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Abstract: Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians.
In this study, we propose a deep learning (DL) model to address this challenge. We first used
Xception and InceptionResNetV2 DL architectures to extract features from three different corneal
maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using
Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly.
We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy
range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We
further validated the model based on an independent dataset with 213 eyes examined in Iraq and
obtained AUCs of 0.91–0.92 and an accuracy range of 88–92%. The proposed model is a step toward
improving the detection of clinical and subclinical forms of KCN.

Keywords: convolutional neural networks; keratoconus; feature fusion; transfer learning; deep
learning; machine learning

1. Introduction

Keratoconus (KCN) is a non-inflammatory disease that causes thinning and eventual
bulging of the cornea affecting one or both eyes [1], and can lead to blindness if not detected
and treated at an early stage. KCN detection at an early stage may improve treatment
outcomes and prevent development of more advanced stages. Clinical diagnosis of KCN
involves the subjective evaluation of the patient’s history, demographic characteristics, and
corneal topographic maps [2,3]. While diagnosing established KCN cases can be more
straightforward, detecting subclinical forms of KCN remains a challenge.

Machine learning (ML) algorithms [4] have been used as a basis for creating several
different automated models, including support vector machines (SVM) [5], decision trees [6],
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and neural networks [7], which hold promise for the early detection and identification
of subclinical forms of KCN, as well as established KCN. These methods are typically
combined with hand crafted features [8] or machine generated features from corneal
topography. In contrast, deep learning (DL) methods provide a way of both performing
feature extraction and classification of images; thus, reducing the need for hand crafted
features. DL methods [9–12] have previously been applied to corneal topography [9,13–17]
and optical coherence tomography (OCT) imaging [18] for KCN detection.

One such DL model [15] was developed for KCN detection in patients with a history
of refractive surgery from Orbscan corneal maps. A high accuracy of the model was ob-
tained for distinguishing normal from established KCN; however, their model did not
include the analysis of suspected KCN. Using a different approach, Al-Timemy et al. [2]
developed an ensemble of DL of four corneal maps and Pentacam indices (PI) classifiers for
established KCN detection versus normal cases using Pentacam corneal topographic maps.
The developed ensemble achieved an accuracy of 95% based on AlexNet. The accuracy was
improved to 98.3%, with ensemble-specific combinations of corneal maps’ classifiers and PI.
In a third approach, Chen et al. [19] utilized a VGG16 convolutional neural network (CNN)
model to detect established KCN versus healthy eyes. Their method was applied to the
four topographic maps and achieved an accuracy of 97.85% on the testing set when concate-
nating all maps. However, no suspect KCN group was included. Abdelmotaal et al. [14]
also developed a CNN architecture to discriminate suspect, established KCN, and normal
eyes. They obtained an accuracy of 98%, for discriminating normal, suspect KCN, and
KCN, based on analyzing four corneal maps.

While the previous studies utilized Pentacam maps, other attempts have been devel-
oped on synthetic data. In one such study [20], the authors developed a deep learning
model based on CNN synthesized cornel maps and achieved a high accuracy, but the
images were synthetic and no suspected KCN was included in their dataset.

Detecting subclinical KCN is challenging for expert clinicians, as there may be no clear
manifestation of signs. This problem is even more challenging for less experienced corneal
experts. Hence, DL models may play an important role in detecting suspect (subclinical)
KCN [21].

In this study, our aim was to improve both the accuracy and robustness of detecting
subclinical forms of KCN, based on an ensemble of DL features, which is an emerging
approach in which the features are extracted from a pretrained DL network and fed into a
machine learning classifier, such as SVM, to make the final classification. This approach has
previously been applied to detect two corneal classes (normal and KCN) with four corneal
topographic maps and Alexnet with SVM [22], and has also been examined in three-class
detection (normal, KCN, and suspect KCN) with seven corneal topographic maps and
EfficientNet-b0 architecture and SVM [23].

