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Abstract: COVID-19 infection triggered a global public health crisis during the 2020–2022 period, and
it is still evolving. This highly transmissible respiratory disease can cause mild symptoms up to severe
pneumonia with potentially fatal respiratory failure. In this cross-sectional study, 41 PCR-positive
patients for SARS-CoV-2 and 42 healthy controls were recruited during the first wave of the pandemic
in Mexico. The plasmatic expression of five circulating miRNAs involved in inflammatory and
pathological host immune responses was assessed using RT-qPCR (Reverse Transcription quantitative
Polymerase Chain Reaction). Compared with controls, a significant upregulation of miR-146a, miR-
155, and miR-221 was observed; miR-146a had a positive correlation with absolute neutrophil count
and levels of brain natriuretic propeptide (proBNP), and miR-221 had a positive correlation with
ferritin and a negative correlation with total cholesterol. We found here that CDKN1B gen is a
shared target of miR-146a, miR-221-3p, and miR-155-5p, paving the way for therapeutic interventions
in severe COVID-19 patients. The ROC curve built with adjusted variables (miR-146a, miR-221-
3p, miR-155-5p, age, and male sex) to differentiate individuals with severe COVID-19 showed an
AUC of 0.95. The dysregulation of circulating miRNAs provides new insights into the underlying
immunological mechanisms, and their possible use as biomarkers to discriminate against patients
with severe COVID-19. Functional analysis showed that most enriched pathways were significantly
associated with processes related to cell proliferation and immune responses (innate and adaptive).
Twelve of the predicted gene targets have been validated in plasma/serum, reflecting their potential
use as predictive prognosis biomarkers.

Keywords: miRNAs; SARS-CoV-2; immune response

1. Introduction

SARS-CoV-2 virus is transmitted through aerosols and droplets. So far, the COVID-19
pandemic has resulted in more than 530 million cases and 6.3 million deaths [1].

Upon transmission, the virus particles bind the lung epithelial cells through inter-
actions between the spike (S) protein and the host cellular entry receptor angiotensin-
converting enzyme 2 (ACE2) [2], causing a negative regulation of ACE-2 with the conse-
quent loss of its catalytic capacity to degrade angiotensin II. During the infectivity phase,
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the virus can also produce its own miRNAs, which could further regulate host miRNAs
and their targets [3]. These host miRNAs may influence different phases of the viral life
cycle, including translation, by attaching itself to the viral RNA or mRNA.

Viruses can induce the up-/downregulation of certain host miRNAs to evade the
host’s immune system by suppressing antiviral factors, such as interferon (IFN) [4–6].
On the other hand, several miRNAs could have an antiviral effect, enabling the defense
mechanisms to fight the infection [5,7].

Previous data on the mechanisms regulated by miRNAs suggest a possible role in
COVID-19; miRNAs for which significant alterations have been reported are implicated
in the regulation of the immune and/or inflammatory pathways at different levels: cy-
tokine and chemokine synthesis; T-cell development, differentiation, and activation; or
B-cell development, differentiation, and activation, among others [8]. Well-described
associations have been reported in ventilated patients between miR-155 and inflamma-
tion; miR-208a/miR-499 and myocardial/cardiomyocyte damage; and miR-21/miR-126 in
cardiac fibroblast and endothelial-cell dysfunction [9].

In this context, the use of molecular principles of gene regulation mechanisms could
represent an innovative way to identify potential biomarkers of infection for developing
antiviral therapeutic agents for certain diseases that do not have yet an effective treatment,
such as COVID-19. Despite there are validated and approved methods available for COVID-
19 diagnosis, prognosis is still complicated by only assuming the positive results of rapid
antigen tests, serological tests, or RT-qPCR. For this reason, we are continuously looking
for reproducible methods that are able to predict poor prognosis even at early points after
infection. Most COVID-19 studies have focused on proteomic, metabolomic, and cellular
biomarkers [8]. In the last decade, noncoding RNAs (ncRNAs) and miRNAs, have emerged
as novel tools to aid in medical decision-making and can be easily measured through
standard techniques already employed in clinical laboratories, such as RT-qPCR. miRNAs
are sensitive, robust, and cost-effective biomarkers that offer additional information to
already established clinical variables and clinical indicators [10]. They are stable in various
body fluids and offer advantages as biomarkers because they are highly conserved between
species, and their expression patterns are tissue and life-stage specific. The advantage
of miRNAs is their consistent detectability in patients with lower COVID-19 severity
and a lesser dependence on sampling time. The integration of miRNAs into biomarker
signatures may improve the performance of established biomarkers, as demonstrated
for binary and triplet combinations with D-dimer, troponin T, SARS-CoV-2, RNAemia,
age, and BMI [11]. Target genes for these miRNAs play an important role in the immune
dysregulation observed in COVID-19 patients, and they may also be evaluated as potential
biomarkers in the context of long-COVID, because cumulative evidence suggest immune
alterations in patients with persistent symptoms or post-COVID-19 symptoms.

