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Abstract: Deep learning-based automatic classification of breast tumors using parametric imaging
techniques from ultrasound (US) B-mode images is still an exciting research area. The Rician in-
verse Gaussian (RiIG) distribution is currently emerging as an appropriate example of statistical
modeling. This study presents a new approach of correlated-weighted contourlet-transformed RiIG
(CWCtr-RiIG) and curvelet-transformed RiIG (CWCrv-RiIG) image-based deep convolutional neural
network (CNN) architecture for breast tumor classification from B-mode ultrasound images. A com-
parative study with other statistical models, such as Nakagami and normal inverse Gaussian (NIG)
distributions, is also experienced here. The weighted entitled here is for weighting the contourlet
and curvelet sub-band coefficient images by correlation with their corresponding RiIG statistically
modeled images. By taking into account three freely accessible datasets (Mendeley, UDIAT, and
BUSI), it is demonstrated that the proposed approach can provide more than 98 percent accuracy,
sensitivity, specificity, NPV, and PPV values using the CWCtr-RiIG images. On the same datasets, the
suggested method offers superior classification performance to several other existing strategies.

Keywords: convolutional neural network (CNN); machine learning; deep learning; breast cancer;
contourlet; curvelet; B-mode ultrasound; Rician inverse Gaussian; parametric image

1. Introduction

For both industrialized and developing nations, female breast cancer is a very pressing
issue. According to a current report from the American Cancer Society’s Cancer Statistics
Center, there are expected to be 1,918,030 new cases of breast cancer in 2022, while there
will be only 609,360 cancer deaths in the country overall, with 290,560 of those cases (or
roughly 48 percent) being breast cancer cases [1].

Among the other imaging modalities, such as mammography and MRIs, one of the
most promising techniques is breast ultrasonography (US) imaging for classifying breast
tumors. Numerous studies have been conducted and are continually being conducted to
increase the precision of classifying benign from malignant breast tumors automatically.
The depth-to-width ratio, the normalized radial gradient, and the autocorrelation feature
were three computer-extracted characteristics that were combined in 2002 by K. Horsch
et al. [2] to detect breast cancers in the depth of lesion region. A computer-aided diagnos-
tic (CAD) system was introduced in 2007 by Wei-Chih Shen et al. [3] The classification
outcomes are estimated by mean values and standard deviations (SDs) of a shape, ori-
entation, margin, lesion border, echo pattern, and posterior acoustic properties such as
geometrical features. The accuracy is stated to be 91.7%, but in that study, from the healthy
breast tissue, the lesion site was segmented both manually and automatically. In big data
analysis of US images, manual lesion boundary detection can occasionally be challenging.
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Multi-resolution transform domain-based US imaging approaches have recently shown en-
couraging results in automated breast tumor classification tasks. To produce non-redundant
data sets and more possible transform domain features, Sharmin R. Ara et al. [4] proposed
an EMD method in 2017. This method applies discrete wavelet transform (DWT) and then
a wrapper-based subset selection process follows. According to their dataset, the accuracy
is 98.01%. Traditional DWT provides only horizontal, vertical, and diagonal dimensions in
addition to limited information about directions. In 2019, P. Acevedo et al. [5] categorized
benign and malignant tumors using a K-means and gray-level concurrency matrix (GLCM)
approach with a linear support vector machine (SVM). A comparison study of two domains
for multi-resolution transforms, such as the wavelet and curvelet transform domains, for
the categorization of breast tumors in digital mammography images was presented by
Eltoukhy et al. [6].

Another multi-resolution transform domain name contourlet transform-based tech-
nique is depicted in [7]. Pyramidal decomposition levels rising in the contourlet transform
are accompanied by an expansion of several directional decomposition levels, which has
proved to yield additional directional information. It has also been demonstrated that
it is a more accurate descriptor of arbitrary forms and contours than wavelet, curvelet,
and dual-tree complex wavelet transforms, as there are various multi-resolution transform
domains, etc. The use of mammography images for contourlet-based mass classification
is documented in [8,9]. Low-energy X-ray radiation is used in mammography for routine
examinations. The lack of specificity in mammography has the disadvantage of forcing
many women to undergo needless breast biopsies. Approximately 65%–85% of unnec-
essary breast biopsies are determined to be benign cases. It causes unnecessary biopsies
and increases the unexpected cost of mammographic screening, which is a burden for the
patients both emotionally and physically [10]. Because of this, researchers are becoming
increasingly more interested in relatively safe methods, such as elastography and ultra-
sonography. As a way to judge the elastic heterogeneity of breast tissue, [11] uses the
multiscale and multidirectional contourlet transform to extract texture information from
shear–wave elastography (SWE) images. The Fisher classifier was used to classify the
data, and the contourlet-based texture features reported an accuracy of 92.5%, proving
that they are more accurate than the traditional characteristics in separating benign from
malignant breast tumors. The unique concept of radiomics with attribute bagging was
initially introduced in [12]. It uses the contourlet transform on B-mode ultrasound (US),
contrast-enhanced US (CEUS), and shear–wave elastography (SWE) images and reports
accuracy of 67.57%, 75%, and 81.08%, respectively.

