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Abstract: Diagnosis of fetal health is a difficult process that depends on various input factors.
Depending on the values or the interval of values of these input symptoms, the detection of fetal
health status is implemented. Sometimes it is difficult to determine the exact values of the intervals
for diagnosing the diseases and there may always be disagreement between the expert doctors. As a
result, the diagnosis of diseases is often carried out in uncertain conditions and can sometimes cause
undesirable errors. Therefore, the vague nature of diseases and incomplete patient data can lead to
uncertain decisions. One of the effective approaches to solve such kind of problem is the use of fuzzy
logic in the construction of the diagnostic system. This paper proposes a type-2 fuzzy neural system
(T2-FNN) for the detection of fetal health status. The structure and design algorithms of the T2-FNN
system are presented. Cardiotocography, which provides information about the fetal heart rate and
uterine contractions, is employed for monitoring fetal status. Using measured statistical data, the
design of the system is implemented. Comparisons of various models are presented to prove the
effectiveness of the proposed system. The system can be utilized in clinical information systems to
obtain valuable information about fetal health status.

Keywords: fetal health status; type-2 fuzzy neural system; diagnose; fetal healthy rate

1. Introduction

Fetal distress is an abnormal phenomenon that results in low or high fetal heart rate
(FHR) which refers to the number of heart beat rates per minute (BPM). Cardiotocogram
(CTG) is the primary method for fetal status detection that is most frequently employed in
clinical routine examinations. Fetal heart rate and uterine contractions (UC) are the two
main physiological signs used in prenatal monitoring of CTG. FHR is affected by fetal
distress that leads to low and or high FHR abnormal phenomena. This information is
used for the early detection of a pathological state. CTG data can be used to classify the
pathological state of the fetus relative to normal indicating the healthy state. The hypoxic
fetus is very sensitive and vulnerable to temporary impairment or death during delivery.
Inappropriate treatment and misdiagnosis of FHR can be more than half of the reason
behind the death caused. The number of neonatal seizures is decreased with continuous
CTG during delivery. The design of a system for the early detection of a fetus provides
clinicians with important pathological and physiological information about the fetus in
pregnant women, effectively preventing premature birth.

One of the most difficult and intricate procedures in medicine is tracking fetal growth
during pregnancy. Even when preventative steps are implemented, approximately 810 preg-
nant women still pass away every day, according to the World Health Organization
(WHO) [1]. In affluent nations, the maternal mortality ratio (MMR) is noticeably low,
while it is high in poor nations. Preeclampsia, inadequate monitoring of the mother’s
health and the state of the unborn child, and gestational diabetes are common problems
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that contribute to high MMR [2]. With the right medical care, MMR can be mitigated and
even avoided. Fetal monitoring is a routine practice carried out in the third trimester. Mon-
itoring of the fetus’ health is performed during pregnancy. The health of the mother has no
bearing on fetal growth. Cardiotocography is used to continuously measure the health and
growth rate of the fetus to prevent any issues. The goal of cardiotocography is to monitor
the fetus’ heartbeat and gauge the mother’s uterine contractions simultaneously. When the
fetus’ growth is fully coordinated with heart rate during the third trimester, this process
would be carried out. This technique is used by medical professionals for early fetal status
detection and to lower fetal mortality because it is thought to be simple and cost effective.
Cardiotocographic (CTG) results show the mother’s uterine contractions as well as the
fetus’s heart rate, accelerations, decelerations, and other intricate measurements [3]. The
normal, suspected, and abnormal stages of the fetus can be distinguished using different
machine learning methods. The outcomes demonstrate that the machine learning (ML)
technique creates a framework that is frequently employed for the automated system In
the analysis of early fetal health [4].

Diagnosis of fetal health is a difficult process that depends on various input factors.
Depending on the values or the interval of values of these symptoms, the diagnosis of
fetal healthy status is implemented. Sometimes it is difficult to determine the exact values
of the intervals of the input symptoms that affect the output of diagnosis. The doctors
often partition the whole interval value of symptoms and analyze each of the partitioned
intervals and make a decision on the level of health conditions of the patient. Often, these
intervals can be different for each patient, and carry uncertainties. At the same time,
different patients may react to the same diseases at different degrees. As a result, the
diagnosis of diseases is often carried out in uncertain conditions and can sometimes cause
undesirable errors. Therefore, the vague nature of diseases and incomplete patient data can
lead to uncertain decisions. One of the effective approaches to solve such kind of problem
is the use of fuzzy logic in the design of the diagnostic system. Fuzzy logic can adequately
describe the uncertainty existing in input symptoms. Fuzzy logic systems using linguistic
terms with their numerical approximation can describe uncertain knowledge [5]. Therefore,
in this paper, fuzzy logic is employed for the detection of fetal health status.