For the aims of the present work, we chose five miRNAs with previously validated
involvement in inflammatory processes related to immune system activation [12–15] to
examine their expression in plasma from patients with severe COVID-19 and to explore
their role as potential biomarkers of disease severity. It is well acknowledged that hy-
perinflammation and massive cytokine dysregulation are mechanisms leading to poor
outcomes in severe COVID-19 patients [16]. Due to the heterogeneity of the factors that
could affect the course of the disease, we propose here an age- and gender-adjusted model
to differentiate controls from severe COVID-19 patients.

2. Materials and Methods
2.1. Study Population and Sampling

This is a cross-sectional study with 41 patients suffering from severe COVID-19 and 42
negative controls attending hospitals for COVID-19 diagnosis or treatment. SARS-CoV-2
diagnosis was conducted using reverse transcription polymerase chain reaction (RT-PCR)
from a nasopharyngeal specimen using standard methods [17,18].
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This study was revised and approved by the Ethics and Research Committees of
the Christus Muguerza del Parque Hospital (folio: CEI-HCMP-15042020-3) and Health
Secretary Services of San Luis Potosí (folio: CEI-003-20161034). The study was conducted
in accordance with the Declaration of Helsinki. Informed consent was obtained from all
participants prior to the collection of the blood samples. Figure 1 shows the workflow for
the experimental design and data analysis.
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2.2. miRNAs Selection

One of the preferred methods to study miRNAs is microarrays, which requires a
large amount of RNA sample (usually more than 1 µg). Since COVID-19 has been widely
acknowledged as a hyperinflammatory diseases with a strong dysregulation in the immune
system, it is remarkable to find the factors that control this inflammatory unbalance. For
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this reason, more than to perform a massive screening of all miRNAs, we selected some
miRNAs that have been previously related to inflammation, immune response, vascular
complications, metabolic signaling, and organ damage. Based on recent bioinformatic
prediction studies [11,19], we selected five miRNAs associated with some of the processes
previously mentioned and ranked within the most important miRNAs. Our goal was to
validate previous bioinformatic predictions for these miRNAs, this time for a Mexican
population, which remains poorly explored until now. Supplementary Table S1 shows the
miRNAs selected for validation and the justification for their inclusion in our study based
on previous findings.

2.3. Circulating miRNA Isolation and Relative Expression Determination by RT-qPCR

Total RNA from each sample was isolated from 25 µL plasma using TRI-Reagent
(Sigma-Aldrich, Germany), according to manufacturer’s instructions. The isolated RNA
was resuspended in DEPC-treated and RNAse inhibitors. Then, the RNA quality was
measured at 260/280 nm using a spectrophotometer (Q3000 Quawell Technology, Inc., San
José, CA; USA). A value greater than 1.8 was considered acceptable. The cDNAs for the
mature miRNAs (U6 snRNA, miR-16-5p, miR-221-3p, miR-34-5p, miR-146a, and miR-155)
were synthesized from 300 ng of total RNA by one-step RT-qPCR using the GoldBio’s
Probe-Based One Step RT-qPCR Kit (Gold Biotechnology® St Louis, MO; USA); TaqMan
probes were used for each of the miRNAs to avoid unspecific amplification. The miRNA
amplification by qRT-PCR was carried out using TaqMan MicroRNA Assay specific primers
(Applied Biosystems, Foster City, CA; USA) in a thermocycler (qTOWER3; AnalytikJena,
Gottingen, Germany) with the following amplification conditions: first strand cDNA
synthesis at 42 ◦C for 30 min, initial denaturation/RT inactivation at 95 ◦C for 3 min,
followed by 40 cycles of denaturation at 95 ◦C for 5 s, annealing/extension at 60 ◦C for 30 s.