Contrary to the contourlet transform, the DWT has poor directional selectivity in two
dimensions and is unable to give a wide range of directions. However, the curvelet trans-
form also has a variety of directions. Breast tumor classification using a local binary pattern,
the curvelet transform-based feature extraction method, is presented in [13] and reported
to have an accuracy of 94.17%. Breast dynamic contrast-enhanced (DCE-MRI), magnetic
resonance imaging with dynamic contrast, which is in the investigation, is utilized [14] to
classify breast masses into benign and malignant utilizing curvelet characteristics. This
technique produced a good diagnostic accuracy of 96%. Eltoukhy et al. [15] presented a
breast cancer diagnosis using a multiscale curvelet transform and reported an accuracy
of 98.59%. Statistical features are used in tissue classification using curvelet transform,
and 85.48% accuracy is gained [16]. The most discerning textural characteristics of interest
zones include are utilized in mass classification purpose using curvelet transform, and an
accuracy of 91.68% is achieved in [17]. Sheeja et al. [18] utilized breast thermography to de-
tect abnormality using curvelet transform, and 90.91% accuracy is shown for classification
purposes. In [19], a special set of curvelet coefficients are used as the features from different
medical masses and achieved a satisfactory accuracy rate for different (10–90%) ratios of
coefficients. Karthiga et al. [20] demonstrated an accuracy of 93.3% using 16 statistical,
geometrical, and intensity criteria for the automated classification of input thermal pictures.
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Statistical modeling is another imaging technique where various features are extracted
from the statistical models, such as Gaussian or Nakagami images obtained from the origi-
nal B-mode images, which is called parametric imaging [21,22], and has found satisfactory
results in breast tumor classification. These statistical techniques were developed primarily
to quantitatively simulate the sound waves dispersing through tissue, which can offer
a deeper understanding of the system and more accurate features. More so than spatial
domain visual ultrasound pictures, false positive (FP) and false negative (FN) results can
be described statistically. Nakagami modeling was employed by Ming-Chih Ho et al. [23]
to investigate the detection of rat liver fibrosis, which may not be the same as classifying
breast tumors, but it does offer some support for the value of parametric imaging. The
use of deep CNN, as a potential technique for the automatic interpretation of various
medical image types, is a recent development in this field, enabling the quick and accurate
identification of various medical diseases. Deep neural networks enable the development
of automated medical solutions that are very efficient and very accurate, particularly for
the automated categorization of breast tumors [24]. This is in contrast to conventional
incorporated engineering-based methods, which depend on the accuracy of the feature
extraction techniques for their resilience. Shear–wave elastography data were subjected to
CNN and morphological information extraction methods by Zhou et al. [25] for the cate-
gorization of breast tumors. CNN was used for breast tumor categorization by Zeimarani
et al. [26]; however, they applied it directly to breast ultrasound images. A generative
adversarial network (GAN) and CNN were successfully used by Singh et al. [27] to separate
and categorize breast tumors from ultrasound images. Ramachandran et al. [28] achieved a
decent outcome in a small online dataset using a straightforward neural network that is
inexpensive and simple to use. According to Hou et al. [29], a gadget itself without using
a cloud-based server, a CNN classifier, may be trained using a model of a pre-trained AI
neural network. The research of Shin et al. [30] showed that a neural network with quicker
R-CNN and ResNet-101 was possible. A technique for converting US to RGB and fine-
tuning it through back-propagation was published by Byra et al. [31]. With multiple-scale
kernels and skip connections, Qi et al. [32] demonstrated a unique deep CNN technique.
Deep neural network approaches, however, do not consider statistical aspects or traits.

In this study, it is demonstrated that an extremely successful model is the Rician
inverse Gaussian (RiIG) distribution, which comprises the statistics of the contourlet and
curvelet coefficient images [33]. It has been demonstrated that the features derived by the
CNN network from the RiIG statistically modeled (i.e., parametric) images, compared with
features extracted from US B-mode images, provide a higher level of accuracy for breast
tumor classification. Firstly, the contourlet and curvelet transform are applied to the US
B-mode images to obtain contourlet and curvelet coefficient (C) images. The next step is
to create contourlet or curvelet parametric (CP) images by substituting a pixel from the
coefficient (C) image with the estimated RiIG parameter (δ), which is carried out over a
local neighborhood of the corresponding pixels with the requested parameter taken into
account at the neighborhood’s center. The parameter values that produce the CP image
are, therefore, transformed (δ-mapped) from the pixel values. To enhance the precision
of the statistical characteristics in classification, correlated-weighted contourlet (Ctr)- or
curvelet (Crv)-transformed parametric (CWCtrP or CWCrvP) images are introduced. The
contourlet or curvelet parametric (CP) images are correlated with their matching contourlet-
or curvelet-transformed coefficient (C) images to create the CWCtrP or CWCrvP images.
As a result of applying correlation with the relevant contourlet or curvelet coefficient (C)
images, weights were assigned to each parameter of CP images; the term “correlated-
weighted” is being utilized in this system. In this work, the CWCtrP and CWCrvP images
are used to classify breast tumors in a deep CNN architecture. The proposed methods
subject fully connected layers and a variety of machine learning classifiers, including the
support vector machine (SVM), k-nearest neighbor (KNN), random forest, etc., to the
features extracted from the proposed deep CNN’s global average pooling layer.
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The features recovered from the database US B-mode images, parametric (P) images,
contourlet-converted (C) images, contourlet parametric (CP) images, and weighted con-
tourlet parametric (WCP) images, have previously been demonstrated to have the highest
level of accuracy [34]. So, only the correlated-weighted version of the contourlet- and
curvelet-transformed parametric (CWCtrP and CWCrvP) images are examined in the pro-
posed method rather than P, C, and CP images. In this context, the CWCtrP and CWCrvP
images consisting of six contourlet and curvelet sub-band concatenated coefficients are fed
to the deep CNN network separately for a comparative study of the two multi-resolution
transform domain’s image performance. The pre-trained networks cannot be used with
our six-channel stack of contourlet and curvelet transform domain CWCtrP and CWCrvP
coefficient images since they are made for one- or three-channel visual images with spatial
dimensions. As a result, a custom-made deep CNN architecture is provided. On three
publicly accessible US image databases for identifying breast tumors, the performance of
the prior classifiers is evaluated and compared with the state-of-the-art techniques.

The following list summarizes this work’s significant contributions:

• The appropriateness of the Rician inverse Gaussian (RiIG) distribution for statistical
modeling of both contoured and curvelet-transformed breast ultrasound images is
demonstrated in this study.