2. Related Research Works

Due to stability and effectiveness, machine learning and deep learning approaches
have recently been widely used in various medical imaging disciplines. These research
studies include the classification of medical diseases, the segmentation of disorders and the
detection and segmentation of anatomical images [6]. As a result, numerous sophisticated
diagnostic methods for fetal status (FS) images were presented. For instance, in Ref. [7], the
authors proposed a unique framework to use ultrasound images to identify prenatal abnor-
mality. The abdominal region is first segmented using the framework’s U-Net architecture
and Hough transformation, and then a multistage convolutional neural network (CNN)
is created to extract the hidden characteristics of images of FS. It performed better than
other CNN-based approaches, according to the experiment in Ref. [7]. To solve the issue of
standard object detection and evaluation of fetal health using ultrasound images, Lin and
colleagues [8] suggested a multitask CNN framework. To further lower the false detection
rate, they added prior clinical and statistical knowledge to the system. This method’s
detection speed is quite fast, and the performance it produces is promising when compared
to cutting-edge techniques [8].

Medical professionals can reduce the MMR and high labor complications by using
machine learning (ML) tools to aid in early decision-making in difficult situations such as
diagnosis. Although classifying the fetal health states is a difficult task, the ML classification
systems are perfect at handling it [9]. Random forest, neural networks, and SVM are a
few of the common classification techniques [9]. The random forest classifier performs
better and more accurately when dividing the stages of fetal health. Prenatal mortality
can be lowered at random by monitoring the fetus even in the second trimester [10]. A



Diagnostics 2023, 13, 1690 3 of 14

critical early diagnostic decision has lately been made possible using artificial intelligence
(AI) approaches. A comprehensive comparison between 15 machine learning approaches
was conducted for healthy and unhealthy fetuses [11]. The features are taken from the
recorded CTG signal. These efficiently assess massive real-time datasets to deliver improved
performances and create a framework for other models to carry out classification [12]. CTG
signals are used to directly measure a patient’s heart rate and provide reliable information
and updates to medical professionals. The effectiveness of employing CTG for the fetal
welfare during labor is discussed. The fetal heart rate and womb contractions are measured
by CTG, which is also used to determine the frequency of the baby’s movements. As
a result, CTG is essential for fetal assessment both before and during labor. In [13], an
enhanced binary bat algorithm is used for the classification of fetal status. The research
used feature extraction to improve the results. In Ref. [14], the authors used the Bagging
ensemble machine learning (ML) algorithm for the classification of fetal heart rate signals.
The authors obtained satisfactory results using bagging ensemble with a random forest
algorithm. In Ref. [15], the authors used decision tree, SVM and Naïve Bayes algorithms on
R-Studio tools for the classification of fetal health status. The decision tree has shown better
performance than other ones. In Ref. [16], the authors deployed various ML algorithms for
the prediction of fetal health from the CTG data. The authors obtained better results using
random forest. In Ref. [17], the authors used ML techniques on CTG data for identifying
high-risk fetuses. The models based on XGBoost, decision tree and random forest showed
better high precision. In Ref. [18], the authors used ML techniques to predict fetal anomalies.
Nine ML algorithms were tested using a clinical dataset of 96 pregnant women. In Ref. [19],
the authors used new CTG dataset for the extraction of features. The classification of the
selected features was implemented using a synthetic minority oversampling technique and
the nearest mean classifier with Adaboost. In Ref. [20], the authors presented an approach
for the evaluation of missing data in fetal heart rate datasets. Two iterative steps using
an empirical dictionary and the construction of the dictionary using the updated values
were presented.

