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Abstract: In conjunction with imaging analysis, pathology-based assessments of biopsied tissue
are the gold standard for diagnosing solid tumors. However, the disadvantages of tissue biopsies,
such as being invasive, time-consuming, and labor-intensive, have urged the development of an
alternate method, liquid biopsy, that involves sampling and clinical assessment of various bodily
fluids for cancer diagnosis. Meanwhile, extracellular vesicles (EVs) are circulating biomarkers that
carry molecular profiles of their cell or tissue origins and have emerged as one of the most promising
biomarkers for cancer. Owing to the biological information that can be obtained through EVs’
membrane surface markers and their cargo loaded with biomolecules such as nucleic acids, proteins,
and lipids, EVs have become useful in cancer diagnosis and therapeutic applications. Fourier-
transform infrared spectroscopy (FTIR) allows rapid, non-destructive, label-free molecular profiling
of EVs with minimal sample preparation. Since the heterogeneity of EV subpopulations may result
in complicated FTIR spectra that are highly diverse, computational-assisted FTIR spectroscopy is
employed in many studies to provide fingerprint spectra of malignant and non-malignant samples,
allowing classification with high accuracy, specificity, and sensitivity. In view of this, FTIR-EV
approach carries a great potential in cancer detection. The progression of FTIR-based biomarker
identification in EV research, the rationale of the integration of a computationally assisted approach,
along with the challenges of clinical translation are the focus of this review.

Keywords: extracellular vesicles; infrared spectroscopy; FTIR; biomarker; cancer detection; machine
learning; chemometrics; automated diagnosis

1. Introduction

Surgical biopsy and imaging analysis, together with histopathological analyses, are
deemed as the gold standard diagnostic techniques for solid tumors in clinical settings.
A comprehensive histological assessment of biopsied tissues enables the characterization
of pathologies [1]. However, the procedure is known to be invasive, time-consuming,
and labor-intensive; patients often experience postoperative pain and discomfort and are
often associated with high infection risk. Moreover, due to tumoral heterogeneity, a sin-
gle tissue biopsy may not be sufficient to provide a representative profile of the tumor;
however, the destructive nature of biopsy testing makes it impractical to perform multiple
tissue biopsies or routinely obtain tissue biopsies from different sites for a comprehensive
tumor characterization, including histological or morphological, immunohistochemical,
and molecular profiling, or to obtain information of the real-time status of the disease [2].
Histological interpretation is extremely subjective and operator-dependent, which might
result in ambiguous conclusions owing to the experience required, subjectivity of inter-
pretation, and categorization skills [3]. These factors impose limits on the accuracy of
cancer diagnosis, particularly in the early stages of pathology. These reasons have fueled
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the research trend towards the discovery and development of minimally invasive cancer
diagnostic techniques, such as liquid biopsy. Liquid biopsy, which is currently employed
as an alternative diagnostic approach to tissue biopsy, includes the collection and clini-
cal assessment of various bodily fluids, such as blood, urine, saliva, and semen. These
biofluid samples can provide real-time information on numerous circulating biomarkers,
such as circulating tumor cells (CTCs), circulating cell-free DNA (cfDNA), microRNA,
tumor-educated platelets, and different extracellular vesicle (EV) subpopulations [2,4].

Early cancer detection can potentially increase patient survival and quality of life.
Therefore, identifying cost-effective biomarkers with pronounced sensitivity and specificity
is essential for cancer diagnosis and monitoring to facilitate the appropriate therapy. The
progression of fundamental molecular understanding and advancement of molecular tech-
niques in the characterization of extracellular vesicles (EVs) have opened a new avenue of
potentially utilizing EVs as biomarkers for diagnosing and monitoring diseases, including
cancer [5]. By leveraging the very much unique characteristics of EVs—heterogeneous
populations of cell-secreted membranous nanoparticles that carry molecular footprints
of their cell or tissue of origin [6], the abundance of circulating EVs in biofluids, and the
distinctive molecular profiles of their cell of origin—a wealth of biological information
can be obtained from their membrane surface markers and cargo loaded with biologically
active molecules, such as nucleic acids, proteins, lipids, etc., making them exploitable for
clinical applications, especially clinical cancer diagnostic and therapeutic purposes [7].
Given their essential roles in facilitating cell-cell signaling and communication, EVs are also
involved in pathological processes by delivering oncogenic cargo to recipient cells—both
healthy and cancer cells—and elicit phenotypic alterations or neoplastic transformations
that promote cancer tumorigenesis, angiogenesis, and metastasis [8]. Nevertheless, using
multiplex assays, most EV-based cancer studies have focused on investigating a single
cancer marker, such as protein, RNA, miRNA, mutant DNA allele, or other molecular
signatures [9]. Tumors with high genetic or phenotypic heterogeneity may not be able
to obtain a complete molecular profile using these techniques. As none of the candidate
biomarkers have been validated as satisfactory for current clinical applications such as
diagnosis and prognosis, EVs are still rarely applied in clinical settings. Thus, there remains
a gap of knowledge in fine tuning the approach to achieve rather precise and accurate
characterization outcomes [10].

Fourier-transform infrared spectroscopy (FTIR) has been employed to study cancer-
derived EVs [11]. Exploiting the very nature of its principle of detection—non-destructive
and label-free molecular profiling of the nucleic acid, lipid, and protein content that requires
only minimal sample preparation needed for analysis—FTIR is set to emerge as a diagnostic
tool for rapid compositional characterization of EVs. In addition, FTIR spectroscopy
is sensitive to the conformational changes in biomolecules, such as alterations in the
secondary structure of EV-associated protein, which is valuable information in clinical
practice [10]. In the analysis of EVs, FTIR spectroscopic analysis relies on the interaction
between mid-infrared (IR) radiation and molecular bonds, and the biochemical profile of a
particular EV sample is then reflected by the resultant absorption spectrum. Nonetheless,
the heterogeneity of EV subpopulations might result in FTIR spectra that are highly diverse
and complex, making the interpretation challenging and complicated. In order to resolve
this issue, computational-assisted FTIR spectroscopy has been implemented in many
studies to produce fingerprint spectra of malignant and non-malignant samples, enabling
classification with high accuracy, specificity, and sensitivity.

The purpose of this review is to explore FTIR spectroscopy’s applications in EV
analysis for cancer diagnosis. We provide a brief overview of different types of EVs and
their diagnostic values in cancer. Next, we discuss some theoretical considerations of
IR radiation and how FTIR spectroscopy could be used to discover EV biomarkers. We
also provide examples of computational-aided IR spectra analysis, including multivariate
approaches and machine learning algorithms. Lastly, we conclude the current obstacles
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and potential strategies before this diagnostic tool can be implemented to analyze EV
biomarkers for cancer screening in clinical practices.

2. Survey Methodology
2.1. Eligibility Criteria

In this article, we review recent studies involving spectroscopic analysis of EVs and
cancer detection. The search was limited to articles published in English from 2012 onward.
Articles were manually filtered after evaluating their title, abstract, and discussion to
confirm their relevance to this review. Additional publications were also obtained from
the reference lists of the selected articles. We excluded conference abstracts, case reports,
commentaries, editorials, unpublished manuscripts, and letters to the editor. Collectively, it
is hoped that a review of the current role of IR spectroscopy in the analysis of cancer-derived
EVs can promote the discovery of cancer markers and the development of a non-invasive
method for cancer detection.

2.2. Database and Search Strategies

A Boolean search was performed on Google Scholar, PubMed, and ScienceDirect.
Combinations of various search terms like (“spectroscop*” OR “IR spectroscop*” OR
“infrared spectroscop*”) AND (“EV*” OR “extracellular vesicle*” OR “microvesicle*” OR
“exosome*”) AND (“cancer*” OR “malignan*” OR “tumo*r” OR “onco*”) were used. In
addition, manual searches had also been conducted.

3. Extracellular Vesicles (EVs)
3.1. Subtypes and Biogenesis of EVs

EVs are heterogeneous populations of cell-secreted spherical bilayer nanoparticles
that are mainly involved in intercellular communication [6]. Exosomes, ectosomes, and
apoptotic bodies are the common EV subpopulations. They are different from one another
in terms of size, biogenesis, function, and cargo content [7]. In brief, exosomes (30–150 nm)
are small EVs arising from the endosomal network [7,12]; ectosomes, (50–2000 nm), which
are also known as microvesicles (MVs), originate from the plasma membrane’s outward
budding and dividing; whereas apoptotic bodies (50–5000 nm) are secreted by dying cells
in the apoptosis process [12] (Figure 1).

Exosome formation occurs when exosomal vesicles form through the inward budding
and invagination of the plasma membrane, which then mature into vesicles containing
multivesicular bodies (MVBs). Once the MVBs fuse with the plasma membrane, the
intraluminal vesicles (ILVs) inside the MVBs are then secreted into the extracellular milieu
as exosomes. This mechanism is referred to as exosome biogenesis and sets MVBs apart
from other forms of EVs released by the outward budding of the plasma membrane [13].
The MVBs can be either degraded by lysosomes, recycled via the trans-Golgi network,
or fused with the cell surface to release exosomes via exocytosis [14]. The biogenesis of
exosomes involving the endosomal sorting complex required for transport complexes
(ESCRTs), together with the accessory proteins such as vacuolar protein sorting-associated
protein 4 (VPS4) and ALG-2 interacting protein X (ALIX), participate in the protein sorting
and formation of ILVs [6]. In addition to the ESCRT-dependent pathway, exosomes can also
be formed through an ESCRT-independent biogenesis pathway involving ceramides [15].