All RT-qPCR reactions were performed in duplicate. Cq values were averaged and the
∆∆Cq method [20] was used to obtain the relative expression, where ∆∆Cq was calculated
by subtracting the ∆Cq value from the mean of the control group with the ∆Cq value
of the COVID-19 patients. NormFinder [21] was used to estimate the best candidate
reference gene between U6 snRNA and RNU48; miRNA levels were normalized with
the use of the average of reference Cq value as the housekeeping gene, according to
NormFinder parameters.

2.4. Bioinformatic Analysis

Bioinformatic analysis of targets was performed through the page miRNet 2.0 and its
web service https://www.mirnet.ca/miRNet/home.xhtml (accessed on 14 July 2022). This
analysis identified targets that were shared by 2 or more miRNAs. We assessed hsa-miR-
155-5p, hsa-miR-221-3p, and hsa-miR-146a-3p, which were the significant miRNAs. The
selection of most relevant genes was made, setting degree centrality and betweenness to
equal or >1. Using the same web service, a miRNA-gene network with selected targets
was constructed. Subsequently, all genes related to immune system functions were se-
lected. Functional association analysis using the TAM 2.0 http://www.lirmed.com/tam2/
(accessed on 17 July 2022) [22] was also conducted to identify the functional terms for
differentially expressed miRNAs. To control for multiple comparisons, a false-discovery
rate (FDR) < 0.05 was used.

2.5. Statistical Analysis

Frequencies and proportions were used to describe sociodemographic characteristics,
main comorbidities, symptomatology, and epidemiological data for the study participants.

Statistical analyses were carried out using GraphPad (version 5.0) software (GraphPad,
La Jolla, CA, USA). The mean ± SD or median ± IQR were used to represent continuous
data with parametric or nonparametric distribution, respectively. For clinical data, ANOVA
with Tukey’s post hoc tests for continuous variables were used to identify differences
across categories, and Fisher’s exact tests were used for nominal data. Nonparametric

https://www.mirnet.ca/miRNet/home.xhtml
http://www.lirmed.com/tam2/
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Kruskal–Wallis with Dunn’s post hoc tests were employed to identify differences in miRNA
data. Statistical significance was set at p < 0.05.

Spearman’s correlation coefficients and plots between miRNAs and laboratory values
were computed using R studio (4.1.2).

Crude and adjusted logistic regression models were built to predict COVID-19 severity.
Odds ratios (OR) with 95% confidence intervals (CI) were computed. The full model
included all variables, with a p ≤ 0.10 in crude analyses, but only independent variables
with a p < 0.05 in at least one category in the comparisons remained in the final model. A
receiving operating characteristics (ROC) curve was produced from the final logistic model,
and the area under the curve (AUC) was reported. The Nagelkerke pseudo-R2 statistic,
ranging from 0 to 1, was used to provide an indication of the amount of variation in the
dependent variable explained by the model.

3. Results
3.1. Sociodemographic Characteristics

The sociodemographic characteristics of the patients recruited in the present study are
summarized in Table 1. The mean age of the patients with severe COVID-19 was higher
than that of healthy controls (52.4 vs. 39.1 years, p < 0.01). Male patients with severe
COVID-19 accounted for 82.9%, compared with 45.2% in the control group (p < 0.01). In
terms of comorbidities, the proportion of patients with diabetes (26.8% vs. 2.3%; p < 0.01)
and hypertension (41.4% vs. 9.5%; p < 0.01) was higher among those with severe COVID-19,
but no statistical differences were seen for the other conditions assessed. All general and
respiratory symptoms measured were clearly more frequent (p < 0.01) in patients with
severe COVID-19 than among controls.

Table 1. Selected sociodemographic characteristics, main comorbidities, and clinical symptoms for
patients with severe COVID-19 (n = 41) and healthy controls (n = 42).