As mentioned in the above section, the diagnosis of fetal health depends on various
input factors. The doctors often make a decision on the level of health conditions of the
patient using the interval value of these input symptoms. Often, these intervals carry
uncertainties. Fuzzy logic can adequately describe these uncertainties existing in input
symptoms. There exist several research papers related to the diagnosis of diseases using
fuzzy logic. In Ref. [21], the authors designed a Mamdani-type fuzzy system for diagnosing
a set of diseases, such as asthma, diabetes, hypertension, malaria and tuberculosis. The
knowledge of experts–doctors is integrated with the fuzzy decision-making process. In
Ref. [22], the authors used a fuzzy inference system (Type 2) for the diagnosis of diabetes
mellitus. Sometimes the design of a knowledge base for a fuzzy system is tedious and time-
consuming. To automate this process, the knowledge base of the system is often designed
from the statistical data. For this aim, the integration of neural networks or evolutionary
computation algorithms with statistics is considered. This approach simplifies the design
process of the knowledge base of the system. In Ref. [23], the authors used the ANFIS
model that integrates fuzzy logic and neural networks for the diagnosis of COVID-19. In
Ref. [24], the authors used an evolutionary programming algorithm for the design of a
fuzzy model for DNA coding. In Ref. [25], the authors used a Pythagorean fuzzy algorithm
for diagnosis problems.

Sometimes, the constructed type-1 fuzzy system cannot handle uncertainties when
there are ambiguities in expressing fuzzy terms and when the information used in the
knowledge base carries uncertainties. In these conditions, one of the effective ways is the
use of type-2 fuzzy logic in expressing the knowledge base [26]. The type-2 fuzzy logic
was improved by Mendel and his coauthors [26]. Type-2 fuzzy logic provides a good
framework for handling high-order uncertainties due to its three-dimensional membership
function. A set of research studies has been performed using type-2 fuzzy logic. These
are related to the solution of engineering problems [26–29] and economic problems [30].
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Type-2 fuzzy logic is used for solving medical diagnosis problems—these are the design
of a diagnostic system for diabetes [31], and for controlling the glucose level of blood [32].
Neural networks and evolutionary computation algorithms that can be effectively used for
designing the type-2 fuzzy system’s knowledge base.

The contributions of the paper include:

• The T2-FNN system based on the integration of type-2 fuzzy system and neural
networks is proposed for the detection of fetal health status.

• The structure of type-2 fuzzy neural networks (T2-FNN) is proposed and the design
algorithm of T2-FNN is presented.

• The presented system is implemented for the detection of the fetal health status of
pregnant women. The simulation of the proposed system is implemented using
statistical data.

• Based on the input–output relationship, novel data preprocessing algorithm is de-
signed and tested on the dataset.

• The proposed T2-FNN system shows better accuracy performance in comparison with
other models, which enhanced the effectiveness of the fetal health status detection system.

The paper is organized as follows: In Section 2, the prediction of fetal health is
performed utilizing the type-2 fuzzy system’s learning capabilities and an exploratory
examination of the CTG data. In Section 3, experimental findings and algorithm validation
using various evaluation criteria such as the accuracy and efficiency of the proposed model
are presented. Finally, the conclusion and potential for future improvement of this research
work are presented in Section 4.

3. T2-FNN for Detection of Fetal Health Status

A fetal health state is characterized by 21 input symptoms. Laboratory analysis and
measurements were applied for the determination of these parameters. Based on the
possible values of these parameters, three output diagnoses of fetal healthy states were
determined. These are Normal, Suspected and Pathological. Using the number of input
and output symptoms, the structure of the T2-FNN system was determined. Here, the
basic problem is the determination of the association between input and output variables.
We used a type-2 fuzzy rule-based system for the description of these associations. TSK
type-2 fuzzy rules were used for the descriptions of these rules. The rules are presented
as follows:

If x1 is C̃1j and, . . . , and xm is C̃mj, Then y1 = ∑m
i=1vi1xi and, . . . , and yp = ∑m

i=1vipxi, (1)

where C̃ij values are the interval of type-2 fuzzy values, vik values are weight coefficients
between the rule layer and output layer, xi and yk are input and output variables of the
system, respectively, i = 1, . . . , m, j = 1, . . . , n, k = 1, . . . , p. m, n and p are the number of
inputs, rules, and outputs, correspondingly.

Based on fuzzy if–then rules, the structure of T2-FNN is presented (Figure 1). The
network is multi-input multi-output that uses a set of inputs and produces a set of outputs.
The network includes n fuzzy rules and n local functions (LF).