In addition to internal budding, EVs can also bud outward directly from the plasma
membrane, forming ectosomes. Similar to exosomes, the ESCRT pathway is also in-
volved [16]. The development of ectosomes results from constantly changing interactions
between phospholipid translocation and contraction of cytoskeletal structures. Phos-
phatidylserine translocation to the membrane’s outer leaflet can trigger membrane budding
and vesicle formation. The budding process then ends with the contraction of cytoskeletal
structures caused by actin-myosin interactions [12].



Diagnostics 2023, 13, 22 4 of 29Diagnostics 2023, 13, 22  4  of  30 
 

 

 

Figure 1. Biogenesis of different EV subpopulations. Exosomes originate from the fusion of the in‐

ward budding of MVBs formed via the endosomal pathway in the plasma membrane. ILVs are ei‐

ther secreted  to  the extracellular environment as exosomes upon  fusion of multivesicular bodies 

(MVBs) with the plasma membrane, degraded by  lysosomes, or recycled by trans‐Golgi network 

(TGN). Ectosomes are formed by outward budding from the plasma membrane, whereas apoptotic 

bodies are generated by membrane blebbing and fragmentation of apoptotic cells. 

Exosome formation occurs when exosomal vesicles form through the inward bud‐

ding and invagination of the plasma membrane, which then mature into vesicles contain‐

ing multivesicular bodies (MVBs). Once the MVBs fuse with the plasma membrane, the 

intraluminal vesicles (ILVs) inside the MVBs are then secreted into the extracellular milieu 

as exosomes. This mechanism is referred to as exosome biogenesis and sets MVBs apart 

from other forms of EVs released by the outward budding of the plasma membrane [13]. 

The MVBs can be either degraded by lysosomes, recycled via the trans‐Golgi network, or 

fused with the cell surface to release exosomes via exocytosis [14]. The biogenesis of exo‐

somes  involving  the  endosomal  sorting  complex  required  for  transport  complexes 

(ESCRTs), together with the accessory proteins such as vacuolar protein sorting‐associ‐

ated protein 4 (VPS4) and ALG‐2 interacting protein X (ALIX), participate in the protein 

sorting and  formation of  ILVs  [6].  In addition  to  the ESCRT‐dependent pathway, exo‐

somes can also be formed through an ESCRT‐independent biogenesis pathway involving 

ceramides [15]. 

In addition to internal budding, EVs can also bud outward directly from the plasma 

membrane, forming ectosomes. Similar to exosomes, the ESCRT pathway is also involved 

[16]. The development  of  ectosomes  results  from  constantly  changing  interactions be‐

tween phospholipid translocation and contraction of cytoskeletal structures. Phosphati‐

dylserine  translocation  to  the membrane’s outer  leaflet can  trigger membrane budding 

and vesicle formation. The budding process then ends with the contraction of cytoskeletal 

structures caused by actin‐myosin interactions [12]. 

There are multiple steps  in the programmed cell death process. Apoptosis usually 

begins with nuclear chromatin condensation, irregular bulging of the plasma membrane, 

Figure 1. Biogenesis of different EV subpopulations. Exosomes originate from the fusion of the
inward budding of MVBs formed via the endosomal pathway in the plasma membrane. ILVs are
either secreted to the extracellular environment as exosomes upon fusion of multivesicular bodies
(MVBs) with the plasma membrane, degraded by lysosomes, or recycled by trans-Golgi network
(TGN). Ectosomes are formed by outward budding from the plasma membrane, whereas apoptotic
bodies are generated by membrane blebbing and fragmentation of apoptotic cells.

There are multiple steps in the programmed cell death process. Apoptosis usually
begins with nuclear chromatin condensation, irregular bulging of the plasma membrane,
and finally, the breakdown of cellular content into discrete apoptotic bodies. For example,
S1PR1, S1PR3, CD63, LAMP1, and stress-associated proteins such as HSP70 are more highly
expressed by apoptosomes during apoptosis than by normal exosomes, indicating that the
biogenesis of apoptotic bodies is associated with sphingosine-1-phosphate—sphingosine-1-
phosphate receptors (S1P–S1PRs) complex signaling, which can further induce inflamma-
tory mediators in macrophages. Apoptosomes can enter phagocytes by endocytosis or by
fusing with the plasma membrane of macrophages, thus enhancing the mRNA transcrip-
tion of inflammatory cytokines, such as interleukin (IL)-1β. Therefore, it can be concluded
that apoptotic bodies are involved in the pathogenesis of inflammatory diseases, including
cancer [17].

3.2. Roles of EVs in Cancers

EVs are well known to facilitate intercellular communication by transferring a variety
of complex molecular cargo, including protein, lipid, nucleic acid, and metabolites, and
consequently exert a wide range of biological and functional effects in EV-recipient cells
upon their uptake [18]. In brief, EVs can interact with recipient cells via ligand-receptor
signaling at the cell surface or fuse with plasma membranes, followed by EV uptake via
receptor-mediated endocytosis or macropinocytosis [19]. Intercellular communication
has been found to play an essential role in tumorigenesis, which allows cancer cells to
create a favorable immune microenvironment for cancer progression by interacting with
their surroundings [18]. Accumulating evidence has proven that tumor-derived EVs are
involved in the modulation of cancer hallmarks, including induction of replicative cell
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immortality, tumor invasion, metastasis, angiogenesis, immune evasion, as well as drug
resistance.

Cancer cells were reported to induce the expression of telomerase in recipient normal
fibroblasts by transferring human telomerase reverse transcriptase (hTERT) mRNA through
exosome cargo, hence enabling the cells to acquire the cancer stem cell phenotype and the
capability of replicative immortality [20]. In addition, tumor-derived EVs are essential me-
diators in creating a tumor-supportive stroma. For instance, normal fibroblasts have been
shown to differentiate into cancer-associated fibroblasts (CAFs) in response to acquiring
oncogenic cargo from EVs, especially oncogenic miRNAs [21,22]. Activated CAFs, in turn,
regulate and promote the proliferation and invasion of cancer cells by secreting signifi-
cant amounts of biological factors, such as growth factors, pro-inflammatory cytokines,
and chemokines (e.g., IL-6 and transforming growth factor-beta, TGF-β), to the tumor
microenvironment [23], as well as by transmitting EV cargo [24,25].

Angiogenesis, which involves the formation of new blood vessels from existing vascu-
lature, can facilitate the delivery of materials, such as nutrients and oxygen, and is especially
vital in supporting the growth of cancer cells [26]. Tumor-derived EVs have also been
shown to induce angiogenic switch from physiologic to pathologic angiogenesis through
the significant release of pro-angiogenic factors, such as matrix metalloproteinases (MMPs),
vascular endothelial growth factor (VEGF), and non-coding RNAs (ncRNAs, e.g., microR-
NAs and long non-coding RNAs), to activate pro-angiogenic activities in the adjacent
vasculature, leading to pathologic neovascularization that supports tumor growth [27]. Fur-
thermore, tumor-derived EVs are well known for evasion from immune surveillance [28].
Kim et al. [29] reported that exosomes originating from non-small cell lung cancer expressed
functional PD-L1, which inhibited T-cell activity beyond the local microenvironment. In
addition, tumor-derived EVs are capable of promoting immunosuppression by transferring
immunosuppressive cytokines and ncRNAs [28].

Drug resistance is a significant clinical obstacle to cancer treatment. EVs released by
drug-resistant cells are believed to play a critical role in the maintenance and transmission
of drug resistance in various cancers, including pancreatic, liver, glioblastoma, etc. [30].
Cancer cells can acquire multidrug resistance by directly exporting or sequestering cytotoxic
drugs via EVs, and also confer a resistance phenotype to drug-sensitive cancer cells by
transmitting cargo such as mRNAs, ncRNAs, lipids, and drug-resistance-related proteins
(e.g., anti-apoptotic proteins, drug efflux transporters, etc.) that interfere with cell cycle
control and induce anti-apoptotic signaling in recipient sensitive cells [30].