Variable Category
Group, % (n)

p-Value *
Controls COVID-19

Sex Male 45.2 (19) 82.9 (34) <0.01

Female 54.7 (23) 14.6 (6) <0.01

Age (years) 20–45 73.8 (31) 31.7 (13) <0.01

46–65 23.8 (10) 53.6 (22) <0.01

66–85 2.38 (1) 14.6 (6) 0.04

Current smoking 11.9 (5) 7.3 (3) 0.71

Type 2 diabetes (DM-II) 2.3 (1) 26.2 (11) <0.01

Hypertension 9.5 (4) 41.4 (17) <0.01

COPD or asthma 4.7 (2) 4.8 (2) 0.98

Immunosuppressed 0 (0) 2.4 (1) 0.49

Chronic kidney disease 0 (0) 4.8 (2) 0.24

Obesity, BMI ≥ 30 kg/m2 71.4 (30) 63.4 (26) 0.48

General symptomatology Fever 2.3 (1) 73.1 (30) <0.01

Headache 16.6 (7) 58.5 (24) <0.01

Myalgia 16.6 (7) 63.4 (26) <0.01

Arthralgia 7.1 (3) 58.5 (24) <0.01

Respiratory symptomatology Cough 19.0 (8) 80.4 (33) <0.01

Odynophagia 9.5 (4) 31.7 (13) 0.01

Dyspnea 7.1 (3) 85.3 (35) <0.01

Chest pain 11.9 (5) 36.5 (15) <0.01

Other signs/symptoms Anosmia/dysgeusia 2.3 (1) 4.8 (2) 0.61

Diarrhea 7.1 (3) 24.3 (10) 0.03

COPD: chronic obstructive pulmonary disease; BMI: body mass index. Chi2 and Fisher’s exact tests were used. *
p < 0.05 was considered statistically significant.
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3.2. Differential Expression of miRNAs in the Plasma of Patients with COVID-19

Figure 2 shows the relative expression (normalized against U6 snRNA) in controls and
COVID-19 patients for each studied miRNA. Significant upregulation of miR-16, miR-155,
and miR-221 was observed for COVID-19 patients (Figure 2). miR-146a was found to be
marginally significant in the crude analysis. NormFinder analysis identified U6 snRNA as
the single most stable gene, with a stability of 0.589 and a standard error of 0.33.
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3.3. Logistic Regression Model Based on miRNAs for Classification of COVID-19 Patients

Crude and adjusted regression models (OR; 95% CI) to differentiate patients with
COVID-19 from healthy controls are presented in Table 2. The results showed a statistically
significant upregulated expression of miR-155, miR-16, and miR-221 in patients with severe
COVID-19 compared with healthy controls in crude analyses. However, when adjusting
by age and sex, only miR-155, miR-146a, and miR-221 remained significant for identifying
COVID-19 patients.

Table 2. Computed crude and adjusted odds ratios (OR) with 95% confidence intervals (CI) from
logistic regression for the probability to identify severe COVID-19.

Variables
OR (95% CI)

Crude Adjusted *

miR-16 1.28 (1.06–1.54) –

miR-34a 1.12 (0.99–1.28) –

miR-146a 0.70 (0.51–0.97) 0.24 (0.09–0.62)

miR-155 1.34 (1.13–1.60) 1.68 (1.19–2.37)

miR-221 1.29 (1.11–1.50) 1.36 (1.04–1.78)

Sex (male) 6.02 (2.16–16.7) 7.75 (1.40–42.7)

Age (years) 1.09 (1.04–1.14) 1.10 (1.04–1.18)

DM-II 15.1 (1.85–124.1) -

HTN 6.83 (2.04–22.8) -
DM-II: diabetes mellitus type II; HTN: hypertension; *Only significant variables (p < 0.05) remained in the final
adjusted model; Nagelkerke R2 = 0.71, Hosmer–Lemeshow Chi2, * p-value = 0.53.

3.4. Model Performance

Figure 3A represents the ROC curve for all the individual miRNAs, without adjust-
ment. However, when adjusted by sex and age, the combination of miR-155, miR-146a, and
miR-221 showed an adequate performance (AUC: 0.95, 95%CI 0.89–0.98) (Figure 3B) for
discrimination of severe patients.



Diagnostics 2023, 13, 133 7 of 17
Diagnostics 2023, 13, x FOR PEER REVIEW 8 of 18 
 

 

 
Figure 3. (A) ROC curve with individual miRNAs. (B) ROC curve built with the variables in-
cluded in the logistic regression model. (AUC: 0.95, 95%CI 0.89–0.98). Nagelkerke pseudo-R2 sta-
tistic, ranging from 0 to 1. 