The C̃ij type-2 values are represented using Gaussians. Here, the uncertainty may be
assigned to the mean and width of the Gaussians. We used type-2 fuzzy values with an
uncertain mean (Figure 2). The membership function is determined as

µ̃j(xi) = e
−

(xi−c̃ij)
2

σ2
ij . (2)
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Here, c̃ij ∈
[
c1

ij, c2
ij

]
are the center of the Gaussian membership function (MF) repre-

sented by the interval of type-2 fuzzy sets, σij values are the width of the MF. Each value of
the interval of the type-2 MF is presented by a lower µ

j
(xi) and upper µj(xi) MFs.

µ̃j(xi) =
[
µ

j
(xi), µj(xi)

]
. (3)

Figure 1 depicts the structure of the T2-FNN system used for the detection of fe-
tal health status. When input signals are entered into the network input layer, using
Formula (2), lower and upper levels of MPs are determined for each rule. Using the t-norm
min (Π) operation, the firing strength of each rule is determined. This is performed using
the following equations:

f
j
= ∏m

i=1µ
j
(xi); f j = ∏m

i=1µj(xi) (4)

After finding the firing strengths of the rules, type reduction and defuzzification
are applied to find the output of the T2-FNN. Firing strengths are used to determine the
output of the T2-FNN. The inference engine formulas presented in [27,29,30] are applied to
calculate the crisp system’s output.

yj = ∑m
i=1 xivij, (5)
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uk = p
∑n

j=1 f
j
yjwjk

∑n
j=1 f

j

+ q
∑n

j=1 f jyjwjk

∑n
j=1 f j

, i = 1, . . . , m, j = 1, . . . , n, k = 1, . . . , p. (6)

Here, xi and yj are the input and output variables of the system, wjk are weight
coefficients, p and q are coefficients used to update the lower and upper parts of output
signal uk.

The training of the T2-FNN is carried out by comparing the current output signal
with the training output signal. The following formula determines the Euclidean distance
between the current output signal and the training output signal:

E = ∑p
k=1

(
ud

k − uk

)2
, (7)

where ud
k and uk are desired and current outputs of the T2-FNN. Using the error function,

the gradient descent algorithm is applied for training the T2-FNN system. As a result of
the training, the unknown coefficients of the network c1

ij, c2
ij, σij, vij and wjk are determined.

The designed algorithm of the T2-FNN system for the detection of fetal health status
is presented in Algorithm 1.

Algorithm 1 The design stages of T2-FNN system

Input datasets X. Randomly generate initial values of the c1, c2, o parameters of the antecedent
part and w1 and w2 parameters of the consequent part of T2FNN.
Set maximum epoch number max_epoch, learning rate, momentum rate, number of inputs, hidden
and output neurons and learning coefficients.
Set fold number K = 10, current epoch number equal epoch = 1.
Set initial values of the parameters p = 0.5 and q = 0.5.
While epch <= maximum_epoch, do

Partition datasets into K groups.
For each fold, do

Determine training and validation (testing) samples.
Determine input–output training pairs.

For each input–output training pairs, do
For each input data using Formulas (2)–(6), determine the output of the T2-FNN.
Using UT2FNN current and Ud desired output signals, calculate the output error
e(t) = Ud − UT2FNN of the network.
If abs(e(t) > ∆), Then

Update c1, c2, o, w1 and w2 parameters of the network. Here (∆ is an
acceptable small value).

endIf
endFor
Calculate the mean of square errors (SSE) and root mean square errors (RMSE) for the
training data.
According to gradient of error, adjust the learning rate
Determine input–output validation (testing) pairs
For each input–output validation pairs, do

For each input validation data using Formulas (2)–(6), determine the output of the
T2-FNN.
Calculate the output error e(t) = Ud − UT2-FNN of the network.

endFor
Determine MSE and RMSE values for validation data (evaluation).

endFor
If the current RMSE value for training data is less than the one obtained in the previous
epoch, save the T2FNN parameters in the file.

endWhile.
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The algorithm is employed for the design of the T2-FNN-based fetal health status
detection system.