In order to harvest the power of both DL features and ML classifier, we propose a
novel fusion DL method based on Xception [24] and InceptionResNetV2 [25] to achieve
a three-class clinical suspect KCN detection. Two datasets of 4752 images were used in
this study. A dataset of 4113 images, collected in Egypt, were utilized to develop the
fusion-based model, and validated with an independent test set of 639 images acquired
in Iraq.

2. Materials and Methods
2.1. Datasets

Two datasets were used in this study: the first dataset was acquired with the Pentacam
instrument in Egypt and the second dataset was collected with the Pentacam instrument
in Iraq. Both studies were conducted according to the ethical codes of the declaration
of Helsinki.

The first dataset included images from normal, suspect, and established keratoconus,
which were also utilized in Abdolmotaal et al. [14]. It included refractive corneal maps,
as well as sagittal (Sag), corneal pachymetry (CorPac) and elevation front (ElvF) maps,
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acquired from the Pentacam instruments (Oculus GmbH, Wetzlar, Germany). This original
study was a retrospective review of the Pentacam four-map selectable display images of
non-consecutive refractive surgery candidates, patients with unilateral or bilateral kerato-
conus, and patients with subclinical keratoconus. All study participants provided written
consent. Two experienced corneal specialists independently classified the anonymized
images as keratoconus, subclinical keratoconus, or normal. The keratoconus class (KCN)
included those with a clinical diagnosis of keratoconus (e.g., the presence of a central
protrusion of the cornea with Fleicher ring, Vogt striae, or both, as determined by slit-lamp
examination) or an irregular cornea (as determined by distorted keratometry mires or distor-
tion of retinoscopic red reflex, or both). The keratoconus class also included the subsequent
topographic findings, as summarized by Piñero and colleagues: a focal steepening located
in a zone of otrusion, surrounded by concentrically decreasing power zones; focal areas
with diopteric (D) values > 47.0 D; inferior–superior (I–S) asymmetry measured as >1.4 D;
or angling of the hemimeridians in an asymmetric or broken bowtie pattern, with skewing
of the steepest radial axis. The suspect keratoconus class (suspect) included subtle corneal
topographic changes within the aforementioned keratoconus abnormalities, with the ab-
sence of slit-lamp or visual changes typical of keratoconus (former fruste, or asymptomatic,
keratoconus). The traditional class (normal) included refractive surgery candidates and
subjects applying for contact lens fitting with a refractive error of 8.0 D sphere, with 3.0 D
of astigmatism, and without clinical, topographic, or tomographic signs of keratoconus or
subclinical keratoconus. After classification, the labeled images were then reviewed by a
3rd party corneal specialist who identified images with conflicting labels and adjudicated
their classes by consensus. The two raters’ first-round group labels were withheld during
adjudication. The dataset is comprised of 4113 images from 1371 eyes of the: normal = 500,
suspect KCN = 500, and KCN = 371, and each has 3 corneal maps.

The second dataset included corneal maps from normal and KCN subjects. It was
originally collected at Al-Amal eye Clinical in Baghdad Iraq, and was used in previous
study as well [2]. The diagnosis of the eyes was performed by 2 experts, and patients with
other ocular diseases were excluded from the study. The dataset was composed of the
Pentacam Scheimpflug measurements, acquired from 213 eyes (114 normal and 99 KCN).
Each eye had the 3 refractive corneal maps described in [26], which made the total images
639 images (213 × 3 maps).

2.2. Image Dataset Preprocessing Pipeline

For the 3-class dataset, all maps have black numbers and annotations generated by the
measurement equipment. Figure 1 shows examples of the 3 corneal maps for the 3 classes
investigated in this study, i.e., normal, suspect, and KCN. All 4113 images were denoised
to remove the annotations. For the independent test set, the images were clean. All images
were subsequently cropped from the standard refractive maps image acquired from the
Pentacam. All images from the 3-class and independent 2-class datasets (4113 + 639 = 4752)
were resized to match the input of the 2 DL networks used in this study (Xception and
InceptionResNetV2), i.e., 299 × 299 × 3.