3.5. Correlation of Significant miRNAs with Clinical Variables in Severe COVID-19 Patients 
To assess if differences in miRNA expression were related to other variables, we per-

formed a correlation analysis. There was a significant positive association between miR-
146a and absolute neutrophil count (r = 0.57, p = 0.007), and proBNP (r = 0.40, p = 0.0001), 
also between miR-221 and ferritin (r = 0.35, p = 0.03). On the other side, we observed a 
significant negative correlation (r =−0.61, p = 0.01) between miR-221 and total cholesterol 
(Figure 4). 

 
Figure 4. Correlations between significant miRNAs and clinical characteristics. Blue circles repre-
sent positive correlations, while red circles represent negative correlations. Significance of correla-
tion is, accordingly, the circle diameter. Spearman’s correlation (* p < 0.05). 

3.6. Evaluation of the Interaction Networks of Common Target Genes across the Studied miR-
NAs 

Only validated target genes with a correlation ≥1 were entered in the analysis to iden-
tify genes regulated by miR-155-5p, miR-221-3p, and miR-146a-3p, which were the miR-
NAs that contributed to the adjusted logistic regression model. A total of 498 targets were 
related to the analyzed miRNAs (Figure 5A). The Venn diagram (Figure 5B) shows the 
number of genes shared by the miRNAs under study. These genes are listed in Table 3. 
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3.5. Correlation of Significant miRNAs with Clinical Variables in Severe COVID-19 Patients

To assess if differences in miRNA expression were related to other variables, we
performed a correlation analysis. There was a significant positive association between miR-
146a and absolute neutrophil count (r = 0.57, p = 0.007), and proBNP (r = 0.40, p = 0.0001),
also between miR-221 and ferritin (r = 0.35, p = 0.03). On the other side, we observed a
significant negative correlation (r =−0.61, p = 0.01) between miR-221 and total cholesterol
(Figure 4).
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3.6. Evaluation of the Interaction Networks of Common Target Genes across the Studied miRNAs

Only validated target genes with a correlation ≥1 were entered in the analysis to
identify genes regulated by miR-155-5p, miR-221-3p, and miR-146a-3p, which were the
miRNAs that contributed to the adjusted logistic regression model. A total of 498 targets
were related to the analyzed miRNAs (Figure 5A). The Venn diagram (Figure 5B) shows
the number of genes shared by the miRNAs under study. These genes are listed in Table 3.
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Table 3. Target genes validated in plasma/serum for the significant miRNAs.

Target Official
Symbol

Official Full
Name

Sequence
Accession ID

(Gene)

miRNA
Associated with

Regulation
Predicted/Validated Gene Function Reference

INPP5D
(SHIP1)

Inositol
polyphosphate-5-

phosphatase
D

NC_000002 hsa-miR-155-5p

Validated (qPCR,
assay, luciferase
reporter assay,

and Western blot)

Tumor suppressor
recognized to inhibit cell

proliferation in many types of
tumor cells.

[23,24]

CDKN1B
Cyclin-dependent

kinase inhibitor
1B

NC_000012 hsa-miR-155-5p

Validated (qPCR,
assay, luciferase
reporter assay,

and Western blot)

Plays a critical role in
controlling cell growth and

division.
Macrophage proliferation.

[23]

SOCS1
Suppressor of

cytokine
signaling 1

NC_000016 hsa-miR-155-5p

Validated (qPCR,
assay, luciferase
reporter assay,

and Western blot)

Acts as a negative feedback
regulator to inhibit

JAK2/STAT3 signaling. Control
of systemic inflammation and
promotes the proliferation and
inflammation of macrophages

through downregulating
SHIP1.

[25]

FOXO3 Forkhead box O3 NC_000006 hsa-miR-155-5p

Validated (qPCR,
dual-luciferase
reporter system,

and Western blot)

Regulatory effects on cell
proliferation, apoptosis,

metabolism, and oxidative
stress. Plays an important role

in both inflammation and
regulation of cell proliferation.

Regulates inflammation by
NF-κB, T cells, and
autoinflammation.