4. Simulation of the T2-FNN System for Determination of the Fetal Status
4.1. Data Preprocessing

The design of the T2-FNN system for finding fetal health status is considered. We used
fetal status dataset from the Machine Learning Repository of California Irvine University,
which consists of 2126 fetal cardiotocography pieces of data of pregnant women. The
dataset is also available on the Kaggle Community https://www.kaggle.com/datasets/
andrewmvd/fetal-health-classification, accessed on 25 January 2023. The dataset contains
21 input parameters that include the measurements of FHR and UC from the records of
CTG. These are baseline heart rate, number of fetal movements, number of accelerations
per second, etc. The descriptions of input parameters are presented in Table 1. Analysis
has shown that the data are imbalanced, that is, each class has a different number of data
samples. The data have been expertly categorized as Normal, Suspect, and Pathological.
The three classes represented in the dataset are Pathological (P), Suspected (S) and Normal
(N), respectively. The fragment of input data is presented in Table 2.

Table 1. Input symptoms.

Attribute Description

BV FHR baseline value—beats per min
AC No. of accelerations per sec
FM No. of fetal movement
UC No. of uterine contractions per sec
LD No. of light decelerations per sec
SD No. of severe decelerations per sec
PD No. of prolonged decelerations per sec
ASTV Percentage of time with abnormal short-term variability
MSTV Mean Value of Short-Term Variability
ALTV Percentage of Time with Abnormal Long-Term Variability
MLTV Mean Value of Long-Term Variability
HW Histogram Width (width of FHR histogram)
HMax Histogram Max (maximum of FHR histogram)
Hmin Histogram Min (minimum of FHR histogram)
NP Number of Histogram Peaks
NZ Number of Histogram Zeroes
HMo Histogram Mode
HMe Histogram Mean
HMed Histogram Median
HV Histogram Variance
HT Histogram Tendency
NSP Fetal Health (Fetal state class code, N = normal, S = Suspected, P = Pathological)

Table 2. Fragment of input data.

151.0 . . . 64.0 1.9 9.0 27.6 130.0 56.0 186.0 2.0 0.0 150.0 148.0 151.0 9.0 1.0 2.0

150.0 . . . 64.0 2.0 8.0 29.5 130.0 56.0 186.0 5.0 0.0 150.0 148.0 151.0 10.0 1.0 2.0

131.0 . . . 28.0 1.4 0.0 12.9 66.0 88.0 154.0 5.0 0.0 135.0 134.0 137.0 7.0 1.0 1.0

131.0 . . . 28.0 1.5 0.0 5.4 87.0 71.0 158.0 2.0 0.0 141.0 137.0 141.0 10.0 1.0 1.0

130.0 . . . 21.0 2.3 0.0 7.9 107.0 67.0 174.0 7.0 0.0 143.0 125.0 135.0 76.0 0.0 1.0

130.0 . . . 19.0 2.3 0.0 8.7 107.0 67.0 174.0 3.0 0.0 134.0 127.0 133.0 43.0 0.0 1.0

130.0 . . . 24.0 2.1 0.0 10.9 125.0 53.0 178.0 5.0 0.0 143.0 128.0 138.0 70.0 1.0 1.0

The dataset includes the measurements of FHR and UC. Each record in Table 2 includes
21 features, 11 of which were obtained from the electronic sensors, and the other 10 features

https://www.kaggle.com/datasets/andrewmvd/fetal-health-classification
https://www.kaggle.com/datasets/andrewmvd/fetal-health-classification
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were extracted using these 11 features. Statistical measurements of datasets are presented
in Table 3. Here, for each data item, the values of mean, standard deviation and the min
and max values of each attribute are determined. The statistical measurements have been
conducted in order to demonstrate the deviations of the input parameters and their effect
on the output results. If we consider the mean values of the input variables and their
corresponding standard deviation, we see that the values of some variables are varied in a
relatively big interval. The difference in the values of input parameters indicates that this
can significantly change the output result.

Table 3. Statistical measurements.