2.3. Deep Transfer Learning

Transfer learning is a technique to learn from a large dataset and then transfer the
knowledge to a small dataset [27]. One of the most popular sources of transfer learning is
the ImageNet [28] dataset. This dataset has 1000 classes of natural images, including various
animals, flowers, objects, etc., with millions of images. Several successful applications
used the ImageNet dataset as a source of transfer learning to address the issue of small
datasets, including medical applications. ImageNet dataset can be useless if it does not have
features relevant to the target dataset, in our case, KCN detection with corneal topography.
For instance, the ImageNet dataset is a color dataset that cannot be helpful for grayscale
medical images such as X-Ray, CT, MRI, etc. There is a clear mismatch between the learning
features. However, our task has features relevant to the ImageNet dataset. Therefore, in
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this paper, two pre-trained models (Xception [24] and InceptionResNetV2 [25]) were used
for this task. These two models were chosen based on their high performance with the
ImageNet dataset. Both of them have an input size of 299 × 299 × 3. The workflow is
described in Figure 2. To begin, the pre-trained model was loaded. Then, the last layers
were replaced by new layers to learn the new features of the target dataset. The first layers
learn the low-level features, such as color and edges, while the last layers typically learn
the task-specific features. Therefore, the last layers are typically replaced by appropriate
domain-related layers to learn the related task, which were normal, suspect, and KCN for
this study, rather than 1000 classes of the initial ImageNet dataset. Next, the fine-tuned
model was trained on a small dataset and tested.
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2.4. Feature Fusion and ML Classifiers

Machine learning (ML) classifiers’ performance may be improved using descriptive
features. Therefore, in this paper, the feature fusion technique [29] has been employed to
improve the results of the individual models (Figure 3). This technique provides a compact
representation (fusing) of multiple features extracted from different sources, and thus may
improve the performance.
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In this scenario, we trained each model (Xception and InceptionResNetV2 here) sep-
arately, then used those models to extract features from the new training and testing
subsets. The extracted features from models are fused in one pool to train conventional
ML classifiers. Several ML classifiers were trained and tested, including decision trees
(DT), quadratic discriminant analysis, SVMs, and K-nearest neighbor (KNN). Using the
classification learner application on Matlab, the best performing ML model was selected
and the results were reported.

2.5. Training the DL Models

All used datasets were divided into three sets: training, validation, and testing. The
percentage of split was equal to 80:10:10 (training, validation, and testing). The used
datasets were trained in two different scenarios as follows:

A. Scenario 1 (S1—2-class): training the models with two classes of normal and KCN.
B. Scenario 2 (S2—3-class): training the models with three classes of normal, suspect,

and KCN.

To train the networks in this study, the following settings were used. The training
options included an Adam optimizer, a mini-batch size of 15, max epochs set at 100, shuffled
for every epoch, and the initial learning rate was 0.001. The processor properties used in
this experiment were Intel (R) Core i7/32 GB/1 TB/Nvidia RTX A3000 12 GB. Matlab 2022a
was used to develop the experiments.

2.6. Performance Evaluation

Both the pre-trained models and the ML classifiers were evaluated based on accuracy,
specificity, recall, precision, and F1-score metrics. These evaluation metrics were computed
based on the TN, TP, FN, and FP values. The TN and TP implied precisely categorized
negative and positive instances, whereas FN and FP denoted misclassified positive and
negative cases, respectively. Every evaluation metric equation is presented as follows:



Diagnostics 2023, 13, 1689 6 of 13

Accuracy =
TP + TN

TP + FP + FN + TN
(1)

Specificity =
TN

TN + FP
(2)

Recall =
TP

TP + FN
(3)

Precision =
TP

TP + FP
(4)

F1score = 2 × Precision × Recall
Precision + Recal

(5)

In order to examine the network activations, Grad-Cams [30] were also plotted to see
if the network was looking at areas of clinical importance, which is usually examined by
the ophthalmologists. In addition, the learnable filters at different layers of the developed
network were examined. The results were organized based on the three maps: (1) Sag,
(2) ElvF, and (3) CorPac, with a test set and both scenarios, S1 (2 class, normal vs. KCN)
and S2 (3 class, normal vs. suspect vs. KCN).