[26]

ICAM-1
Intercellular

adhesion
molecule 1

NC_000019 hsa-miR-155-5p

Validated
(reporter gene

assay, qPCR, and
Western Blot)

Indicator of vascular
inflammation. [27]

PTEN Phosphatase and
tensin homolog NC_000010 hsa-miR-221-3p Validated

(RT-qPCR)

Tumor suppressor by
negatively regulating the

AKT/PKB signaling pathway.
[28]

ICAM1
Intercellular

adhesion
molecule 1

NC_000019 hsa-miR-221-3p Validated
(RT-qPCR)

It binds to integrins of type
CD11a / CD18, or CD11b /

CD18, and is also exploited by
rhinovirus as a receptor.

[29]

FOS

Fos
proto-oncogene,

AP-1
transcription
factor subunit

NC_000014 hsa-miR-221-3p Validated
(RT-qPCR)

Implicated as regulators of cell
proliferation, differentiation,

and transformation.
[30]
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Table 3. Cont.

Target Official
Symbol

Official Full
Name

Sequence
Accession ID

(Gene)

miRNA
Associated with

Regulation
Predicted/Validated Gene Function Reference

NFKB1 Nuclear factor
kappa B subunit 1 NC_000004 hsa-miR-221-3p Validated

(qRT-PCR)

Transcription regulator that is
activated by various intra- and

extracellular stimuli such as
cytokines.

[29]

P27KIP1
Cyclin-dependent

kinase inhibitor
1B

NC_000012 hsa-miR-221-3p

Validated
(luciferase

reporter assays,
Western blotting,

and qPCR)

p27kip1 is an inhibitor of
cell-cycle progression. Plays a

decisive role in nonproliferating
cell types, such as eosinophils

and dendritic cells (DCs).

[24]

EGFR
Epidermal

growth factor
receptor

NC_000007 hsa-miR-146a-3p Validated (qPCR)

It is a receptor for members of
the epidermal growth factor

family. EGFR is a component of
the cytokine storm, which

contributes to a severe form of
COVID-19 resulting from

infection with severe acute
respiratory syndrome

coronavirus-2 (SARS-CoV-2).

[31]

SUMO1
Small

ubiquitin-like
modifier 1

NC_000002 hsa-miR-146a-3p

Validated
(dual-luciferase
assay, Western

blot)

SUMOylation of SERCA2a,
Ca2+ handling in
cardiomyocytes.

[32]

From the 498 validated targets, 12 genes have been validated for miRNAs regulation
in plasma/serum. Table 3 shows the validation method, as well as the function associated
with each target gene. These genes are the most important target genes to be considered
as potential biomarkers since previous studies have validated them in the same matrix in
which miRNAs were measured in our study.

Finally, in the functional association analysis (Figure 6), miRNAs statistically different
in COVID-19 patients showed enriched functional terms, including aging, apoptosis, T-cell
differentiation, hematopoiesis, and immune response, among others.
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4. Discussion

This study looked at the differential expression of five circulating miRNAs in plasma
from healthy controls and patients with severe COVID-19 to explore their potential role in
the inflammatory and host immune response against infection, and to assess their value
as biomarkers of disease severity. Our group has been focused in the role of miRNAs as
regulators for certain diseases [33–35]. Evidence suggests that these molecules are important
predictors of disease complications and an important source of diagnosis biomarkers or
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therapeutic targets. The Mexican population is complex to study, since multiple factors,
including ethnicity, comorbidities, genetic factors, and lifestyle, could modify disease
outcomes when comparing with other populations. We have previously seen these miRNAs
modulated in other inflammatory diseases [36], and we aimed to find a link between
COVID-19 and all the inflammatory mediators that influence the hyperinflammatory status
observed in severe cases. Therefore, with the present study, we validated not only our
previous findings about the involvement of the studied miRNAs in inflammation and
immune system, but also, we validated other author contributions, demonstrating that,
independently of population differences, these miRNAs regulate important processes
related to COVID-19 complications. Analysis of the identified miRNAs showed regulatory
functions associated with inflammation, immune response, and vascular and metabolic
diseases, indicating that the infection caused by the SARS-CoV-2 virus has multiple effects
that alter the homeostasis of different organs and tissues.

Previous studies have shown that viral infections affect host homeostasis by regulating
miRNA expression [11,37–41]. The altered expression of miRNAs causes other genes to
regulate the host immune response to viral infection. Each miRNA can then target multiple
genes, making them important regulators of numerous cellular functions. Eyileten et al.
(2022) reported a bioinformatic miRNA prediction and subsequent validation in Poland
patients. The authors looked for miRNAs regulating the highest number of top network-
medicine-based integrative approach (NERI) nodes and top NERI targets associated with
coagulation. In their study, top miRNAs were identified based on their regulation of the
highest number of the top differentially expressed genes associated with coagulation and
involved in the coagulation process. The miRNAs selected in our study are ranked in the
top 30 miRNAs having a role in ACE2-related thrombosis in coronavirus infection [19].