Input Variables Mean Std Min Max

baseline value 133.303857 9.840844 106.0 160.0

accelerations 0.003178 0.003866 0.0 0.019

fetal_movement 0.009481 0.046666 0.0 0.481

uterine_contractions 0.004366 0.002946 0.0 0.015

light_decelerations 0.001889 0.002960 0.0 0.015

severe_decelerations 0.000003 0.000057 0.0 0.001

prolongued_decelerations 0.000159 0.000590 0.0 0.005

abnormal_short_term_variability 46.990122 17.192814 12.0 87.000

mean_value_of_short_term_variability 1.332785 0.883241 0.2 7.000

percentage_of_time_with_abnormal_long_term_variability 9.846660 18.396880 0.0 91.000

mean_value_of_long_term_variability 8.187629 5.628247 0.0 50.700

histogram_width 70.445908 38.955693 3.0 180.000

histogram_min 93.579492 29.560212 50.0 159.000

histogram_max 164.025400 17.944183 122.0 238.000

histogram_number_of_peaks 4.068203 2.949386 0.0 18.000

histogram_number_of_zeroes 0.323612 0.706059 0.0 10.000

histogram_mode 137.452023 16.381289 60.0 187.000

histogram_mean 134.610536 15.593596 73.0 182.000

histogram_median 138.090310 14.466589 77.0 186.000

histogram_variance 18.80809 28.977636 0.0 269.000

histogram_tendency 0.320320 0.610829 −1.0 1.000

fetal_health 1.304327 0.614377 1.0 3.000

Sometimes input variables in the dataset have missing values. The authors of pa-
per [33] used the mean values of corresponding features to replace missing values in the
dataset. However, this algorithm does not take into account the relationship between input
and output variables. Therefore, the constructed model does adequately describe the input–
output relationship of the model. To deal with the problem, we have designed an algorithm
based on the input–output relationships and linear interpolation. In the designing of the
algorithm, we assume that the input–output relationship is either increasing linearly or
decreasing linearly. For simplicity, let us consider a single-input single-output relationship.
Figure 3 depicts the increasing linear relationship. We assume that the y1 output value is
corresponding to the xmin input value and the y2 output value is corresponding to the xmax
value. According to the number of classes, we divided [y1, y2] and [xmin, xmax] intervals
into subintervals. To determine the missing xm value, we use the output ym value in the
dataset. The basic steps of the algorithm are presented below.
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1. Find a number of output classes nc.
2. Read the values of input–output variables from the dataset.
3. Find the missing input variable xm and determine its minimum xmin = min(xm) and

maximum xmax = max(xm) values.
4. Determine minimum y1 and maximum y2 values of output classes corresponding to

missing input xm variables.
5. Determine the steps for the missing input and corresponding output variables using

formulas ∆x = xmax−xmin
nc−1 and ∆y = y2−y1

nc−1 .
6. Using minimum and maximum values, determine cluster centers for the missing

input and corresponding output variables using formulas xk
c = xmin + (k− 1)∆x and

yk
c = y1 + (k− 1)∆y. Here, k = 1, . . . , nc, c = 1, . . . , C. nc is the number of output

classes, C is the number of input variables.
7. Save the xk

c and yk
c .

8. Repeat Steps 3–7 for all missing variables.
9. Read the dataset, find the row that has missing input value xm in the dataset and fix

the corresponding output class yk
c of this row.

10. Use yk
c (Step 9) and the stored input–output data (Step 7) to find the corresponding

input xk
c data.

11. Replace the missing value of xm in the dataset with the value of xk
c determined in

Step 10.
12. Repeat Steps 9–11 for all missing values.

Using input and output statistical datasets, the design of T2-FNN is performed. We
measure recall, precision, F1-score and accuracy to evaluate the performance of the designed
T2-FNN model. For this purpose, we determine the number of false negative (FN), false
positive (FP), true negative (TN) and true positive (TP) predictions produced by the model.
Using these variables, the values of recall, precision, F1-score and accuracy are evaluated.

Accuracy =
TP + TN

TP + TN + FP + FN
, (8)

Precision =
TP

TP + FP
, (9)

Recall =
TP

TP + FN
, (10)

f 1 =
2(precision× recall)

Precision + recall
. (11)

Accuracy is determined as the ratio between the correct output instances and the total
number of output instances of the system. The recall is the ratio between the number of TP
instances and the total number of actual positive instances in the dataset. It is a measure of
the model’s ability to detect all the positive instances in the dataset. Precision is determined
as the ratio between the number of TP instances and the total number of positive instances.
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F1-score is often used to estimate the model performance when the dataset is imbalanced.
A model with a high F1-score makes a good balance between precision and recall. The
higher the F1-score (near 1), the better the prediction of the positive instances of the model
without infringing precision or recall.