3.3. Diagnostic Values of EVs in Cancer

EVs exist in numerous biological fluids, including blood [31,32], saliva [4,33], urine [34],
bronchoalveolar lavage fluid (BALF) [35], semen [36], etc. The lipid bilayer membrane of
EVs protects the enclosed cargo of protein, lipid, nucleic acid, etc., from external enzymatic
degradation, hence ensuring the integrity and functionality of the cargo throughout the
entire cargo delivery process [37]. Their inherent stability and capability to retain the
integrity of their contents enables researchers to access the molecular contents of their
parental cells [38]. Therefore, researchers can obtain vital molecular information about
disease statuses by targeting the EV-derived cargo, which reflects the intracellular status
and physio-pathological state of the parental tumor cells. This information enables com-
prehensive tumor genome and transcriptome characterization, as well as the detection of
rapid changes in the tumor microenvironment due to their short half-lives, ranging from a
couple of minutes to a few hours before being taken up by recipient cells [39]. In contrast
to tissue biopsy, EVs are suitable for sequential collection and obtaining tumor status in
real time because of their minimally invasive sampling procedure and easy accessibility.
EV-associated proteins and RNAs have received the most attention among the components
of EVs as tumor biomarkers for diagnosing and monitoring cancer development [40].
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3.3.1. EV-Associated Proteins

Many studies have proven that the protein composition differs significantly between
EVs in malignant and non-malignant samples, as well as between different types of malig-
nant samples, which allows EV protein to be a potential biomarker for clinical diagnostic
purposes. EVs are capable of carrying tumor-specific proteins. Various EV-associated
proteins have been reported to be significantly upregulated in cancer patients compared to
healthy controls. Odaka et al. [41] demonstrated elevated levels of platelet marker (CD41
and CD61)-positive and tetraspanin (CD63)-positive EVs in sera isolated from pancreatic
ductal adenocarcinoma (PDAC) patients, particularly sera CD63+-EVs that showed promis-
ing diagnostic performance in separating PDAC patients from healthy subjects, with an
area under the curve (AUC) value of 0.846. These findings were in line with those of
Huang et al. [42], who reported elevated expression levels of plasma-derived exosomes
and the chaperone protein mortalin in cancer patients, which promoted proliferation and
induced epithelial-mesenchymal transition (EMT) of cancer cells.

Differential expression of EV proteins in different types of malignant cells have been
investigated in several studies, thereby increasing the potential of EVs as an attainable
source of cancer biomarkers. The cell-specific protein profiles of oral squamous cell carci-
noma (OSCC), PDAC, and melanoma brain metastasis cell lines have been revealed via
proteomic profiling. The identified proteins were found to be involved in pathological
processes such as angiogenesis, cell proliferation, migration, etc. Remarkably, despite the
common proteins shared by the examined cell lines, the EVs showed individual profiles
that were characteristic to each cell line. In short, OSCC-derived EVs were enriched in
EGFR and ITGB4; PDAC-derived EVs showed upregulated expression of mucins, including
MUC5AC, MUC5B, and MUC16; while LAMA1 and LAMB1 were highly expressed in EVs
isolated from melanoma brain metastasis cells [43].

The discrimination of cancer subtypes based on variations in the protein composition
of EVs may prove to be clinically useful. Rontogianni et al. [44] investigated the use of
EV-associated proteins (proteins, phosphoproteins, and protein kinases) for breast cancer
detection and molecular subtyping. Their findings highlighted that the proteomic and
phosphoproteomic profiles of EVs derived from different cancer cell lines were obviously
distinct, hence reflecting the unique characteristics of each breast cancer subtype. Briefly,
triple negative breast cancer (TNBC), which is greatly invasive and metastatic, released EVs
that were abundant in proteins associated with angiogenesis (PLAU, ADAM9, EPHA2),
cell migration (VIM, AXL), and integrin-binding (ITGA5, TIMP2). On the contrary, HER2-
positive breast cancer, which is proliferative in nature, secreted EVs with the hallmark
proteins involved in ERBB signaling (GRB7, SHC1), translation (EIFs), and axon guidance
(DNM2, PIK3R1).

Meanwhile, Tian et al. distinguished metastatic breast cancer patients from non-
metastatic breast cancer patients and healthy controls based on the expression levels of
eight protein markers on plasma-derived EVs (CA 15-3, CA 125, CEA, HER2, EGFR, PSMA,
EpCAM, and VEGF) using machine learning assisted-thermophoretic aptasensor (TAS) [45].
Due to the poor sensitivity and specificity of single protein markers to discriminate between
different patient groups, the authors established an EV diagnostic signature for metastatic
breast cancer based on the combination of the eight protein markers. Linear discrimi-
nant analysis (LDA) showed that the diagnostic signature permitted robust classification,
with considerably high accuracy to discriminate breast cancer patients from the healthy
controls (area under the precision-recall curves, AUPRC = 0.9912), and metastatic from
non-metastatic patients (AUPRC = 0.9433).

3.3.2. EV-Associated RNAs

There is significant evidence showing the capability of using RNA profiles to reveal
the signature of different cell types, indicating that EV-associated RNAs (exRNAs) may
play a role in diagnostic evaluation, especially in precancerous or cancer early diagnosis.
This is because exRNAs encapsulated within the bilayer lipid structure of EVs are protected
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from degradation by ribonuclease (RNase), which allows them to be stably detected in
biofluids such as plasma or serum. ExRNAs are thus potential candidates as biomarkers
for cancer [46].

MiRNAs are small non-coding RNAs that regulate gene expression. Therefore, pathol-
ogy is often associated with dysregulation of miRNA expression through mechanisms
such as translocation, amplification or deletion of miRNA genes; up- or downregulation
of miRNAs; abnormal epigenetic modifications (e.g., DNA methylation and histone mod-
ifications) of miRNA; and impairment of miRNA biogenesis [47]. MiRNA exchange via
EVs has thus been reported to play a key role in cancer progression. For example, breast
cancer cells could activate normal fibroblasts to CAFs within the tumor microenvironment
by transferring miR-125b via EVs to normal fibroblasts [48]. Additionally, Ueta et al. [49]
found that the combination of miR-1246 with the biomarkers CEA and CA19-9 in serum
EVs showed high diagnostic power in gallbladder cancer. These findings demonstrated the
usefulness of EV-associated miRNAs as useful biomarkers for cancer diagnosis. In addition
to miRNAs, other smaller RNA families, such as piwi-interacting RNA (piRNA) [50], Y-
RNA [51], transfer RNA (tRNA) [52], vault RNA (vRNA) [53] and small nucleolar RNA
(snoRNA) [54], have also been discussed in EV-related cancer studies.

Other than small-sized RNA families, larger RNA, such as mRNA, long non-coding
RNA (lncRNA), and circular RNA (circRNA), have also been highlighted. It has been
suggested that plasma-derived extracellular vesicle long RNA (exLR) could be used as
predictive biomarkers for the detection of breast cancer. Su et al. [55] successfully classified
breast cancer, benign, and healthy controls based on variations in their exLR profiles
with a support vector machine (SVM) model. In the study, the selected exLR markers
permitted classification with significantly high accuracy in the training and validation
sets, with AUC values of 0.960 and 0.900, respectively; additionally, early stage of breast
cancer was identified with AUC value of 0.94. Interestingly, combining the exLR signature
with breast cancer imaging improved the differential diagnostic performance of early-
stage breast cancer. Yu et al. [56] also established a diagnostic signature comprising eight
exLRs characteristic for PDAC based on the profiling of plasma-derived exLRs. Their
findings demonstrated outstanding performance in the training, internal validation and
external validation cohorts of the SVM based-diagnostic model, with AUC values of
0.960, 0.950 and 0.936, respectively. Additionally, the established diagnostic signature
permitted the identification of early stage (I/II) PDAC with an AUC value of 0.949 in the
combined three cohorts. Remarkably, the diagnostic signature outperformed the CA 19-9
tumor marker in differentiating PDAC (AUC = 0.931) from controls (AUC = 0.873). The
combination of different RNA species, for instance, two mRNAs (KRTAP5-4 and MAGEA3)
and a lncRNA (BCAR4) derived from sera EVs, demonstrated excellent predictability of
colorectal adenoma, with AUC values of 0.936 and 0.877 in the training and test cohorts,
respectively [57]. Furthermore, Lin et al. [58] established that the unique circular RNA
(circRNA) expression profiles of breast cancer patients and healthy controls facilitated
predictive classification using machine learning models. The chosen circRNAs, which were
closely linked to cancer progression, showed promising performance in classification with
an AUC value of 0.83.

4. Theoretical Considerations of Infrared (IR) Radiation in Biological Studies
4.1. Infrared (IR) Spectroscopy

IR spectroscopy measures the interaction between IR radiation and matter. IR radiation
is electromagnetic radiation with wavelengths and wavenumbers ranges of 0.78–1000 µm
and 12,500–10 cm−1, respectively. The IR region in the electromagnetic spectrum can be
subdivided into three spectral regions based on the wavelength and wavenumber: near-IR
(NIR), mid-IR (MIR), and far-IR (FIR). Table 1 shows the subdivision of IR regions of the
electromagnetic spectrum into NIR, MIR, and FIR with their corresponding wavelengths
and wavenumbers [59]. Applications of these IR spectral regions in the biological field are
briefly discussed in the following sections.
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Table 1. Infrared Regions.

IR Region Wavelength (µm) Wavenumber (cm−1)

Near 0.78–2.5 12,500–4000
Mid 2.5–25 4000–400
Far 25–1000 400–10

4.1.1. Far-Infrared (FIR)

The FIR region is commonly defined as the region from 400 to 10 cm−1. On the other
hand, the terahertz (THz) region refers to the spectrum range from 333 to 3.33 cm−1, which
overlaps with the FIR region. THz and FIR spectroscopy principles are alike; the difference
in names results from the instruments used according to experimental requirements [60].