3. Results

The first dataset included 4113 corneal maps from 1371 eyes. A total of 500 eyes
were normal, 500 suspect, and 371 KCN. The mean age of the participants was (normal:
36.50 ± 9.50 years, suspect: 31.80 ± 8.30 years and KCN = 31.5 ± 8.20 years, mean ± Standard
Deviation, SD).

The second dataset included 639 corneal maps from 213 eyes. A total of 114 eyes were
normal, and 99 KCN. The mean age of all participants was 31.4 ± 9.2 years for the normal
eyes and 32.95 ± 10.86 years for KCN, mean ± SD).

3.1. Scenario 1: 2-Class Problem (Normal and KCN)

Once we trained, tuned, and tested the model on 80/10/10 (training, validation, and
testing) split of the dataset from Egypt, the Xception model generated an accuracy of 99.0%
(Table 1). Only two eyes with KCN were misclassified as normal based on the Xception
model (Figure 4). Once we extracted the feature using the Xception model and trained
an SVM classifier, we obtained a perfect classification with 100% accuracy. As training
and testing datasets were selected from the same dataset, we expected the accuracy to
be high. As for the ElvF and CorPac maps, CorPac achieved the best performance with
100% accuracy with SVM.

Table 1. Performance metrics of the Xception model applied on Sag, ElvF, and CorPac maps based on
scenario S1 (2 class), without and with SVM.

Corneal Map DL Model Accuracy Specificity Sensitivity Precision F1-Score

Sag Xception 99.0 98.0 100 98.2 99.12
Xception + SVM 100 100 100 100 100

ElvF Xception 95.9 92.0 99.1 93.7 96.3
Xception + SVM 95.9 92.1 99.1 93.7 96.4

CorPac Xception 100 100 100 100 100
Xception + SVM 100 100 100 100 100
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Figure 4. Xception model results for the Sag map with S1 (2 class). (a) Confusion matrix, (b) prediction
of test set, where the red boxes are misclassified by the model.

3.2. Scenario 2: 3-Class Problem (Normal, Suspect, and KCN)

The DL model was trained, tuned, and tested based on the 80/10/10 split of the
Egypt dataset, and the Xception model generated an accuracy of 99.7% (Table 2). The
InceptionResNetV2 achieved a lower accuracy of 97.0%. Like the 2-class problem, the model
with feature extraction and fusing using a decision tree obtained a perfect classification
accuracy of 100%. The confusion matrix for feature fusion based on the 3-class problem
(S2) is shown in Figure 5

Table 2. Results of the Sag map on the S2 (3 class) scenario, with test set with a decision tree classifier.

DL Model Accuracy Specificity Recall Precision F1-Score

Xception 99.7 99.5 100 99.1 99.6
InceptionResNetV2 97.0 95.3 100 92.4 96.0

Feature Fusion + Decision Tree 100 100 100 100 100
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Figure 5. Confusion matrix for feature fusion with a decision tree for the Sag map with S2 (3 class),
with an AUC of 0.99.

The ElvF map will be considered in this section. Scenario 2 was first evaluated by
training testing both models (Xception and InceptionResNetV2) as listed in Table 3. The
Xception model achieved higher results than the InceptionResNetV2 by obtaining an
accuracy of 98.5%, specificity of 98.6%, recall of 98.3%, precision of 97.5%, and F1 score
of 97.9%. There are eight samples that were misclassified by the Xception model. The
InceptionResNetV2 achieved an accuracy of 97.0%, specificity of 95.9%, recall of 99.1%,
precision of 92.9%, and F1-score of 95.9%. There were 12 samples misclassified by the
InceptionResNetV2 model.
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Table 3. Results of the ElvF map on S2 (3 class) scenario with the test set.