4.2. Simulation

During simulation, statistical input–output data were applied to train network param-
eters. In data preprocessing, the input data were scaled within the range of [0, 1]. This
process helped to improve the training process of the system. The training is carried out
using a gradient descent algorithm used for adjusting unknown coefficients of the T2-FNN
system by utilizing a cross-validation approach. Learning is implemented using K-fold
cross-validation for 1000 epochs. Cross-validation uses a different portion of data to train
and test a model. In the paper, K is taken as 10, that is, 10-fold cross-validation was used
for training. Here, the datasets are divided into ten equal groups. Nine groups are used
for training and one group for testing which is called validation. The aim is to test the
ability of the model to classify (or predict) new data that were not used for training. In
this way, we want to see how the model classifies the unknown dataset. In each training
iteration, the test group is changed. For example, if, in the first iteration, Group 10 is used
for testing (validation) and other groups for training, in the second iteration, Group 9 will
be used for validation and the rest for training; in the third iteration, Group 8 will be used
for validation, and so on. This process is continued for all data groups. Root mean square
error (RMSE) is utilized to test the learning performance of the T2-FNN. During training,
the obtained RMSE values for the training and validation data are depicted in Table 4. After
finishing the training of the system, we tested the system’s performance using all datasets.
The simulation was carried out using the 21, 42, and 63 rules. The learning progress of the
T2-FNN with 63 rules is presented in Figure 4. After training, the whole dataset was fed to
the T2-FNN input in order to determine the performance of the system. Table 4 depicts
the values of RMSE for testing, validation and training data. The table also contains the
test results obtained for precision, recall, F1-score and accuracy. As shown in the table, the
increase in the number of rules leads to an increase in the performance characteristics of
the model. For 63 rules, the RMSE values for training, validation and test data were 0.3188,
0.3233 and 0.3223, respectively. The values of accuracy, precision, recall and F1-score were
obtained as 0.966, 0.952, 0.952 and 0.952, correspondingly.

Table 4. Simulation results.

No Training
Error

Validation
Error

Test
Error Accuracy Precision Recall F1 Score

21 0.393879 0.409894 0.407634 0.936 0.9036 0.9038 0.9038
42 0.351097 0.361881 0.361453 0.958 0.9375 0.9375 0.9375
63 0.318810 0.323347 0.322312 0.966 0.9518 0.9518 0.9518

We tested the data preprocessing algorithm and simulated the health status problem.
For this purpose, we randomly erased 150 input pieces of data from the dataset. The de-
signed data preprocessing algorithm was used to determine the actual values of these input
values. After recovering the new values of missing data, we trained and tested the system
using 21 fuzzy rules. We obtained RMSE values for training, validation and testing as
0.39764, 0.41012 and 0.40785, respectively. These are the averaged results of 10 simulations.
As shown, the obtained results with and without data preprocessing are nearly the same.
The results indicate the suitability of using the designed preprocessing algorithm.



Diagnostics 2023, 13, 1690 11 of 14

Diagnostics 2023, 13, x FOR PEER REVIEW 10 of 14 
 

 

imbalanced. A model with a high F1-score makes a good balance between precision and 

recall. The higher the F1-score (near 1), the better the prediction of the positive instances 

of the model without infringing precision or recall. 

4.2. Simulation 

During simulation, statistical input–output data were applied to train network pa-

rameters. In data preprocessing, the input data were scaled within the range of [0, 1]. This 

process helped to improve the training process of the system. The training is carried out 

using a gradient descent algorithm used for adjusting unknown coefficients of the T2-

FNN system by utilizing a cross-validation approach. Learning is implemented using K-

fold cross-validation for 1000 epochs. Cross-validation uses a different portion of data to 

train and test a model. In the paper, K is taken as 10, that is, 10-fold cross-validation was 

used for training. Here, the datasets are divided into ten equal groups. Nine groups are 

used for training and one group for testing which is called validation. The aim is to test 

the ability of the model to classify (or predict) new data that were not used for training. In 

this way, we want to see how the model classifies the unknown dataset. In each training 

iteration, the test group is changed. For example, if, in the first iteration, Group 10 is used 

for testing (validation) and other groups for training, in the second iteration, Group 9 will 

be used for validation and the rest for training; in the third iteration, Group 8 will be used 

for validation, and so on. This process is continued for all data groups. Root mean square 

error (RMSE) is utilized to test the learning performance of the T2-FNN. During training, 

the obtained RMSE values for the training and validation data are depicted in Table 4. 