• To assess the feasibility of correlated-weighted contourlet- and curvelet-transformed
parametric (CWCtrP and CWCrvP) images in classifying breast tumors employing
three distinct publicly available datasets, a new investigation is conducted.

• A new correlated-weighted contourlet-transformed RiIG (CWCtr-RiIG) and curvelet-
transformed RiIG (CWCrv-RiIG) image-based deep CNN architecture is proposed.

2. Materials and Methods
2.1. Datasets

This study examined 996 clinical cases in 1193 US images; Database-I (Mendeley
Dataset) provided 250 of these cases, Database-II (Dataset UDIAT) provided 163, and
Database-III ((Dataset BUSI)) provided 647. The Database-I, which is available at (https:
//data.mendeley.com/datasets/wmy84gzngw/), accessed on 28 February 2020, includes
work by Rodrigues et al. [35]. There are 250 US images in this collection, 100 of which are
fibroadenoma examples (benign), and 150 of which are malignant cases. The images are
saved in the *.bmp format. The Database-II contains 163 US images in *.png format and is
available at (http://www2.docm.mmu.ac.uk/STAFF/m.yap/dataset.php), accessed on
21 April 2020 [36]. Radiologists in this database identified the lesion regions (i.e., tumor
outlines) of the 163 clinical cases and recorded them in binary image format in distinct
folders from the B-mode US images. The pathological results of these 163 lesions were clas-
sified into various groups, including fibroadenoma (FA), invasive ductal carcinoma (IDC),
ductal carcinoma in situ (DCIS), papilloma (PAP), unknown (UNK), lymph node (LN),
and lymphoma (LP). There are 110 benign instances and 53 malignant cases. Database-III,
which is accessible at (https://scholar.cu.edu.eg/?q=afahmy/pages/dataset), accessed
on 13 December 2020 [37], contains 780 US images in *.png format. There are 600 female
patients with baseline breast ultrasound scans in this collection, which includes women
between the ages of 25 and 75. Totaling 780 images, the dataset includes 437 benign, 210 ma-
lignant, and 133 normal samples. Only the benign and malignant examples (647 pictures
out of 780) are included in this study for categorization purposes. The ground truth photos
are shown alongside the original images. Table 1 lists the specifics of these three datasets.
In general, deep neural networks demand a great deal of computing power. Because of how
the augmentation was implemented, there were 1000 benign and 1000 malicious instances
in each of the three databases. There were 2000 images per database, which comprised
the 6000 total augmented images at that time. To equalize the number of benign and
malignant cases, data augmentation was carried out primarily by expanding the sample
numbers needed to train the neural network and eliminate the class disparity. As is typical
of clinical scanner outputs, the images in these earlier databases had previously undergone

https://data.mendeley.com/datasets/wmy84gzngw/
https://data.mendeley.com/datasets/wmy84gzngw/
http://www2.docm.mmu.ac.uk/STAFF/m.yap/dataset.php
https://scholar.cu.edu.eg/?q=afahmy/pages/dataset
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pre-processing (such as edge enhancement, speckle reduction, compressed dynamic range,
persistence, etc.). As a result, additional pre-processing steps for removing different sounds,
artifacts, and anomalies are not required. The following sub-sections outline the essential
processes for preparing the database images for the dual input CNN architecture.

Table 1. Patient data overview.

Database-I

Tumor Type Patients Lesions Method
Fibroadenoma

(Benign) 91 100 Biopsy

Malignant 142 150 Biopsy

Database-II

Tumor Type Patients Lesions Method
Cyst (Benign) 65 65 Biopsy
Fibroadenoma

(Benign) 39 39 Biopsy

Invasive Ductal
Carcinoma
(Malignant)

40 40 Biopsy

Ductal Carcinoma in
Situ (Malignant) 4 4 Biopsy

Papilloma (Benign) 3 3 Biopsy
Lymph Node

(Benign) 3 3 Biopsy

Lymphoma
(Malignant) 1 1 Biopsy

Unknown
(Malignant) 8 8 Biopsy

Database-III

Tumor Type Patients Lesions Method
Benign

600
437 Reviewed by Special

RadiologistsMalignant 210
Normal 133

Total patients = 996, lesions = 1193

2.1.1. Contourlet Transform

Since the standard discrete wavelet transform (DWT) domain includes only horizontal,
vertical, and diagonal dimensions, it offers limited dimensional information. The contourlet
transform, on the other hand, supports a wide range of arbitrary forms and contours that
are not restricted to three dimensions. The normalized B-mode images are transformed
using the contourlet transform to use a filter bank to separate the directed and multiscale
decompositions [7], as illustrated in Figure 1.
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2.1.2. Curvelet Transform

The best sparse representation of objects with edges and contours is provided by
the curvelet transform. In contrast to the isotropic components of wavelets, the needle-
shaped elements of the curvelet transform have extremely high directional sensitivity and
anisotropy. Later, the second-generation curvelet transform was demonstrated to be a
very effective tool for a variety of applications, including partial differential equations,
seismic data exploration, image processing, and fluid dynamics (PDEs). Periodization
was used to treat image borders in earlier iterations of the transform previous version.
The data have been properly arranged in this case, and the discrete cosine domain will be
tiled instead of the discrete Fourier domain, which is a significant change. A discrete filter
bank structure, called smooth images with piecewise smooth contours, can be handled via
contourlets. Structures resembling curvelets in the continuous domain can be coupled to
this discrete transform. As a result, the contourlet transform can be considered a discrete
version of a certain curvelet transform. Figure 2 illustrates how curvelet constructions
connect to a polar coordinate-based partition of the 2-D frequency plane [38] and call for a
rotational operation.
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Figure 2. Curvelet transform provides an optimal sparse representation of objects with edges
and contours.