The results presented here showed a statistically significant dysregulated expression
of miR-155, miR-16, and miR-221 in patients with severe COVID-19 compared with healthy
controls in crude analyses. However, for the establishment of an adequate predictive
model, adjustment for cofounders must be accomplished. Due to the presence of different
factors influencing COVID-19 outcomes, such as sex, age, and comorbidities, we propose
here an adjusted model. When adjusting by age and sex, only miR-155, miR-146a, and
miR-221 remained significant for identifying severe COVID-19 patients. ROC built with
the adjusted model showed an adequate performance (AUC: 0.95, 95% CI 0.89–0.98).
However, interpretation of these results must be done with caution. A low sensitivity
was achieved in our study. Sensitivity refers to the proportion of subjects who have the
target condition (reference standard positive) and give positive test results. This parameter
is highly dependent on the simple size. For the sample size calculation, the prevalence
of the target population must be considered to obtain a representative sample. With a
low or high prevalence, the study may be overpowered in one subpopulation. Since
COVID-19 was an emergent disease, these estimations were difficult to calculate at the
beginning of the pandemic. Sammut-Powell et al. [42] reported a simulation study to
evaluate the effect of sample size calculations in the sensitivity and specificity of COVID-19
diagnostic tests in practice. Under the current emergency guidelines from the Medicines
and Healthcare Products Regulatory Agency, companies are required to evaluate diagnostic
tests in 30 positive and 30 negative cases. The authors demonstrated that, in practice,
in a test performed with 80% sensitivity and 93% specificity in 30 positive and negative
samples, respectively, their real-world sensitivity and specificity could be as low as 57.7%
and 83.2%, respectively.

Our results are consistent with previous studies in which expression of miR-155 has
been increased in patients with COVID-19 [43–45]. A study by Garg et al., found overex-
pressed values of miR-155 in critically ill and mechanically-ventilated COVID-19 patients,
suggesting that this miRNA could be useful for evaluating the severity of the disease [9].
This overexpression seems to contribute to the overall exacerbated proinflammatory state
widely described in patients with COVID-19. miR-155 has its origin in leukocyte cells,
and there is increasing evidence that macrophage activation contributes to the initiation of



Diagnostics 2023, 13, 133 11 of 17

inflammatory responses resulting in tissue damage [23]; miR-155 responds to many inflam-
matory stimuli, such as TNF-α, IL-1β, pathogen-associated molecular patterns (PAMPs),
and damage-associated molecular patterns (DAMPs) that act by potentiating the inflam-
matory response [15]. Additionally, miR-155 has an important role in innate immunity
and differentiation and activation of T and NK cells [15,23,45,46]. miR-155-5p also has an
important role in inflammatory and immunological processes, endothelial dysfunction, and
cardiometabolic diseases. Moreover, it has been shown that miR-155 upregulates IL-1, IL-6,
TNF-α, and IL-12 signaling pathways, as well as the NF-kB and JAK/STAT3 pathways.
Therefore, over-regulation of miR-155 in SARS-CoV-2 infection could be a good predictor
of inflammatory status and immune disorders [9,43,44,47–49]. Studies have found that this
miRNA is also differentially expressed in other conditions, including acute lung damage,
viral infections (influenza), pulmonary fibrosis, and asthma [44,50–52].

On the other hand, miR-221-3p is able to target molecules belonging to pathways with
key roles in inflammatory responses, including toll-like receptors (TLRs), transcription
factors (NF-kB), and cytokines/chemokines (TNF-α, IL-6, and IL- 8) [53–55]. miR-221 has
been differentially expressed downwards in patients with COVID-19 compared to those
with community-acquired pneumonia [39]. Molinero et al. found an overexpression in
the ratio of miR-221-3p in bronchial pulmonary aspirate samples in patients seriously
ill with COVID-19, compared with healthy controls (in which decreased levels of miR-
221-3p in non survivors were reported), suggesting that the signature of miRNAs may
change depending on the degree of severity, the type of tissue studied, and the outcome
of the disease [44]. The proposed miR-221-3p mechanisms may be severe endothelial
injury and coagulopathy (features observed in lung samples of fatal COVID-19 cases) [56]
to the targeting core receptor protein ADAM17 (a disintegrin and metalloproteinase 17)
involved in ACE2-dependent shedding (associated with lung pathogenesis) [57], and to
the suppression of the innate immune response and promotion of the viral infection via the
TBK1 (TANK binding kinase 1) gene [58,59].