FIR or THz radiation has been widely used in biomedical research, for example, by
using cancer cell lines or cancer patients to establish cancer phototherapies [61–63]. FIR or
THz radiation is highly sensitive to water content, hence making FIR or THz spectroscopy
a potential screening tool for cancer diagnosis, based on the difference in the water content
and water binding status in normal and cancerous tissues [64]. With increased water
content in cancerous tissues compared to that in normal tissues, Vafapour et al. [65] were
able to differentiate between healthy and cancerous colon tissues based on variations in
their reflectance spectra. Kawashima et al. [66] suggested that the development of fibrous
tissue around the malignant liver tumor tissue leads to water loss, thus giving rise to a
higher permeability of THz transmission in the imaging experiments. FIR or THz radi-
ation has been proven to be useful in bioimaging. The radiation also exerts beneficial
biological effects by producing thermal and non-thermal effects, including strengthening
cardiovascular function by enhancing vessel endothelial function, improving vasodila-
tion, a vessel circulation, and angiogenesis; promoting wound healing [67,68]; treating
postoperative lymphedema [62,69–71]; reducing postoperative pain [72]; suppressing skin
photoaging [73,74]; etc.

In addition, FIR is more susceptible to the vibration modes of peptide skeletons
and hydrogen bonds compared to MIR spectroscopy, it is therefore considered ideal for
examining highly ordered protein structures, such as fibril, gels, and virus-like particles, as
well as protein dynamics [75,76]. Several features of peptides and polyamides were linked
to distinct modes of vibration according to their characterization based on spectroscopic
data. However, proteins such as hemoglobin, lysozymes, and serum albumin showed
only weak and broad absorption bands in the FIR region, hence requiring complex and
time-consuming calculations and simulations to interpret the data obtained [76].

4.1.2. Mid-Infrared (MIR)

MIR (4000–400 cm−1) is commonly used in studying biological samples because most
molecule bands, such as proteins, lipids, sugars, and nucleic acids, are present in the MIR
region. According to Beer–Lambert’s law, molecular absorbance in this region is propor-
tional to the concentration without light scattering; the measurement of these biological
samples can evaluate any change in composition or structure [77]. In the biomedical area,
IR spectroscopy, specifically MIR, has been used to investigate large numbers of cells,
tissues, and organs, providing qualitative and quantitative information that could be used
for detection and classification. This technology can be used in numerous disciplines of
biodiagnostics, not only to characterize diseases and monitor drug delivery but also to
reveal the biomolecular framework underlying the particular alterations processes and
structures. IR spectroscopy could also be applied in forensic science to screen typical hu-
man bodily fluids collected from crime scenes as routine confirmation [78]. Notably, FTIR
spectroscopy is considered an excellent method to study and analyze biological samples
using MIR radiation [79].



Diagnostics 2023, 13, 22 9 of 29

4.1.3. Near-Infrared (NIR)

NIR spectroscopy (12,500–4000 cm−1) was exclusively employed as an accessory
to other optical equipment before the advent of light-fiber optics and monochromator
detectors; since then, NIR spectroscopy has become a tool that could be applied in various
scientific disciplines, including medicine [80]. NIR applications in bioscience include
medical monitoring [81], cell-related studies, analysis of bodily fluids and tissues [82], etc.

NIR calibration models for analyzing the cancer markers of prostate carcinoma (PCa)
were among the first applications of NIR spectroscopy in cancer diagnosis [83]. Calibra-
tion was performed using a novel adaptive method to attenuate metabolically induced
covariance between specific biomolecules in PCa cells. In addition to common bodily fluids
such as serum and saliva, NIR can also analyze blood oxygen levels. In studies, higher
total hemoglobin and water absorption were determined by analyzing NIR absorption
between normal and malignant tissues, followed by weaker signals associated with oxygen
saturation in lipids and tissue hemoglobin [84]. Furthermore, NIR spectroscopy has been
extensively applied to investigate blood glucose content. A study conducted by Henn et al.
found that both NIR and MIR can analyze urea and glucose in hemodialysis monitoring.
However, MIR is the better tool for monitoring hemodialysis because MIR, coupled to a
multi-reflection attenuated total reflection (ATR) cell, can provide access to more analyses
of interest, such as lactate, phosphate, and creatinine [85].

With NIR imaging techniques, aqueous solution dispersion can be probed more easily,
and changes in structure or concentration in water and proteins can also be monitored si-
multaneously [60]. However, compared to IR spectroscopy, the strongly overlapping bands
generated by NIR spectroscopy are around 10 to 100 times weaker than the corresponding
MIR bands [81], resulting in broad absorption profiles that complicate the identification of
contributing vibrations [82] and band assignment [81]. Therefore, NIR spectroscopy still
faces intense competition from IR spectroscopy, especially in bioanalytical research and the
field of medical diagnosis [82].

4.2. Biomolecular Vibrations and MIR Spectrum

The absorption bands displayed on an IR spectrum can be assigned to specific molecu-
lar vibrations of the sample constituents in which most of the biomolecules absorb energies
from MIR [86]. In this IR spectral region, the range of 1800–900 cm−1 is called the bio-
fingerprint region, where the molecular vibrations in this region are unique for different
types of biological samples, including different types of tumors [87,88]. For instance, IR
absorption bands of amide I and II observed at 1650 and 1550 cm−1, methylene groups
of lipids at 1470–1400 cm−1, stretching vibrations of phosphodiester groups at 1225 and
1080 cm−1, C-OH and C-O stretching of amino acids and carbohydrates at 1155 cm−1

and glycogen at 1030 cm−1 were reported to discriminate the plasma samples of healthy
individuals from those with intraepithelial lesion or malignancy (NILM) and squamous
intraepithelial lesion (SIL) [88]. In general, MIR regions including the high wavenumber
region, which generally corresponds to stretching vibrations such as C-H, N-H, and O-H,
together with the low wavenumber region, which correlate to bending and carbon skeleton
fingerprint vibrations, characterize the structure of biological samples [89,90]. Table 2
shows the assignments of the main peaks observed in biological IR spectra, based on the
literature.

Table 2. Assignments of prominent peaks observed in biological IR spectra.

Wavenumber (cm−1) Vibrational Mode References

3300, 3298, 3290, 3285 Amide A, which is attributed to peptide N-H stretching vibrations,
overlapped with -OH stretching [89,91–93]

3100, 3078 Amide B, which is attributed to peptide N-H stretching vibrations [89,91]
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Table 2. Cont.

Wavenumber (cm−1) Vibrational Mode References

2959 Asymmetric CH3 stretching vibration of acyl chains [93]

2924, 2921 Asymmetric stretching vibrations of the lipid acyl CH2 groups [4,92,93]

2872 Symmetric CH3 stretching vibration of the lipid acyl chains [93]

2851, 2850 Symmetric stretching vibrations of the lipid acyl CH2 groups [4,92,93]

1745, 1743, 1740, 1738 Saturated ester C=O stretch of lipids, phospholipids, triglycerides, and
cholesterol esters [4,92–94]

1657, 1650, 1646
Amide I, which arises mainly from C=O stretching vibrations of the

protein peptide backbone, coupled weakly with C-N stretch, N-H bend,
and C-N-C deformation

[89,91–94]

1550, 1546, 1540, 1537 Amide II, which originates from N-H vibrations of the peptide groups
with C-N stretching [89,91–94]

1448 Bending (scissoring) vibration of lipid acyl CH2 groups [93]

1402 Symmetric stretching vibrations of COO- in fatty acids and amino acids [93]

1314, 1300 Amide III, which is attributed to C-N stretching and N-H in-plane
bending, often with deformation vibrations of C-H and N-H [91,93]

1236 PO2
− antisymmetric stretch of phospholipids and nucleic acids [93]

1156 CO-O-C antisymmetric stretching of glycogen and nucleic acids; and
C-O stretching from alcohol groups of glycogen and lipids [93]

1080, 1072 PO2
− symmetric stretch of phospholipids and nucleic acids [4,93]

1033 –CH2OH groups and the C-O stretching vibration coupled with C-O
bending of the C-OH groups of carbohydrates [4]

Many studies have introduced FTIR as a promising biophysical tool for protein struc-
tural characterization and monitoring dynamic conformational changes [91]. The IR spectra
of protein molecules exhibit many characteristic vibrational frequencies. These vibrational
frequencies originate mainly from in-plane C-C stretch, C-N stretch, N-C stretch, N-H
stretch and bend, CO stretch and bend, CNC and CCN deformation, and out-of-plane CO
and N-H bend and CN torsion [95].