Figure 3 compares the effectiveness of the contourlet transform and curvelet transform
in terms of improved descriptors of contour segments. With increasing decomposition
levels for both the contourlet and curvelet transform, it can be noticed that the contour
detection grows smoother as the range of the 32 dimensions increases. The literature
claims that the contourlet transform can also offer a more accurate description, random
form definitions, contours, and additional directional information [7,38]. The pyramidal
decomposition levels rise along with an increase in the directional sub-bands, and there
are numerous variable orientations seen in the directional decomposition levels. A crucial
component of contourlets, the directional filter bank, has a practical tree structure where
aliasing is permitted to occur and will be removed by correctly designed filters. Because
of this, the primary distinction between contourlets and curvelets is that the former is
explicitly specified on discrete rectangular grids, which are easier to digitize. Unfortunately,
contourlet functions exhibit more oscillations along the needle-like elements than curvelets
and exhibit less well-defined directional geometry/features. This results in artifacts in
denoising and compression.
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images at pyramidal decomposition level-2 directional decomposition level-8 (P2D8), as well as
P3D16, and P4D32; (ii) Curvelet sub-band coefficient images at decomposition levels: scale-2 angle-8
(S2A8), as well as S3A16 and S4A32.

2.1.3. Contourlet and Curvelet Parametric (CP) Image

Rician inverse Gaussian (RiIG) image
Eltoft et al. [33] introduced the RiIG distribution, which is a mixture of Rician and

inverse Gaussian distributions and is expressed as:

PRiIG(r) =

√
2
π

α
3
2 δ exp(δγ)× r

(δ2 + r2)
3
4

K 3
2

(
α
√

δ2 + r2
)

I0(βr) (1)

where α and β affect the distribution’s steepness and skewness respectively; β < 0 indicates
a distribution that is skewed to the left, and β > 0 indicates one that is slanted to the right,
whereas δ is the dispersion parameter. The value of γ can be calculated as γ =

√
α2 − β2.

Figure 4 displays a selection of RiIG pdf realizations for different parameter values.
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It is seen that, with an increase in α and β, the distribution becomes steeper and
skews to the right, respectively. On the other hand, as β decreases, it skews to the left. In
addition, as δ is increased, the distribution becomes more dispersed. The RiIG parameter
(δ) map is created by processing the contourlet and curvelet coefficient images via a square
sliding window, which results in the contourlet and curvelet parametric (CP) image. For
the Nakagami image, parameter (m) mapping and NIG image as well as parameter (α)
mapping are considered. This procedure is shown in [22], where the author constructed a
Nakagami parametric image using this procedure while computing the image parameters
for each image. It should be mentioned that while we created the images in the domains
of the contourlet and curvelet transforms, the literature [22,39,40] obtained the parametric
images in the spatial domain. According to earlier research, the best sliding window for
producing sides that are the parametric image is a square and has a pulse duration that
is three times that of the incident ultrasound. In this study, each local RiIG parameter
(δ) was examined utilizing the contourlet and curvelet sub-band efficient images with
a sliding window of 13 × 13 pixels. The size of the sliding window that is being used
should be larger than the speckle and be able to discern different local structure differences
in malignancies. The new pixel added to the window’s center at each point when the
window was moved across the entirety of the contourlet and curvelet sub-band efficient
pictures in steps of 1 pixel was designated as the local RiIG parameter (δ). The map of
RiIG parameter values produced by this technique is known as the RiIG parametric image.
With the relevant figures and a percentile probability plot (pp-plot), the RiIG statistical
model is already proven to be preferable to the Nakagami statistical model [34]. In this
study, the appropriateness of RiIG statistical modeling over the Nakagami and normal
inverse Gaussian (NIG) statistical models is shown in Figure 5 by contourlet and curvelet
parametric images and percentile probability plot (pp-plot).
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Figure 5. Comparing Nakagami, NIG, and RiIG statistical modeling with the aim of classifying
images with (a) contourlet parametric (CP) images and (b) curvelet parametric (CP) images using
percentile probability plots (pp-plots) that show empirical, Nakagami, NIG, and RiIG cumulative
density functions (CDFs). It can be seen from both pp-plots that the RiIG CDF, as opposed to the
Nakagami and NIG CDFs, closely tracks the empirical CDF. Additionally, it shows that for parametric
modeling of breast ultrasound pictures, the RiIG distribution is more appropriate.

