086,
AC136475.3, and AC098613.1) were upregulated in both cell lines. Low expression levels of
these lncRNAs were related to better survival, indicating that they function as oncogenes.

3.9. In Vitro Biological Function of SHNG8 in PC Cells

Combined with prognostic analysis and literature searches, we selected SNHG8 for
further in vitro functional assays. We first silenced SNHG8 in PANC-1 and MIA PaCa-2
cell lines with siRNAs (Table S2). Then, the results of CCK-8 and EdU assays showed that
the knockdown of SNHG8 significantly promoted the proliferation of PC cells (p < 0.05,
Figure 9b,c). In addition, the migration rates were increased in Transwell and wound
healing experiments (p < 0.05, Figure 9d,e) after SNHG8 was silenced in the two cell lines.
Findings of CCK-8 assays showed that overexpression of SNHG8 significantly inhibited
the proliferation of PC cells (p < 0.05, Figure S4a). Moreover, the migration rates decreased
in Transwell and wound healing experiments (p < 0.05, Figure S4b,c) after SNHG8 was
overexpressed in the two cell lines. Therefore, we concluded that SHNG8 functions as a
suppressor gene in PC and might affect the prognosis of PC patients.
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Figure 9. In vitro functional verification in PC cells. (a) Expression level of m7G-related lncRNAs in
HPDE6-c7 cells and PC cells. (b,c) The proliferation ability of PC cell lines was detected by CCK-8
and EdU assays after SNHG8 knockdown. (d,e) Wound healing and Transwell assays were used to
determine the migration capacities of PC cell lines after SNHG8 knockdown. * p < 0.5, ** p < 0.01,
*** p < 0.001, and **** p < 0.0001.

4. Discussion

Over the past several decades, pancreatic cancer has drastically increased in prevalence
worldwide and is predicted to continue to be the main cause of cancer-related death.
Although inherited genetic variables cannot be changed directly, they play a significant
role in pancreatic cancer risk. In addition to shedding light on the etiology of pancreatic
cancer, the identification of the genetic alterations that cause this disease offers the chance
to direct early detection efforts [28].
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RNA methylation, which comprises m5C, m1A, m6A, m7G, and other forms, is an
essential epigenetic modification involved in posttranscriptional gene regulation. m7G is a
prevalent modification that is involved in several physiological and pathological processes.
Additional research is required to fully understand how m7G suppresses cancer, as has
been shown to be the case [29]. In this work, we constructed a risk model of 12-m7G-related
lncRNAs by downloading the gene expression profiles of 178 PC patients from the TCGA
database. To the best of our knowledge, this is the first study to report the predictive
evaluation of PC-associated lncRNAs connected to the m7G-related genes.

Noncoding RNAs (ncRNAs) account for most of the genome; they cannot code for
proteins but generate noncoding transcripts that influence gene expression and protein
activity. One of the two major classes of ncRNAs that have been well studied is lncRNA.
LncRNAs are larger transcripts (more than 200 nucleotides in size) that are generated simi-
larly to mRNAs but are not translated into proteins [30]. Despite being recently identified,
lncRNAs have already been demonstrated to carry out cytoplasmic tasks such as miRNA
sponging, modulation of protein activity, and posttranscriptional modification of particular
mRNAs [31]. There is a vast variety of lncRNAs that have a wide range of functions, in-
dicating that lncRNAs have the potential to behave as oncogenes and tumor suppressors.
For instance, by decreasing NEAT1_1 expression in an m6A-YTHDF2-dependent way,
methyltransferase-like 14 prevented renal cancer cells from proliferating and migrating [32].
The loss of XIST lncRNA impaired the differentiation of human mammary stem cells
(MaSCs) and contributed to the emergence of highly malignant tumors [33]. LINC00467,
which encodes the micropeptide ASAP (ATP synthase-associated peptide), promotes col-
orectal cancer progression by regulating the activity of ATP synthase directly [34]. However,
the involvement of m7G-related lncRNAs in PC has not been published. Thus, we concen-
trated on the lncRNAs that were coexpressed with m7G-related genes in PC and created a
predictive risk model for PC using bioinformatic and statistical techniques.