Amino acid residues are connected in proteins or polypeptides via amide bonds. In
fact, protein secondary structures are attributed to the hydrogen bonds formed between
atoms of the polypeptide backbone [96]. The differential hydrogen bonding in amino acids,
together with geometric orientations of amide bonds, give rise to individual secondary
structural folding in polypeptides (α-helix, β-sheet, and unordered structures), thereby
contributing to resolvable absorption bands in the amide I band corresponding to secondary
conformations in polypeptides [97–99]. Table 3 shows the assignment of protein secondary
structures based on the analysis of the IR amide I band [98,100].

Table 3. Assignment of protein secondary structure based on the IR amide I band analysis.

Wavenumber (cm−1) Band Assignment

1610 Sidechain
1630 β-sheet

1645, 1648 Random coil
1652 α-helix
1682 β-turn
1690 β anti-parallel sheet

The amide I and II bands are the most conformationally sensitive among the protein
bands. The amide I band, which is mainly composed of peptide carbonyl stretching
vibration, has been predominantly used as the most sensitive spectral region to access
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protein conformational information and is less likely to be influenced by the nature of side
chains [99]. In contrast, other amide bands are rarely used due to their complexity and are
affected by details such as the force field, side chains, and hydrogen bonding [91]. However,
the overlapping peaks corresponding to distinct secondary conformations of proteins make
band assignment challenging. Thus, the amide I band has to be resolved into multiple
individual band components by performing mathematical approaches, including second
derivatives and band curve fitting or Fourier self-deconvolution, which correspond to the
α-helix, β-sheet, turn, random, etc. of the protein compositions [97,98]. Mathematical and
statistical approaches such as multivariate analysis have been increasingly employed in
interpreting and revealing the information contained within spectra.

4.3. Sampling Modes of Fourier-Transform IR (FTIR)

FTIR works by mathematically Fourier-transforming an interferogram into an actual
spectrum. In principle, specific frequencies of IR energy are selectively absorbed by sample
constituents, which triggers atomic vibrations—the bending and stretching of the electric
dipole moment—within a molecule and eventually results in the vibrational transition from
the ground state to an excited vibrational state. These vibrational transitions are associated
with corresponding bonding or molecular compositions. They can be interpreted both
qualitatively and quantitatively based on the band positions, intensities, shapes, and widths,
thereby providing cancer-specific biomarkers with distinctive spectral fingerprints [101].

During the measurements, the emitted IR energy passes through the interferometer
along the optical path, where encoding of the spectral signals from the infrared frequencies
takes place. The interferometer captures the spectral signals from the infrared frequencies.
The interferogram, the resulting signal, is then transmitted through or reflected off the
sample surface. The specific energy wavelengths, which represent a sample’s unique molec-
ular characteristics, are absorbed. Eventually, the beam carrying molecular information
then passes through the detector, and the measured signals are directed to a processing
computer for Fourier transformation of the energy signals (Figure 2) [102].
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FTIR spectroscopy has rapidly expanded beyond the essential structural characteriza-
tion of molecules because of its inherent fundamental principles, simplicity of operation,
and analytical sophistication. This technology provides a quick, label-free, and chemically
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specific examination of non-destructive biological materials with minimal sample prepara-
tion and processes, as well as qualitative and quantitative data in the form of reproducible
IR spectra. FTIR spectroscopy is a cost-effective and economically sustainable tool for
clinical research due to its low analytical cost and minimum reagent utilization during the
analysis process. The application of FTIR spectroscopy in biofluid studies makes use of
many sampling modes; the main sampling modes of FTIR spectroscopy are transmission,
transflection, and attenuated total reflectance (ATR) [103].

In transmission-based sampling mode, IR radiation traverses a sample and a sub-
strate such as calcium fluoride (CaF2) [79]. However, as the beam passes through an
IR-absorbing sample, this technique requires an optimal pathlength to achieve quality
spectra, which is typically specified at 1–20 µm to prevent saturation of the signal and non-
Beer–Lambert-like behavior [101]; while in the case of aqueous biological samples, a shorter
pathlength is required—not exceeding 6–10 µm—to account for the strong IR-absorbing
water molecules [98]. The intensities of the IR bands are nevertheless limited by such short
pathlengths. The implementation of transmission FTIR spectroscopy in clinics is rather
challenging for aqueous or wet biological samples as their spectral reproducibility can be
affected by spacer thickness, surface interactions, the presence of air bubbles in the sample,
as well as the hydration level of the sample [101].

Transflection sampling mode functions by transmitting IR radiation through the
sample deposited on an IR-reflecting substrate. Some of the incident radiation is reflected
specularly from the surface; while most of the radiation is projected to the underlying
reflecting substrate and reflected off the substrate through the sample [101]. The transflected
radiation is detected and enables the molecular classification of the sample. Notably,
the increased pathlength in transflection spectroscopy results in much larger absorption
bands in the resultant IR spectra compared to those obtained in transmission and ATR
sampling modes [101]. However, transflection FTIR may not be the best option in the
study of biological samples. The increased sample pathlength makes it more susceptible
to IR absorption by water molecules, in particular for studies involving wet biofluids.
In addition, transflection FTIR spectroscopy is more prone to baseline effects due to the
significant scattering effects, with resonant Mie scattering being the most prominent effect,
resulting in smaller signal-to-noise ratio (SNR). According to Mie theory, the scattering
effect occurs when the wavelength of the interrogating radiation is approximately the same
size as the scattering particle of tissue or cell samples, which feature a high contrast in
refractive index [104]. For instance, the nucleus can give rise to Mie-type scattering and
spectral properties with non-Beer–Lambert absorption behavior because of its same size as
the wavelength of the IR radiation [105]. Moreover, biological samples, even single cells,
might have non-uniformity in size and shape that can give rise to a different extent of the
scattering effect.

In addition, many studies have demonstrated that transflection FTIR spectroscopy
is prone to the electric field standing wave (EFSW) effect [106–108]. An EFSW occurs at
reflective metallic-like surfaces when the reflected radiation interferes with the incident
radiation. EFSW can cause non-Beer–Lambert-like behavior, which results in non-linear
spectral distortion with increasing thickness of the sample. The findings reported by
Filik et al. [108] showed that variations in the thickness of bovine serum albumin (BSA)
films, ranging from 200 to 1200 nm, gave rise to a different extent of the EFSW artifact, which
exerted a significant effect on the transflection spectra by having a non-linear relationship
with the IR wavelength. However, the spectral artifacts arising from the effects of light
scattering and EFSW can be corrected by applying correction algorithms [109].

The issues addressed in transmission and transflection FTIR spectroscopy could be
surpassed by using ATR-FTIR spectroscopy. ATR-FTIR relies on the interaction between
an internal reflection element (IRE) comprising an infrared transparent material with a
high refractive index—ATR crystals such as germanium, zinc selenide, zinc sulfide, or
diamond—and a sample placed on the surface of the IRE [90]. The incident beam is
transmitted through the IRE. Total internal reflectance is then instigated, and the IR beam
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is reflected in the IRE, creating an evanescent wave that protrudes beyond the IRE and
penetrates into the surface of the sample for a few micrometers (1–2 µm) to determine its
bonding geometry [90]; the wave then loses energy exponentially with distance from the
interface of the IRE and the sample, and the resultant radiation is then measured, generating
the resulting absorption spectrum [101]. In order to establish total internal reflectance, the
critical angle must be minimized by having an IRE with a relatively higher refractive index
than that of the sample; the angle of incidence must be greater than the critical angle, or
else both the ATR and external refraction will contribute to the resultant spectrum [101];
and the sample must be in direct contact with the ATR crystal [90].

The use of mid-IR spectroscopy for biological studies is challenging because of the
presence of water in tissues, cells, or biofluids. Water molecules are capable of absorbing
IR radiation over a broad range in the mid-IR region, and can mask the absorption bands
corresponding to other biochemical components of the sample. Thus, many studies have
been carried out on dried biological samples in order to eliminate the detrimental effect on
the resultant spectra caused by water molecules [110,111]. However, spectral differences
were observed in fixed or dried samples and the samples in their hydrated or natural
aqueous state, which may vary with their hydration state [112,113]. Zohdi et al. [112]
demonstrated that the FTIR spectral information obtained from rodent heart and liver
tissues preserved through desiccation drying, ethanol substitution, or formalin fixation
changed compared to the spectra of fresh hydrated tissue samples, whereby the position
and profile of the amide I band varied with the preparation approach and observable
intensity loss of lipid absorption occurred when the tissues were hydrated with ethanol.

FTIR coupled with ATR is ideal for biological samples, including biofluids [114–117],
tissues [118–121], and cells [122–124]. One of the main advantages of ATR is based on
the use of the surface layer technique, which depends on the interaction between the
generated evanescent waves and a few micrometers thick surface layer of the sample.
This makes the measurements less likely to be affected by sample thickness, which also
allows for simpler sample preparation. However, the sample needs to be at least three-
to four-fold thicker than the penetration depth to prevent spectral artefacts with the IRE
substrates [90]. Unlike transmission and transflection FTIR spectroscopy, given its small
depth of beam penetration due to close proximity between the ATR element and samples,
its small effective path length can prevent signal saturation and makes it applicable to
aqueous samples, which allows the entire range of the MIR region, including the region
corresponding to O-H vibrational modes, to remain accessible [104,125]. ATR-FTIR is thus
a more preferable option for studying both dried and hydrated biological samples. Gulley-
Stahl et al. [126] demonstrated that ATR-FTIR imaging produced images and resultant
spectra with negligible scattering effects even when the biopsied kidney sample contained
small amount of mineral that had a high refractive index. ATR-FTIR could thus eliminate
spectral artifacts, which have always been an issue in transmission and transflection FTIR.
Moreover, in contrast to transmission mode, ATR-FTIR does not need expensive substrates
for analysis.