DL Model Accuracy Specificity Recall Precision F1-Score

Xception 98.5 98.6 98.3 97.5 97.9
InceptionResNetV2 97.0 95.9 99.1 92.9 95.9

Feature Fusion+ SVM 99.1 99.0 99.1 98.3 98.7

In order to overcome the misclassified samples, features that were extracted by both
models have been combined to train several ML classifiers. The highest results were
achieved by two classifiers: SVM and K-nearest neighbor. SVM was chosen to be listed as
shown in Table 3. SVM achieved accuracy of 99.1%, specificity of 99.0%, recall of 99.1%,
precision of 98.3%, and F1 score of 98.7%.

Although the feature fusion with SVM improved the results compared to both models,
four samples were misclassified, as shown in Figure 6. Lastly, the visualization of the
Xception model’s focus to make decisions is shown in Figure 7B. From the obtained results,
we can conclude that the model identified the appropriate place on the corneal map on
which to base the decision, which validates the high achieved results.
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3.3. Visualization of the CAMs

In order to validate the clinical relevance of the models, class activation maps (CAMs)
were generated to show the regions of the corneal map that were more important for the
model to make decision. Figure 7 shows the CAMs generated based on three different
corneal maps including Sag, ElvF, and CorPac maps. Different CAMs suggested that the
model considers clinically relevant regions of the cornea for making KCN decisions. This
suggests that the model identifies the relevant spot upon which to make a decision, which,
in turn, results in a correct prediction.

3.4. Features Extracted by the Xception Model

To further understand how feature extraction, based on the Xception model, impacts
the final KCN decision, and to assess the clinical relevance of the features, we visualized
the filters that the Xception model learned from input corneal maps. Figure 8 shows the
sets of filters that were learned from ElvF map. These features were essentially learned
from the first convolutional layers. The shape of filters highlights the clinical relevance of
the features.
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3.5. Validating the Models Based on an Independent Dataset from Iraq

To assess how the model is generalizable to unseen corneal maps from different settings
and ethnicities, we re-evaluated the performance of the model based on an independent
dataset. This dataset was collected from an eye clinic in Baghdad, Iraq, which represents
corneal data from different settings with likely different settings. Table 4 shows the accuracy
metrics of the 2-class problem based on three different corneal maps.

Table 4. The results of all maps for the independent test set from Iraq, with a feature fusion of
Xception and InceptionResNetV2.

Corneal Map Accuracy Specificity Sensitivity Precision F1-Score AUC

Sagittal 89.2 90.3 87.8 88.7 88.3 0.91
Elevation Front 91.7 90.6 92.9 89.3 91.0 0.96

Pachymetry 87.7 84.3 92.9 79.8 85.8 0.92

Figures 9–11 show the confusion matrices of the fused CNN model to discriminate
normal from KCN based on three different maps: Sag, ElvF, and CorPac, respectively. The
model based on corneal ElvF map generated the highest AUC of 0.96, with an accuracy
of 91.7%.
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4. Discussion

We developed several conventional CNN models, based on state-of-the-art architec-
tures, including Xception and InceptionResNetV2, which were able to detect corneas with
suspect or established KCN. We observed that the accuracy of these CNN architectures
to identify normal eyes from eyes with established KCN based on different corneal maps,
reached around 99%. A similar efficacy was observed in the same CNN models for dis-
tinguishing normal eyes, eyes with suspect KCN, and eyes with established KCN. While
these results were highly promising, the testing subset was selected from the same dataset
as the model training.

To assess the generalizability, we evaluated the accuracy of the CNN models based
on another independent dataset collected from a Pentacam instrument in another country,
with likely different device settings. For the S1 (two-class) problem, we achieved an AUC
and accuracy of 0.99 and 100, respectively, with the CorPac map. For the S2 (three-class)
problem, we obtained an accuracy of 100 with the Sag map. Our findings suggest that our
CNN models are generalizable to unseen corneal maps from other instruments from other
countries with likely different settings, and corneal maps from different populations.