After finishing the training of the system, we tested the system’s performance using all 

datasets. The simulation was carried out using the 21, 42, and 63 rules. The learning pro-

gress of the T2-FNN with 63 rules is presented in Figure 4. After training, the whole da-

taset was fed to the T2-FNN input in order to determine the performance of the system. 

Table 4 depicts the values of RMSE for testing, validation and training data. The table also 

contains the test results obtained for precision, recall, F1-score and accuracy. As shown in 

the table, the increase in the number of rules leads to an increase in the performance char-

acteristics of the model. For 63 rules, the RMSE values for training, validation and test data 

were 0.3188, 0.3233 and 0.3223, respectively. The values of accuracy, precision, recall and 

F1-score were obtained as 0.966, 0.952, 0.952 and 0.952, correspondingly. 

 

Figure 4. Training Plot. Figure 4. Training Plot.

We also performed simulations of the fetal health status detection system using sev-
eral machine learning techniques. For simulation purposes, we used logistic regression,
Gaussian Naïve Bayes, SVC (support vector classification), RBF SVC (radial basis function
kernel SVC), ANN (artificial neural networks), CART (classification and regression trees),
Random Forest, RNN (Recurrent Neural Networks) and CatBoost (Category and Boosting)
algorithms. The values of precision, recall, F1-score and accuracy were used to measure the
performances of the models. Table 5 shows the results obtained from the simulations of
the different machine learning models. As shown, the results obtained from the T2-FNN
model are better than the ones obtained from other models.

Table 5. Comparison with machine learning algorithms.

Method Accuracy Precision Recall F-1 Score

Logistic Regression 0.89 0.87 0.88 0.87
Gaussian Naive Bayes 0.79 0.86 0.80 0.82

SVC 0.88 0.88 0.88 0.88
RBF SVC 0.90 0.91 0.91 0.91

ANN 0.91 0.91 0.92 0.91
CART 0.93 0.93 0.93 0.93

Random Forest 0.94 0.94 0.94 0.94
CatBoost 0.93 0.94 0.94 0.94

RNN 0.92 0.92 0.92 0.91
T2-FNN (21 rules) 0.936 0.904 0.904 0.904
T2-FNN (42 rules) 0.958 0.94 0.94 0.94
T2-FNN (63 rules) 0.966 0.95 0.95 0.95

In the next stage, the results of simulations of the T2-FNN system were compared
with the results of the other systems used for the determination of the fetal health status
of pregnant women. We analyzed the existing research works that used the same fetal
dataset. This comparison was carried out in order to prove the suitability of the designed
system. Table 6 presents the comparative results of various models. As shown in Table 6,
T2-FNN model with 21, 42 and 63 rules have better performances than others. The provided
results indicate the suitability and efficiency of using T2-FNN for the determination of fetal
health status.
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Table 6. Comparative results.

The Research Works Methodology Accuracy

Sharma P [12] Decision Tree 92.63
Sharma P [12] K-NN 92.78
Sharma P [12] Random Forest 93.57
Agrawal [14] Decision Tree 91.54
Agrawal [14] SVM 92.39
Agrawal [14] Naïve Bayes 85.572

Mehbodniya [15] K-NN 91.23
Mehbodniya [15] SVM 93
Mehbodniya [15] MLP 92.53
Mehbodniya [15] Random Forest 94.5
Current Research T2-FNN (21 rules) 93.6
Current Research T2-FNN (42 rules) 95.8
Current Research T2-FNN (63 rules) 96.66

5. Conclusions

The integration of type-2 fuzzy sets and neural network structure is proposed for the
design of T2-FNN to determine fetal health status. The structure of T2-FNN is presented,
and the design of the system is carried out. A cross-validation technique with the gradient
algorithm is used for the construction of the system. The constructed T2-FNN is tested
using fetal datasets. Different numbers of rules are employed for the system design. It is
found that the increase in the number of rules leads to an increase in the performance of
the system. The values of precision, recall, F1-score and accuracy are determined as 95%,
95%, 95% and 96.6%, respectively. The performance of the T2-FNN system is compared
with the performances of other systems used for the determination of fetal health status.
The obtained comparison indicates the suitability of using T2-FNN in the determination of
fetal health status.
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