As nano-sized EVs might be well beyond the diffraction limit of IR radiation, a number
of studies have exploited the versatility of AFM-IR nano-spectroscopy, which is capable of
studying the heterogeneity within EVs at the single vesicle level with nanoscale resolution
(<20 nm) and with increased chemical sensitivity to provide spectral information for
the characterization of the molecular content of EVs [127–130]. In general, the sample
preparation for AFM-IR spectroscopic analysis includes the deposition of the EV-containing
sample onto a solid surface or substrate (e.g., zinc selenide (ZnSe) prism, mica, and gold)
to immobilize then sample, followed by drying of the sample for measurements. During
the measurements, the laser is aligned with the end of the AFM cantilever, which is in
contact with the sample with the AFM tip. The absorbed IR radiation amplifies the thermal
expansion signal of the EV sample, and the induced mechanical resonances of the cantilever
are then detected by the AFM tip, producing an AFM-IR spectrum from the sample [130].
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Despite its ability to analyze nanoscale structure, the sample preparation and instru-
ment setup are rather tedious, time-consuming, and technically challenging. For example,
the duration of sample preparation might take hours, and the sample must be securely
immobilized to prevent dragging or detachment during the spectroscopic measurements.
In addition, the IR laser must be accurately aligned and optimized, and the cantilever must
be placed properly prior to acquisition of the AFM-IR spectra in order to obtain reliable
spectra from individual EVs. Moreover, substrates such as ZnSe and the laser beam are
hazardous, thus special care is required during the measurements [130]. In comparison to
AFM-IR, FTIR spectroscopy is easily accessible, cost-effective, faster, and less tedious than
AFM-IR, which makes FTIR spectroscopy a more preferable screening tool [131].

5. FTIR Spectroscopy in Discovery and Detection of EV-Based Cancer Markers

Cancer development or progression is often associated with changes in biochemical,
cellular component, and protein conformational information, hence resulting in modifica-
tion of the biochemical content in tumor-derived EVs. The alterations in the biochemical
compositions could give rise to spectral modifications, such as changes in relative intensity,
shape, or relative band position. Taken together, these spectral differences unveil a set of
signature spectral biomarkers for cell differentiation.

Some authors have studied the changes in biochemical components of EV samples
using a ratiometric approach to evaluate the ratios between the absorbance of selected bands.
Direct use of spectral band absorbance values is not preferable due to possible experimental
artifacts attributed to factors such as variations in sample thickness, sample purity, etc.,
during EV isolation [132]. Interestingly, different ratio mixtures have been established by
authors to quantify the molecular content of samples. For instance, the lipid/protein ratio
was able to differentiate between non-malignant, malignant, and metastatic breast cancer
cells [133]; the protein/lipid ratio could differentiate EV subpopulations [89]; the integral
(area covered) ratios of amide I/amide II and β–sheet/α–helix discriminated a mouse
model of non-Hodgkin lymphoma and melanoma from the healthy mouse model [100]; the
spectral intensity ratios of lipid/protein, phosphate/carbohydrate, and RNA/DNA were
used to classify ovarian carcinoma subtypes [134]; the ratios of protein/lipid, RNA/lipid,
and protein glycogen differentiated cells at different growth phases [135]; etc. Very often,
the computed ratios were presented using univariate analyses, such as box plots [32].

5.1. Variations of Biochemical Composition in Cancer-Derived EVs

FTIR spectroscopy has been employed to identify EV subpopulations enriched from
the same cell. It was first introduced by Osteikoetxea et al., who used the protein-to-lipid
ratio to characterize different EV subpopulations [136]. Mihály et al. [137] also performed
quantitative analysis using the spectroscopic protein-to-lipid ratio parameter based on
relative intensity of amide I and CH stretching bands in IR spectra to differentiate between
different EV subpopulations isolated from Jurkat T-cells, namely exosomes, ectosomes,
and apoptotic bodies. Their findings revealed that the apoptotic body appeared to have
the highest ratio, followed by exosomes, and the lowest ratio was in ectosomes. Similar
findings have also been reported wherein a higher spectroscopic protein-to-lipid ratio was
shown in melanoma-derived exosomes than in isolated ectosomes [89].

In addition to the protein-to-lipid ratio, different ratio mixtures have also been uti-
lized to differentiate between malignant and non-malignant IR spectra. For example, Di
Santo et al. [32] reported variations in the molecular contents of serum EVs enriched from
hepatocellular carcinoma (HCC) patients, which were highlighted by spectral variations in
the band shape and relative intensity of the protein (amide I and II), nucleic acid, carbohy-
drate, as well as lipid CH stretching bands. In detail, HCC patient-derived EVs showed
an increase in the intensity of the band corresponding to lipid CH stretching vibration,
together with a decrease in the intensity of protein, nucleic acid, and carbohydrate bands.
These changes were captured by computing the spectral ratio of the molecular compo-
nents within EVs of the cancer patients and healthy controls, including the lipid-to-protein,
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lipid-to-carbohydrates, and lipid-to-nucleic acid ratios, which quantitatively measured the
relative amount of the biomolecules in the analyzed EV samples. The results showed that
the lipid-to-protein and lipid-to-nucleic acid ratios were much higher in HCC patients than
in healthy controls. The spectral differences unveiled the potential of using protein, RNA,
and lipid contents of EVs as HCC biomarkers [32]. Moreover, Zlotogorski-Hurvits et al. [4]
also reported spectral differences of salivary exosomes between oral cancer patients and
healthy controls. This study introduced that the relative intensity of the bands between
glycogen or carbohydrate and nucleic acids, the asymmetric and symmetric CH stretching
vibrations of CH2 and CH3 methylene groups; and the CH bending vibration bonds in acyl
residues of lipids or amines and asymmetric CH stretching vibration of CH2 methylene
group could be used as the fingerprint FTIR signature for oral cancers [4].

In a study of prostate cancer (PCa), instead of using the functional group region, Yap
et al. introduced the possibility of using the fingerprint region from the average mid-
IR spectrum, specifically from 1419 to 968 cm−1, to be developed as a complementary
test for future screening of cancer. Figure 3 shows that the absorbance spectrum for EVs
isolated from urine samples of PCa patients was higher at a few absorption bands than
that of healthy subjects, including bands at wavenumbers of approximately 1412, 1052,
and 968 cm−1. The authors were able to identify the main absorption bands contributing
to the cancer classification by performing partial least square (PLS) analysis, including
the absorption bands corresponding to vibration in RNA (1121, 1081, and 988 cm−1)
(Figure 3a). The PLS analysis also revealed that the bands corresponding to CO bond
vibration in carbohydrate and DNA (1071, 1057, and 1050 cm−1) contributed the most in
the discrimination of different stages of prostate cancer (Figure 3b) [34].

Cancer screening and detection at early stages or in preneoplastic states are important
to improve curability and the overall patient survival rate. However, in many cases, patients
remain asymptomatic and miss the ideal timing for medical treatment. The delay in cancer
detection makes the treatment increasingly challenging and complex due to the progression
of cancer stages and metastasis [138]. Interestingly, it was highlighted that tumors in
different malignancies shared different biochemical and IR spectral profiles in their EV
subpopulations. Recently, Stępień et al. [89] revealed the biochemical modifications in
melanoma-derived EV subpopulations—exosomes and ectosomes—particularly in their
lipid compositions due to subtle changes shown in the IR absorption bands corresponding
to the lipid absorption regions between melanoma subtypes. They then established multiple
lipid ratio parameters to reveal the lipid composition of the EVs more thoroughly, including
the saturated-to-unsaturated fatty acids (Fas) ratio (SFA/UFA), acyl chain length (ACL), and
lipid-to-protein ratio for paternal cells and their derivative EVs. The parameters, notably
the saturated-to-unsaturated fatty acids ratio, were lowest in the metastatic cutaneous
melanoma-derived ectosomes compared to those derived from normal melanocytes and
primary melanoma cell lines, suggesting that ectosomes can serve as a potential source of
lipid biomarkers for pathology.

In addition, FTIR spectroscopy has the potential to distinguish multidrug-resistant
cancer cells from drug-sensitive cells [139]. Spectral variations were reported in the band
regions around 1650–1545 cm−1 in the spectra profiles of EVs derived from drug-sensitive
and -resistant osteosarcoma cells. In detail, the drug-sensitive EV population was defined
by the band positioned at 1601 cm−1, together with a band shift at 1649 cm−1, which might
be attributed to modifications in the amide I band and alterations in protein conformation
since the amide I band often correlates to different protein secondary structures. The authors
also revealed a significant difference between the EVs secreted by both drug-resistant and
-sensitive cells by accessing the spectroscopic protein-to-lipid ratio [139].
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Reproduced with permission from ref. [34], Membranes; published by MDPI, 2021.