2.1.4. Correlated-Weighted Contourlet- or Curvelet-Transformed RiIG (CWCtr-RiIG or
CWCrv-RiIG) Image

The CP images are linked with the appropriate contourlet and curvelet sub-band
coefficient images to produce the CWCtr-RiIG and CWCrv-RiIG images. By executing
correlation operations with the corresponding contourlet and curvelet sub-bands, the CP
images’ parameter values are all weighted. The term “correlated-weighted contourlet- or
curvelet-transformed RiIG” might be used to describe these images. Figure 6 displays
the transformation from B-Mode image to correlated-weighted parametric imaging at
contourlet decomposition level P4D32 and curvelet decomposition level S4A32 with cor-
responding image pixel value ranges. The transformation is progressing as at first the
B-mode is transformed to a contourlet or curvelet transform coefficient image, then mod-
eled by RiIG to obtain a contourlet or curvelet RiIG image. For comparison purposes,
WCP [34] images (i.e., contourlet or curvelet coefficient are weighted by multiplication
with their corresponding RiIG image to obtain WCtr-RiIG and WCrv-RiIG images) are
also simulated. At last, the CWCtr-RiIG and CWCrv-RiIG images are simulated, except
weighted by correlation rather than multiplication. To reduce the computational time for
constructing CWCtr-RiIG and CWCrv-RiIG images, six sub-bands from the contourlet
transform’s pyramidal decomposition at levels 2, 3, and 4 and the curvelet transforms de-
composition at scales 2, 3, 4, and 5 are carefully selected as being the most ideal for feature
extraction, where in contourlet, those pyramidal levels contain 8, 16, and 32 directional
sub-bands, and in curvelet, those scale levels contain 16, 32, 32, and 64 angle sub-bands,
respectively. In this study, contourlet directional sub-bands in each pyramidal level and
curvelet angle sub-bands in each scale with larger sizes are taken into consideration because
they predicted the best results than the other sub-bands. Therefore, the chosen sub-bands
for contourlet analysis are pyramidal level-2 directional level-4 (P2D4), as well as P2D8,
P3D8, P3D16, P4D16, and P4D32, which are shown in Figure 7i. For the curvelet domain,
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the chosen sub-bands are scale-2 angle-16 (S2A16), as well as S3A32, S4A32, S5A16, S5A32,
and S5A64, which are shown in Figure 7ii. As previously stated, the primary rationale for
choosing these sub-bands is that they offer the maximum resolution for the images, which
is crucial for the classification process.
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contourlet decomposition level-P4D32 and curvelet decomposition level-S4A32. (A) B-mode image,
(B) Contourlet coefficient image, (C) RiIG modeled contourlet coefficient image, (D) RiIG modeled
weighted contourlet coefficient (WCtr-RiIG) image, (E) RiIG modeled correlated-weighted contourlet
coefficient (CWCtr-RiIG) image, (F) Curvelet coefficient image, (G) RiIG modeled curvelet coefficient
image, (H) RiIG modeled weighted curvelet coefficient (WCrv-RiIG) image, and (I) RiIG modeled
correlated-weighted curvelet coefficient (CWCrv-RiIG) image.
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Figure 7. RiIG modeled correlated-weighted images: (i) CWCtr-RiIG images at pyramidal decompo-
sition level-2, directional decomposition level-4 (P2D4), as well as P2D8, P3D8, P3D16, P4D16, and
P4D32; (ii) CWCrv-RiIG images at decomposition levels, scale-2 angle-16 (S2A16), as well as S3A32,
S4A32, S5A16, S5A32, and S5A64.

2.2. Proposed Classification Schemes

The proposed correlated-weighted statistically modeled contourlet and curvelet coeffi-
cient image-based classification schemes are illustrated in Figure 8. To inspect the perfor-
mance of the deep CNN fully connected classifier and three machine learning classifiers,
namely SVM, KNN, and random forest, are considered in this study. All of the classifiers
used in this study were created in MATLAB (default parameters and the toolbox). In both,
the deep CNN-based classification scheme and machine learning classification scheme, the
correlated-weighted contourlet-transformed RiIG (CWCtr-RiIG) with 224 × 224 × 6 dimen-
sion stack images are applied as the input. For training, neural networks frequently need
many more samples than the 250 images from Database-I, 163 images from Database-II,
and 647 images from Database-III. To create three huge databases with a combined total of
6000 images, by augmentation, the sample count was raised to 2000 for each of the three
databases, with an equal proportion of malignant and benign instances. Each B-mode
image has six sub-bands, increasing the total number of images to 6000 × 6 = 36,000 con-
tourlet coefficient and 36,000 curvelet coefficient images. As any form of scaling or rotation
would likewise eliminate the features dependent on size or orientation, on the base images,
only the translational augmentation of 1 to 11 pixels in both directions is carried out. The
overall process is implemented by “imageDataAugmenter” MATLAB function. Figure 7
makes it clear that the images produced by various curvelet and contourlet sub-band
coefficients all have distinct sizes. All of the images are enlarged to 224 × 224 because a
CNN requires all of the images to be the same size. Then, 6000 stack images are produced
by stacking the appropriate six sub-band images that are 224 × 224 × 6 in size. The CNN
network employed in this work is inspired by the custom CNN network provided in [34]
and has 375,500 parameters with weighted contourlet parametric (WCP) images. The
differences between that scheme and our proposed scheme are that the proposed deep
CNN architecture has 316,400 parameters employing 224 × 224 × 6 stack CWCtr-RiIG or
CWCrv-RiIG images as input in two different multi-resolution transform domains, such as
contourlet and curvelet transform domains, respectively. In the deep CNN-based approach,
an activation function is generated by combining SoftMax and sigmoid functions, and in
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the machine learning-based approach, features are taken out of the deepest CNN outer
layer (the Global Average Pooling layer), and those are applied to three different machine
learning classifiers such as SVM, KNN and Random Forest. The proposed network is
also tested with WCP images which are constructed by multiplication [34]. The suitability
of CWCtr-RiIG and CWCrv-RiIG images over the WCP image is shown in Figure 6 and
Table 2. It is observed that the CWCtr-RiIG and CWCrv-RiIG images have less training
time in the same proposed deep CNN network than the WCP image. Moreover, the WCP
image has pixel values from 40 to 255 in.
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Table 2. Comparison with earlier methods in terms of computational complexity.