In our study, we identified differentially expressed m7G-related lncRNAs between
pancreatic cancer tissues and normal tissues and uncovered the prognostic value of m7G-
related lncRNAs in PC. More notably, a novel prognostic signature was identified and
confirmed based on the differential expression of m7G-lncRNAs with prognostic value.
By means of multivariate Cox and risk scoring methods, we constructed an m7G-LPS that
divided all 178 PC patients into high- and low-risk groups with a significant difference in
OS. According to Kaplan-Meier survival analysis, the high-risk subgroup showed worse
OS compared with the low-risk subgroup, regardless of clinical features. The predictive
accuracy of the m7G-LPS was validated by ROC curves for survival. Compared with
traditional indicators such as cancer grade, stage, and age, the risk score performed better
in terms of predicting the patient’s survival rate. In recent studies, a single molecular
biomarker was the primary focus of the PC predictive risk model.

However, diagnosis based on a single biomarker may be unreliable in the clinic due
to individual differences, which may result in a large number of false–positive or false–
negative results [35]. Moreover, it has been reported that circulating lncRNAs, a kind of
cell-free nucleic acid (cfNA), could be proposed as a new type of potential biomarker for
cancer diagnosis [36]. In particular, Arita et al. [37] demonstrated that plasmatic lncRNAs
are resistant to degradation brought on by repeated freeze-thaw cycles and extended
exposure to 45 ◦C and ambient temperatures. Hence, our research focused on 12 m7G-
related lncRNAs, and this is the first study to describe a PC risk score model based on
prognostic lncRNAs. In this research, 12 m7G-related lncRNAs were screened out, and
7 of them have never been reported in previous studies in PC (U62317.1, LINC02086,
AC090617.5, AC136475.3, RPARP-AS1, AP000892.2, AC098613.1).

Furthermore, lncRNAs were reported to play pivotal roles in immune crosstalk be-
tween tumor cells and immune stromal cells in the tumor-immune microenvironment [38].
In this work, we carefully evaluated the relationship between m7G-related lncRNAs and
the distribution of tumor-infiltrating immune cells. The results indicated quite a difference
between the two subgroups, and the risk factors for m7G-LPS may be able to distinguish
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various tumor-infiltrating immune cell characteristics in PC. Therefore, this is the first
study to discuss the correlation between m7G-related lncRNAs in PC and tumor-infiltrating
lymph cells.

In vitro experiments were performed to evaluate the expression of lncRNAs in PC
cells. According to the bioinformatic analysis, SNHG8 was differentially expressed in
pathological stages, grades, N stages, and T stages. Thus, SNHG8 was selected for further
study. It was silenced in two PC cell lines, and both proliferation and migration experiments
proved that SNHG8 could inhibit the biological function of pancreatic cancer cells. The
results indicated that SNHG8 acted as a suppressor gene in PC.

Despite our efforts to confirm the risk model’s stability from multiple angles, limita-
tions still exist in our research. The transcriptome expression and clinical information of PC
patients were downloaded from the TCGA and GTEx databases. Moreover, the expression
of m7G-related lncRNAs was detected only in vitro without validation in in vivo experi-
ments or PC patient tumor tissue. In addition, our study lacks experiments on molecular
mechanisms. It is a preliminary step to identifying m7G-related lncRNAs that could affect
pancreatic cancer patient survival. In our upcoming research, much work needs to be
conducted to explore the mechanism by which these lncRNAs regulate PC progression.

5. Conclusions

We constructed a 12-m7G-related lncRNA prognostic risk model for PC patients,
which was shown to have independent prognostic significance and offered an accurate
survival prediction. Our research also expanded our knowledge of the regulation of tumor-
infiltrating lymphocytes in PC. In conclusion, the m7G-related lncRNA risk model may
indicate PC biomarkers or treatment targets.
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