The potential of FTIR spectroscopy to serve as a screening method for cancer biomark-
ers was further confirmed by the findings of Paul et al. [131]. In the study, by using FTIR
spectroscopy as a complementary spectroscopic tool to AFM-IR spectroscopy, hyaluronan
(HA) was identified as a biomarker for colon cancer-derived EVs. Interestingly, when com-
paring the spectra of pure HA and cancerous EVs, a similar spectral profile was observed,
comprising all six signature peaks of HA with similar peak position and relative intensities,
including the band regions corresponding to amide or NH wagging (622 and 1113 cm−1),
C-O and C=O groups in fatty ether (1407 cm−1), amide II (1639 cm−1), C-H stretching
(3005 cm−1), and O-H stretching (3137 cm−1). Surprisingly, none of the signature peaks
of HA were observed in normal colon epithelial cells. The findings proved that FTIR can
effectively identify key biomarkers from the EVs.
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5.2. Structural Changes of Proteins in Cancer-Derived EVs

As reviewed above, hydrogen bonding of different strengths affects the C=O vibration
absorption frequency, giving rise to various absorption properties in polypeptides for
protein secondary conformation components [99]. Cancer is often associated with mod-
ification by mutations and the selection of cells. A mutation in the amino acid sequence
may give rise to a structural change in a protein or polypeptide [140]. Evaluation of the
conformational changes of EV-derived proteins may provide researchers with a wealth of
information in terms of α-helixes, β-sheets, random coils, etc.

Studies have demonstrated the potential of exploiting an EV secondary structural
signature as a characteristic biomarker for cancer screening. Findings suggested that
malignant cells secreted a higher content of β-sheet-rich protein through EVs than non-
malignant cells. For instance, an enhancement of α-helix-rich proteins was observed in
healthy sera- and plasma-derived EVs from the deconvoluted amide I band in IR spectra,
in contrast to the elevation of β-sheet-rich protein levels in EVs isolated from cancer
patients, which may be attributed to systemic alterations in the blood caused by progressive
malignant disease [31]. Similar findings were reported by Rasuleva et al. [9]. The second
derivative IR spectra of the amide I band were used to explore the secondary conformation
of proteins of PDAC tumor-derived EVs. Spectral variations were identified in the IR band
components corresponding to α-helix and β-sheet conformations. Quantitative analysis by
integrating the corresponding band showed that the ratio of the β-sheet-to-α-helix band
was considerably higher in cancer-derived EVs than in normal EVs, suggesting enriched
β-sheet proteins in EVs originating from PDAC tumor cells [9].

In addition to alterations in the β-sheet content, Stępień et al. [89] also revealed
changes in the percentage of α-helix, β-sheet, inter β-sheet, and random coil content
between proteins present in exosomes and ectosomes originating from normal melanoma
cells, primary, and metastatic melanocytes using ATR-FTIR spectroscopy. They reported
significant variations in the random coil structure content, with the highest random coil
content found in ectosomes from metastatic WM266-4 and exosomes from primary WM115
cell lines [89].

In short, these findings prove that information about the distinct pro-tumorigenic
content in cancer-derived EVs can be acquired using FTIR spectroscopy, which is reflected
in the generated spectra and associated with alterations in relative band intensity, band
shape, or band shift. In many cases, the biochemical changes in EVs, including nucleic
acids, lipids, and proteins, as well as structural variations in EV-associated proteins, be-
tween malignant and non-malignant samples are revealed quantitatively, namely by using
different appropriate ratio mixtures. Remarkably, there is no consistent pattern of variations
among the samples, suggesting that spectral changes could be exclusive to each cell type,
hence showing the potential of developing spectral biomarkers for cancer detection.

6. Machine Learning Assisted Analysis of IR Spectral Data

In 1950, Alan Turing first proposed that a computer can learn and become artifi-
cially intelligent if it can mimic or simulate human intelligence to perform tasks [141].
Histopathology is the gold standard for cancer diagnosis, but its accuracy is inherently
susceptible to operator subjectivity. It is thus important to adopt AI-driven systems in the
pathology domain. In 1993, a highly accurate machine learning-based computer-aided
detection (CAD) model was established for the diagnosis of breast tumors [142]. Since
then, there has been a massive acceleration in the growth of AI models in clinical applica-
tions and studies, primarily in clinical decision support [143,144], prediction of the risk of
disease [145,146], disease diagnosis [147–149], etc. In recent years, many researchers have
started to implement AI-assisted models in the spectral analysis of medical diagnosis in
order to improve the diagnosis of diseases.

Given the complexity of the molecular composition on the EV surface and EV deriva-
tives, each generated spectrum can exhibit highly heterogeneous peak compositions,
thereby displaying a diverse and complex spectral dataset with overlapping absorption
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of the main biomolecules. In addition, the spectral variations between different groups,
such as malignant and non-malignant samples, are often very subtle. Sample replicates
or even the same sample at different time points may exhibit spectral variations due to
unavoidable biological changes in the samples, sample degradation, variations in sample
preparation, purity [150], etc. In such a complex condition, traditional peak assignment
and univariate methods such as box plot analysis are insufficient in assessing the complex
spectra of different groups. The complex spectra make traditional band assignment difficult
and potentially misleading. At the same time, univariate approaches are restricted to
small datasets. They are limited to one variable, such as variation in relative intensity
or relative band position (spectral shift) in an IR spectrum, which causes significant in-
formation loss [32,151]. To address these issues, computationally aided analysis seems
necessary to support the interpretation of multivariate spectral datasets. Chemometrics
and machine learning may truly reveal underlying spectral information and permit a more
robust classification [151,152].

6.1. Chemometrics and Machine Learning

Chemometrics have found widespread use in handling spectroscopic data. Chemo-
metrics can be applied to detect and extract information from subtle changes in IR spectra
generated from different samples using mathematical and statistical approaches. Many
chemometric methods can be achieved with machine learning approaches, including fea-
ture or dimensionality reduction, sample clustering, sample classifying with a classification
model, or predicting the samples’ quantitative properties with a regression model [150].
Machine learning is a subset of artificial intelligence (AI), which involves the application
of algorithms to learn and improve performance from past experience. Machine learning-
based techniques allow the creation of models to review large sizes of multivariate data
and produce an automated output that humans can hardly accomplish in an automated
manner [153].

Machine learning can be divided into two subcategories: unsupervised and supervised
learning. In this context, unsupervised learning, such as principal component analysis
(PCA), is used to create a model of the observed patterns. Unsupervised learning deals
with unlabeled data and is thus exploratory. The system explores the data by reducing the
dimensionality of the spectral datasets and draws inferences from the datasets. It reveals
hidden patterns and trends from the unlabeled data, eventually creating clusters based
on similar characteristics. On the contrary, supervised learning, such as random forest,
decision trees, SVM, etc., aims to create predictive models from a given input pattern.
Supervised algorithms highly depend on the information provided by labeled data or pre-
determined classifications, such as the histopathological diagnosis. A model is developed
on a known training dataset, and its performance is then evaluated in terms of accuracy,
specificity, sensitivity, etc. by comparing the output class or output value (for classification
and regression, respectively) to the true categories of the validation dataset [55,151,152,154].
If errors are recognized, the model can be modified and corrected accordingly to improve
its performance.

6.2. Machine Learning of FTIR-Based EV Analysis for Cancer Detection

Machine learning models have shown outstanding diagnostic performance in cancer
studies, enabling the prediction of the probability or risk that a patient currently has cancer.
In order to establish a well-performing machine learning predictive model, pre-processing
of the raw FTIR spectral data has become an essential part of chemometric modeling,
helping to transform the raw data into a structured and numeric format, hence facilitating
the learning process of the applied machine learning algorithms. Nsugbe et al. [155]
investigated the application of the linear series decomposition learner (LSDL) approach to
minimize the uncertainty and redundancy within the FTIR signal derived from urinary EVs,
followed by nine types of machine learning modeling in the prediction of prostate cancer,
including decision tree, linear and quadratic variants of discriminant analysis, logistic
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regression, K-nearest neighbors (KNN), and SVM. The results suggested that the proposed
modeling approach could be employed for clinical prostate cancer prediction. Further
cancer-stage prediction investigations also showed high accuracy across various metrics
studied, demonstrating the capability of urine sample analysis in conjunction with the
presented modeling approaches. Figure 4 shows the operational flow of machine learning
modeling [155].
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Robust and accurate cancer classification is crucial in order for patients to receive
correct and effective cancer treatment. A study confirmed that the combination of ATR-FTIR
and supervised learning models could permit robust classification of cancerous salivary
exosomes. Two discrimination models, principal component analysis-linear discriminant
analysis (PCA-LDA) and SVM classification, were developed to classify salivary exosomes
derived from oral cancer patients and healthy controls. The discriminant PCA-LDA plot
showed successful classification of the two groups with high sensitivity, specificity, and
accuracy of 100%, 89%, and 95%, respectively, with only one healthy individual being
misdiagnosed as a cancer patient. Remarkably, oral cancers at both the early- and late-stage
were recognized in the same cluster, hence revealing the potential application of FTIR as
a diagnostic tool for the early detection of oral cancer and monitoring patients with oral
precancerous disorders. The SVM discriminant model also showed separation between the
cancer patients and healthy controls with training accuracy and cross-validation accuracy
of 100% and 89%, respectively [4].