Multi-Resolution Transform
Domain

Training Parameters
Required

WCP or WCtr-RiIG Training
Time Required

CWCtr-RiIG or CWCrv-RiIG
Training Time

Contourlet [34] 375,500 parameters 3 min 10 s 1 min 50 s
Contourlet or Curvelet

[Proposed Method] 316,400 parameters 2 min 30 s 1 min 10 s

Regarding contourlet transform domain and curvelet transform domain, when applied
to the CNN network, those 0-to-255-pixel value images are normalized and variations will
be less because the pixel values such as 255 and higher than 200 will be converted to pixel
value 1, thus having fewer variations. On the other hand, the CWCtr-RiIG and CWCrv-RiIG
image pixel values are −1 to 1, having more variations when normalized in a deep CNN
network, which will be an impact on feature extraction. Table 3 shows the suggested deep
CNN network configuration’s architecture. To ensure that the testing and training samples
are completely separate, a ratio of 90% to 10% is employed for training, with 10% of the
unaugment database photos and their matching augmented images randomly chosen for
testing, and the remaining 90% is used for training. The accuracy can be significantly biased
and higher than the genuine test if the test data and training data coincide. The hyper-
parameters of the neural network are chosen using a statistic called the average validation
accuracy together with a tenfold cross-validation scheme and an exhaustive grid search
approach. The batch size and learning rate for this network are 60 and 0.01, respectively,
along with the Adam optimization algorithm [41]. Through 4000 cycles, the CNN network
is used to apply the training data. Utilizing accuracy, sensitivity, specificity, PPV, NPV, and
other performance indicators, the proposed technique’s performance is evaluated. Once
the TP, TN, FP, and FN signals have been measured, the confusion matrices have been
constructed. True positive (TP) signals denote a malignant tumor and true negative (TN)
signals, a benign tumor. Section 3 of the report discusses the conclusions.

Table 3. The envisioned architecture of the CNN network.

Layers Input Size Kernel Size Stride Output Size

Input 224 × 224 × 6
Conv 1 224 × 224 × 6 6 × 6 × 64 2 × 2 112 × 112 × 64
Relu 1 112 × 112 × 64 112 × 112 × 64

Maxpool 1 112 × 112 × 64 2 × 2 × 64 1 × 1 112 × 112 × 64
Conv 2 112 × 112 × 64 5 × 5 × 64 2 × 2 56 × 56 × 46
Relu 2 56 × 56 × 46 56 × 56 × 46

Maxpool 2 56 × 56 × 46 2 × 2 × 46 1 × 1 56 × 56 × 46
Conv 3 56 × 56 × 46 4 × 4 × 46 2 × 2 28 × 28 × 32
Relu 3 28 × 28 × 32 28 × 28 × 32

Maxpool 3 28 × 28 × 32 2 × 2 × 32 1 × 1 28 × 28 × 32
Conv 4 28 × 28 × 32 3 × 3 × 32 1 × 1 28 × 28 × 16
Relu 4 28 × 28 × 16 28 × 28 × 16

Maxpool 4 28 × 28 × 16 2 × 2 × 16 1 × 1 28 × 28 × 16
Global Avg. Pool 28 × 28 × 16 28 × 28 × 16
Fully Connected 28 × 28 × 16 1 × 1 × 16

Relu 5 1 × 1 × 16 1 × 1 × 16
Fully Connected 1 × 1 × 16 1 × 1 × 2

SoftMax 1 × 1 × 2 1 × 1 × 2
Sigmoid 1 × 1 × 2 1 × 1 × 2
Class out 1 × 1 × 2 1 × 1 × 2

3. Results

The suggested classification schemes evaluate the classification performance on correlated-
weighted parametric versions of contoured and curvelet-transformed images for both schemes.
The findings are displayed in Table 4, where it is clear that the use of statistical modeling on
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the contourlet and curvelet transforms increases classification accuracy. Here, Database-I,
-II, and -III all have the highest levels of accuracies by SVM classifier of 97.05%, 97.35%, and
98%; by KNN classifier, 97.85%, 98.05%, and 98.25%; by random forest classifier, 98.15%,
98.40%, and 98.85%; and by deep CNN classifier 98.25%, 98.45%, and 98.95%, respectively.
RiIG modeling’s appropriateness on B-mode images instead of Nakagami, Gaussian, and
normal inverse Gaussian (NIG) statistical models were already depicted in a few works in
the earlier literature [33,34]. In this study, the accuracy is also compared with Nakagami
and NIG statistically modeled as CWCrv-Nakagami, CWCtr-Nakagami, CWCrv-NIG, and
CWCtr-NIG images along with the RiIG modeled correlated-weighted images, and it is
observed that RiIG is highly suitable for correlated-weighted transform domain parametric
images in breast tumor classification. From the results, it is seen that the deep CNN classifier
has the best result in the classification performance. A new activation function is applied
here combining SoftMax and sigmoid activation functions. SoftMax function provides
the softened maximum probability in multiclass classification. The correlated-weighted
contourlet- or curvelet-transformed RiIG images have pixel values −1 to 1. In a few cases,
the maximum probability of two classes (i.e., benign and malignant) appaired the same.
By adding the sigmoid activation function, which provides a hard decision (e.g., benign
or malignant), discrimination in such classes would be possible. The SoftMax function
is given by σ

(→
z
)

i
= ezi

∑k
j=1 ezj , where

→
z is the input vector, ezi is a standard exponential

function for the input vector, and ezj is a standard exponential function for the output
vector with the multi-class classifier, having k classes in total. For multiclass classification
SoftMax, the activation function is a better choice. In this paper, by using only the SoftMax
function, the accuracy, sensitivity (true positive rate), and specificity (true negative rate)
are attained at 98.95%, 99.19%, and 98.71%, respectively, with an F1 score of 0.989. Another
activation function having nonlinear boundary decision is the sigmoid function defined
as σ

(→
z
)

i
= 1

1+e−zi
, where e is Euler’s number. Combining the SoftMax function with the

sigmoid function a new activation function is generated, which can be defined as:

σ
(→

z
)

i
=

ezi

∑k
j=1 ezj

+
1

1 + e−zi
(2)

Table 4. The classification performances of different correlated-weighted curvelet (CWCrv) and
contourlet (CWCtr) parametric images with Database-I, -II, and -III.