With our DL fusion models (Xception and InceptionResNetV2), different classifiers
were utilized including DT, quadratic discriminant analysis, KNN, and SVM. SVM and DT
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were the best performing classifiers compared to the other ML models, with an accuracy of
99.1 and 100, respectively.

Examining Table 1, it can be noted that the CorPac map generated the highest perfor-
mance. For testing with the independent test dataset, the ElvF map was the best map, with
an AUC of 0.96 and accuracy of 91.7% (Table 4).

Based on the results in Tables 3 and 4, the InceptionResNetV2 model h lower perfor-
mance than that of Xception model. In the case of InceptionResNetV2, the low number of
parameters could be due to a few reasons. One possibility is that the model was fine-tuned
or pruned to reduce its size and complexity. Another possibility is that the dataset used to
train the model was relatively small or simple, and therefore, a smaller model was sufficient
to achieve good performance as in the case of Xception model.

A comparison of our model with other models previously published is shown in Table 5.
It should be noted that suspect KCN was not included in many previous studies [2,13,15,19,22].
To tackle that, we developed and validated our proposed method on the three-class problem,
including suspect KCN. For example, the model previously introduced by Al-Timemy et al. [23]
includes an ensemble of deep transfer learning to combine the four topographic maps with
Pentacam indices, whereas our proposed fusion model dealt with each topographic map
individually, and achieved good performance for each map.

Table 5. The previous literature on KCN detection with deep learning.

Study Imaging Device Number of
Classes

Number of
Maps Network Used Comments Accuracy

Zéboulon et al. [15] Orbscan 2 3000 CNN No suspect 98.3%
Al-Timemy et al. [2] Pentcam 2 534 Ensemble of Alexnet No suspect 95–98.3%

Chen et al. [19] Pentcam 2 1926 VGG16 No suspect 97.85%
Lavric and

Valentin [20]
SyntEyes and SyntEyes

KTC models/1 map 3000 KeratoDetect No suspect
synthetic maps 99.3%

Kuo et al. [13] Tomy TMS-4
Topographer 2 354

VGG16
InceptionV3
ResNet152

No suspect
93.1%
93.1%
95.8%

Firat et al. [22] Pentcam 2 628 ALexNet and SVM No suspect 98.53%

This study Pentcam 3 4113 Fusion of Xception and
InceptionResNetV2 - 97–100%

As shown in the learnable filters displayed in Figure 8, the (Xception) model learned
very strong features from the ElvF map. Additionally, the results from the GradCam, shown
in Figure 7B, illustrate that the model is focusing on an area at the center, which is the
clinically relevant region. The accuracy obtained with the Xception model was equal to
98.5%. This may explain the good performance achieved with the Xception model.

While we used relatively large datasets of corneal maps from two datasets collected
from two different countries, additional datasets with larger number of corneal maps
from other ethnicities/races are desirable to further validate the proposed CNN models.
Additionally, our CNN models are limited to corneal data from Pentacam. Therefore, the
use of innovative device-agnostic CNN models is warranted to exploit data from other
corneal topography instruments, such as CASIA, Orbscan, and Galilei.

5. Conclusions

DL fusion-based methods were proposed and developed for KCN detection. While
single CNN architecture achieves good performance, the fusion of two DL models (Xcep-
tion and InceptionResNetV2) with features from these models and an SVM classifier is
particularly suited to meet the challenge of identification of earlier stage, clinical suspect
KCN, distinct from established KCN. We validated our proposed method on a three-class
dataset and achieved an accuracy of 97–100%. Furthermore, independent evaluation of
a two-class dataset from a different country showed an accuracy of 88–92% and an AUC
0.91–0.96 for the three corneal maps.
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