In many cases, different predictive models are trained and evaluated for their per-
formance with the same dataset before deploying the final model to ensure that they are
suitable for their given tasks, for instance, the diagnostic prediction of cancer and cancer
staging [155]. Uthamacumaran et al. [156] evaluated the classification performance of three
different machine learning algorithm models in the discrimination of EVs isolated from
the blood sera of different cancer patients (breast, pancreatic, colorectal, and hepatocellular
cancers). Both the AdaBoost random forest classifier and decision trees displayed excellent
classification performance, with accuracy near or higher than 90%. However, the SVM clas-
sification model displayed poor classification performance, with a classification accuracy of
57.14%, five-fold cross-validation score of 75.00 ± 25.00, mean square error of 0.4, and AUC
value of 0.50 in the analyzed FTIR spectra. This pointed out that the SVM model might not
be best suited for classification purposes in this study.

Remarkably, spectral biomarkers were demonstrated to outperform the classification
ability of the conventional HCC circulating biomarkers—alpha-fetoprotein (AFP) and pro-
tein induced by the absence of vitamin K or antagonist-II (PIVKA-II)—which confirmed the
diagnostic potential of spectral biomarkers in cancer. By using a PCA–LDA discrimination
model, several potential spectral biomarkers for HCC diagnosis were identified, including
the shape of the bands corresponding to amide I and II, lipid CH stretching, and lipid-ester
vibrations. The classification performance of different spectral biomarker subsets, either
alone or combined, as well as the two HCC biomarkers, were accessed using stepwise
multivariate logistic regression, which was then followed by Receiving Operator Curve
(ROC) analysis. Based on the ROC analysis, the combined spectral biomarkers achieved
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a superior diagnostic performance (AUC = 0.91, sensitivity = 1, and specificity = 0.76)
compared to AFP (AUC = 0.81) and PIVKA-II (AUC = 0.86) [32].

7. Conclusions and Future Perspectives

EVs have emerged as a valuable source of disease biomarkers for liquid biopsy due
to their high abundance and stability in biofluids, as well as the representative molecular
profile of their parental tumor cells [7,38]. A wealth of proof-of-concept studies have
demonstrated the potential of using FTIR spectroscopy as an exploitable tool for label-
free molecular profiling of EVs. FTIR spectroscopy can be used as a rapid, cost-effective,
reproducible, and effective diagnostic tool, enabling automated classification through the
implementation of multivariate analysis and machine learning with remarkable statistical
outcomes (Table 4). This technique is thus well suited to trace and monitor alterations
in the cellular state or phenotypes by detecting biochemical changes in EVs, as well as
conformational changes in biomolecules, which are less readily accessible using other
detection techniques [10]. The research findings are driving the development of diagnostic
FTIR assays. They may one day have extensive utility in cancer research to discover novel
disease biomarkers and achieve translation into clinics for early detection.

Table 4. A summary of the cancer-derived EVs studies using FTIR spectroscopy discussed in this
review.

Study Cancer
Type EV Type Wavenumber (cm−1) Band Assignment/Vibrational Mode Analysis

Methods

[4] Oral
Cancer

Salivary
exosomes

2924, 2854
Asymmetric and symmetric C-H

stretching vibrations of lipid CH2 and
CH3 methylene groups

Ratiometric,
PCA–LDA,
and SVM

1743 C=O stretching vibration in lipids
1547, 1543 Amide II

1404 CH bending vibration bonds in acyl
residues of lipids/amines

1072 Symmetric stretching of nucleic acid
phosphodiester groups

1033
Vibrational mode of –CH2OH groups,

C-O stretching vibration and C-O bending
of carbohydrates

[9] Pancreatic
cancer

PDAC cell- and
sera-derived EVs

1700–1600 Amide I
Ratiometric1653 1 α-helix 2

1644 1, 1635 1 β-sheet 2

[31] Prostate
cancer

Sera- and
plasma-derived
exosomes and

ectosomes

3298 Amide A

Observation

1656 Amide I
1544 Amide II

1667–1686 1 β-turns 2

1620–1640 1,
1670–1695 1 β-sheets 2

1648–1657 1 α-helices 2 and random coils 2

[32] Hepatocellular
cancer Sera-derived EVs

1200–1000 Carbohydrate and nucleic acid band Ratiometric,
PCA–LDA,

and multivariate logistic
regression

3000–2800 Lipid C-H stretching vibration

1735 C=O stretching of the purine base and
lipid-related ester group

[34] Prostate cancer Urinary EVs 988, 1121, 1081 Phosphodiester stretching from nucleic
acids PCA and PLS

1050, 1057, 1071 CO bond vibration in carbohydrate and
DNA
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Table 4. Cont.

Study Cancer
Type EV Type Wavenumber (cm−1) Band Assignment/Vibrational Mode Analysis

Methods

[89] Melanoma

Melanoma cell-
derived

exosomes and
ectosomes

3290 Amide A

Ratiometric

3078 Amide B
3006 Unsaturated fatty acid

3000–2800, 1396 Lipid acyl chain
2922, 2853 Saturated fatty acid
1743, 1728 Lipid interfacial region

1650 Amide I
1540 Amide II

1300–1000 Lipid head group
970 DNA

[131] Colorectal
cancer Cell-derived EVs

3137 OH stretching of carboxylic acid group

Observation

3124, 3005 C-H stretching of alkane group
1639 Amide II

1407 Symmetric and asymmetric vibration of
COO−

1244, 1113 C-O group with C=O in fatty ether
622 Amide/NH wagging

[137] Leukemia Leukemia
cell-derived EVs

3285 Amide A

Ratiometric

2924, 2850 Antisymmetric and symmetric stretching
vibrations of lipid acyl CH2 groups

1740–1725 C=O stretching of lipid-related ester bonds
1650 Amide I
1540 Amide II

1453 Bending (scissoring) vibration of lipid acyl
CH2 groups

1394 Bending vibrations of CH3 groups of lipid
and protein

1676 1 β-turn 2

1660 1 Triple-helix structure 2

1640 1 Random coils 2

1635 1 β-sheets 2

1627 1 Non-native intermolecular β-sheets 2

[139] Osteosarcoma Cell-derived EVs

2930, 2852 Acyl group vibrations

Ratiometric

1780–1550 In-plane vibrations of double bonds of
nucleic acid bases

1738 Ester groups of phospholipids,
triglycerides, and cholesterol esters

1649 Amide I

1550–1270 Deformation vibrations of nucleic acid
bases and sugar vibrations

1455 Amide II

1407 Symmetric and asymmetric vibration of
COO−

1270–1000 Vibrations of –PO2−

1240, 1080 Symmetric and asymmetric stretching of
the nucleic acid phosphodiester groups

1040 Polysaccharides
1000–780 Vibrations of sugar-phosphate backbone
992–986 Ribose phosphate main chain

966 Stretching vibration of the DNA backbone

[156]

Pancreatic,
melanoma,

colorectal, and
breast cancers

Sera-derived EVs

3400–3200 OH stretch
PCA, AdaBoost random

forest classifier,
decision trees, and SVM

3010–2850 C-H stretching vibration
3070 -
1120 -

1 Wavenumber originating from deconvoluted amide I absorption band. 2 Protein secondary structure.

However, the limited numbers of samples used in studies often limit the development
of new technologies. The small sample sizes used in FTIR based-EV studies makes it
necessary to conduct studies or trials with larger numbers of samples to obtain more robust
classification models and ascertain the true clinical diagnostic performance, especially
when the statistical outcomes of the machine learning algorithms is highly influenced
by the number of samples used in the training and validation of these computational
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models [86]. Additionally, it is crucial to develop and test multiple classification models
suitable for the high-throughput analysis of FTIR spectra of EVs because the models can
provide physicians with a direct diagnosis by automatically analyzing the spectral datasets
rather than a biophysical parameter that requires further interpretation [32].

Furthermore, the lack of rapid and standardized approaches for EV investigations,
particularly in their isolation and characterization procedures, significantly limits the pro-
cess of translating EV-based biomarkers into the clinic. Conventional EV-isolation methods,
such as ultracentrifugation, multistep filtration, size-exclusion chromatography, etc. [10],
and easy-to-use commercial isolation kits have been used in EV-related studies [157–159].
However, it was reported that the efficiency, purity, and yield of EV isolation; types of
isolated subpopulations; and their molecular contents varied with the isolation and purifi-
cation methods [158–163], as well as the type of sample [162] used in the studies. Therefore,
standardization of biofluid sample processing procedures (isolation and purification) is
needed to accelerate the process of their clinical implementation.
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