Accuracy (%) with Database-I
Classifier CWCrv-Nakagami CWCtr-Nakagami CWCrv-NIG CWCtr-NIG CWCrv-RiIG CWCtr-RiIG

SVM 93.10 93.25 94.25 94.40 96.65 97.05
KNN 94.15 94.50 94.65 94.95 96.95 97.85

Random Forest 93.75 93.95 95.15 95.55 97.15 98.15
Deep CNN 94.40 94.65 95.45 95.60 97.90 98.25

Accuracy (%) with Database-II
Classifier CWCrv-Nakagami CWCtr-Nakagami CWCrv-NIG CWCtr-NIG CWCrv-RiIG CWCtr-RiIG

SVM 93.35 94.00 93.80 94.75 96.15 97.35
KNN 93.70 94.65 94.85 95.15 96.75 98.05

Random Forest 93.95 94.45 94.95 95.65 97.05 98.40
Deep CNN 94.15 94.85 95.25 95.95 97.85 98.45

Accuracy (%) with Database-III
Classifier CWCrv-Nakagami CWCtr-Nakagami CWCrv-NIG CWCtr-NIG CWCrv-RiIG CWCtr-RiIG

SVM 93.45 94.55 94.35 95.45 96.95 98.00
KNN 94.25 95.65 95.05 96.65 97.15 98.25

Random Forest 94.40 95.15 95.25 96.80 97.35 98.85
Deep CNN 94.95 95.90 96.05 97.15 98.05 98.95
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Applying this combined activation function, the accuracy, sensitivity (true positive
rate), and specificity (true negative rate) is attained at 98.95%, 98.9%, and 99%, respectively,
with an F1 score of 0.99, which means that although the accuracy is not changed, the F1
score slightly increases. In the deep learning-based classification task, each value after a
point with a high accuracy (such as 98%) is significant. Table 4 makes it clear that RiIG
was more appropriate for the B-mode statistically modeled images, as it proved to be more
effective than the Nakagami and NIG statistical models for all four classifiers in Database-I,
-II, and -III. Additionally, the findings showed that a deep CNN-based classification scheme
with a fully connected classifier provided better accuracy than other machine learning
classifiers. In the SVM machine learning classifier-based approach, the highest accuracy
is obtained in Database-III, where the accuracy, sensitivity, specificity, PPV, and NPV are
98%, 98.19%, 97.81%, 97.80%, and 98.20%, respectively. In the case of KNN, the highest
performance is obtained in Database-III, where the accuracy, sensitivity, specificity, PPV,
and NPV are 98.25%, 98.01%, 98.49%, 98.50%, and 98%, respectively. In the case of random
forest, the best performance is also obtained in Database-III, where the accuracy, sensitivity,
specificity, PPV, and NPV are 98.85%, 98.99%, 98.7%, 98.7%, and 99%, respectively. For the
deep CNN fully connected classifier the overall best performance is obtained regarding
the accuracy, sensitivity, specificity, PPV and NPV are 98.95%, 98.9%, 99%, 99%, and 98.9%,
respectively. The suggested RiIG-based CWCtr-RiIG images are the best option for the
categorization of breast tumors in both the deep CNN fully connected classifier-based
approach and the machine learning classifier-based approach, as shown in Table 4. The
confusion matrices in terms of best performance with Database-III, shown in Figure 9,
display the suggested methods using the deep CNN, SVM, KNN, and random forest
classifiers along with performance indices such as accuracy, sensitivity, and specificity as
well as PPV and NPV, involving measuring malignant tumors as true positives (TP), benign
tumors as true negatives (TN), false positives (FP), and false-negatives (FN), respectively.
The greatest values of accuracy, sensitivity, specificity, PPV, and NPV for Database-III,
utilizing both categorization systems, are seen to be greater than 98%.
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4. Discussion

The best classification accuracy is demonstrated in the previous section using the deep
CNN classifier with the RiIG-based CWCtr-RiIG pictures. Table 5 offers a comparison with
comparable works. Using the same Database-I, P. Acevedo et al. [5] claimed a 94% accuracy,
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with a 0.942 F1 score, while Karthiga et al. [20] reported 94.5% accuracy, with a 0.945 F1
score. In light of this, the highest level of accuracy made possible by the proposed method
employing the same Database-I is roughly 98.30% and has an F1 score of 0.983, which is
noticeably better. Hou et al. [29] employed Database-II in a different study and reported
a 94.8% accuracy rate. Combining the same Database-II with additional databases, Shin
et al. [30] found an accuracy of 84.5%. According to Byra et al. [31], utilizing Database-II,
their accuracy was 85.3%, and their F1 score was 0.765. With an F1 score of 0.942 with
Database-II, Qi et al. [32] demonstrated an accuracy of 94.48%. On the other hand, the
suggested approach employing Database-II offers the highest accuracy, 98.45%, and an F1
score of 0.985. With Database-I, Kabir et al. [34]’s accuracy was 98.25%, and their F1 score
was 0.982; for Database-II, it was 98.35%, and their F1 score was 0.984; and for Database-III,
it was 98.55%, and their F1 score was 0.986. The approach of Ka Wing Wan et al. [42] yields
accuracy for Database-III of 90% using a random forest classifier and 91% using a CNN,
with an F1 score of 0.83. The identical Database-III was used by Moon et al. [43], who
reported 94.62% accuracy, with a 0.911 F1 score. The accuracy and F1 score of the suggested
method, in comparison, are superior, with the greatest accuracy being roughly 98.95%
and an F1 score of 0.99. Additionally, using the same validation strategy as in [42,43],
the suggested dual input CWCtr-RiIG image-based deep CNN technique is deployed for
classification on Database-III, with an 80% training to 20% testing ratio. With an F1 score of
0.98, this experiment’s accuracy, sensitivity, and specificity ratings are still better than those
of [42,43]. The box plots in Figure 10 show a comparison of the accuracy of Table 5, and
they also show that the proposed method performs consistently with other approaches. As
mentioned earlier, the images in Database-I have undergone speckle reduction, compressed
dynamic range, and persistence pre-processes. For Database-II and -III, the images have
undergone edge enhancement, speckle reduction, and persistence only. Due to the heavily
compressed dynamic range, the resultant accuracy using Database-I is lower than that
of Database-II and -III. Moreover, if we combined the images of Database-II and -III,
the classification accuracy attained 98.4%, while by combining the images of the three
databases, the classification accuracy fell to 97.15%. Therefore, it seems that an automated
edge enhancement process may further improve the performance in the case of Database-I.
However, incorporating an edge enhancement technique will increase the complexity of the
method. It is an interesting area of future exploration to develop a novel neural network
architecture that can deliver a high degree of accuracy even with heavily compressed
dynamic range images by additional pre-processing such as edge enhancement.
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Table 5. Using Database-I, -II, and -III, a comparison of chosen studies with the suggested classification scheme.

Author (Year) Major Contribution Database Classifier Performance (Accuracy in %)

P. Acevedo, (2019) [5] Gray-level concurrency
matrix (GLCM) algorithm Database-I [35] SVM ACC: 94%, F1 Score: 0.942

R. Karthiga, (2021) [20] Simple Convoluted
Neural Network Database-I [35] CNN ACC: 94.5%, SEN: 94.9%,

SPEC: 94.1%, F1 Score: 0.945

D. Hou, (2020) [29] Portable device-based CNN
architecture Database-II [36] CNN ACC: 94.8%

S.Y. Shin, (2019) [30]
Neural Network with

R-CNN and
ResNet-101

Database-II [36] R-CNN ACC: 84.5%

M. Byra, (2019) [31]
US-to-RGB Conversion and

fine-tuning using
back-propagation

Database-II [36] VGG19 CNN ACC: 85.3%, SEN: 79.6%,
SPEC: 88%, F1 Score: 0.765

X. Qi, (2019) [32] Deep CNN with multi-scale
kernels and skip connections. Database-II [36] Deep CNN ACC: 94.48%, SEN: 95.65%,

SPEC: 93.88%, F1 Score: 0.942

S.M. Kabir, (2021) [34]
WCP Image-based

Custom-made CNN
architecture

Database-I [35] Deep CNN ACC: 98.25%, SEN: 98.49%,
SPEC: 98.01%, F1 Score: 0.982

Database-II [36] Deep CNN ACC: 98.35%, SEN: 98.11%,
SPEC: 98.59%, F1 Score: 0.984

Database-III [37] Deep CNN ACC: 98.55%, SEN: 98.21%,
SPEC: 98.89%, F1 Score: 0.986

Ka Wing Wan, (2021)
[42]

Automatic Machine Learning
model (AutoML Vision)

Database-III [37] CNN

Random Forest

ACC: 91%, SEN: 82%,
SPEC: 96%, F1 Score: 0.87

ACC: 90%, SEN: 71%,
SPEC: 100%, F1 Score: 0.83

W.K. Moon, (2020) [43] CNN including VGGNet,
ResNet, and DenseNet. Database-III [37] Deep CNN ACC: 94.62%, SEN: 92.31%,

SPEC: 95.60%, F1 Score: 0.911

Proposed Method CWCP Image-based CNN
architecture with

Fusion-oriented classification

Database-I [35] SVM

KNN

Random Forest

Deep CNN

ACC: 97.05%, SEN: 97.29%,
SPEC: 96.82%, F1 Score: 0.97
ACC: 97.85%, SEN: 97.52%,

SPEC: 98.19%, F1 Score: 0.979
ACC: 98.25%, SEN: 98.40%,

SPEC: 98.11%, F1 Score: 0.982
ACC: 98.30%, SEN: 98.49%,

SPEC: 98.11%, F1 Score: 0.983

Database-II [36] SVM

KNN

Random Forest

Deep CNN

ACC: 97.35%, SEN: 98.50%,
SPEC: 98.21%, F1 Score: 0.983

ACC: 98.05%, SEN: 98.29%,
SPEC: 97.81%, F1 Score: 0.98
ACC: 98.40%, SEN: 98.59%,

SPEC: 98.21%, F1 Score: 0.984
ACC: 98.45%, SEN: 98.21%,

SPEC: 98.69%, F1 Score: 0.985

Database-III [37] SVM

KNN

Random Forest

Deep CNN

ACC: 98%, SEN: 98.19%,
SPEC: 97.81%, F1 Score: 0.98
ACC: 98.25%, SEN: 98.01%,

SPEC: 98.49%, F1 Score: 0.983
ACC: 98.85%, SEN: 98.99%,

SPEC: 98.70%, F1 Score: 0.988
ACC: 98.95%, SEN: 98.9%,
SPEC: 99%, F1 Score: 0.99
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5. Conclusions

In this paper, a novel approach to breast tumor classification is presented, employing
RiIG statistically modeled correlated-weighted contourlet- and curvelet-transformed RiIG
images in a deep CNN architecture. In the first approach, the RiIG statistically modeled
CWCtr-RiIG and CWCrv-RiIG images are classified by deep CNN fully connected classifiers.
In the second approach, the RiIG statistically modeled CWCtr-RiIG and CWCrv-RiIG
images are classified by deep CNN-SVM, KNN, and random forest machine learning
classifiers. It is demonstrated that a high level of accuracy can be attained by using the
deep CNN fully connected classifier. Second, a brand new, specially created deep CNN
architecture is suggested for classifying CWCtr-RiIG and CWCrv-RiIG images of breast
tumors since it performs more accurately. Additionally, the suggested deep CNN design
can use the loss function to provide extremely high levels of sensitivity, specificity, NPV,
and PPV values, combining SoftMax and sigmoid activation functions. On benchmark
publicly available datasets, both algorithms show superior classification performance
to the state-of-the-art techniques. Additionally, the RiIG distribution is a distribution
that is very well-suited for simulating the characteristics of the contourlet and curvelet
transform coefficients of breast tumor images obtained in B-mode ultrasound. By applying
the transformer model-based approach and including additional datasets, there is room
for improvement.
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