Previous experimental studies have described downregulation of miR-146a during
SARS-CoV-2 infection [50,53,60]. miR-146a is known to be an anti-inflammatory miRNA. It
regulates inflammation by targeting the factor 6-associated TNF receptor (TRAF6), thereby
reducing the expression of NF-kB (nuclear factor kappa B) [12,61,62]. miR-146a depletion
leads to IL-1, IL-6, and TNFα overproduction [63]. It is also related to the toll-like receptor
signaling pathway and is a regulator of IL-1B and TGFB1 transcription factors [64,65].

miR-146a expression also correlated with biochemical parameters such as proBNP
and absolute neutrophil count. Natriuretic peptides are sensitive indicators of cardiac and
hemodynamic stress, which may be due to left ventricular systolic/diastolic dysfunction,
ischemic or inflammatory dysfunction, and right cardiac overload secondary to pulmonary
consequences of the disease (i.e., pulmonary embolism, pulmonary hypertension, hypoxic
vasoconstriction, or acute respiratory distress syndrome) [66]. In fact, the potential useful-
ness of this cardiac parameter as a prognostic biomarker associated with the severity of
COVID-19 has been previously suggested [67,68]. Neutrophils are at the intersection of
innate immune responses, including pathogen destruction, thrombosis, and activation of
the adaptive immune system [69,70].

Lastly, miR-146a directly regulates thromboinflammatory processes by inhibiting
several proinflammatory elements of the NF-κB pathway [13,71]. This miRNA is predomi-
nantly expressed in cells that promote thrombosis (i.e., macrophages, platelets, neutrophils,
and endothelial cells) [72]. In addition, it has been shown that decreased levels of miR-146a
in patients with pneumonia are associated with an increased risk of adverse cardiovascular
events by exacerbating the inflammatory and prothrombotic responses associated with
severe COVID-19 [70].

We also account for a positive correlation between ferritin and miR-221. It has been
reported that ferritin is a nonspecific marker of inflammation and a key mediator of
immune dysregulation through direct immunosuppressive and proinflammatory effects
that contribute to the cytokine storm [73]. Clinically, cytokine release storms are a common
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phenomenon in patients with SARS-CoV-2. This process results in multiple deleterious
effects on both the innate and acquired immunity, potentially related to the activation
and differentiation of the T-cellular process wherein miRNAs have essential functions
in various immune-related diseases and could therefore modulate the response during
viral infections.

The negative correlation between total cholesterol and miR-221 (r = −0.61) is also
relevant, as lipid metabolism plays an essential role in the COVID-19 disease. Cholesterol
has been shown in several studies to interact with the S protein of SARS-CoV-2 [74]. De-
creased serum total cholesterol levels have been associated with poor prognosis in patients
with COVID-19. Ressaire et al., reported that low total cholesterol levels could result
from SARS-CoV-2-induced vasculopathy; the authors also observed a positive correlation
between total blood cholesterol levels and COVID-19 severity, which was evaluated using
the Kirby index [75].

Functional analysis showed that most enriched pathways were significantly associated
with processes related to cell proliferation and immune responses (innate and adaptive).
CDKN1B was found to be the unique shared target between the significant miRNAs.
This gene has an important role controlling the cellular cycle and apoptosis. A recent
study found that p27Kip1, encoded by CDKN1B, was positively regulated by the innate
immune signaling activated by the Influenza A virus. The authors suggested that increased
expression of p27Kip1 could limit the viral replication, constituting a potential therapeutic
approach [76].

In conclusion, SARS-CoV-2 infection appears to induce an important response in the
host’s miRNA profile, suggesting that the severity of the symptoms is associated with
epigenetic factors, which in turn regulate a large number of functions in different tissues
that can modulate the host response. The differential expression of miRNAs involved in
inflammatory processes, including miR-155, miR-221, and miR-146a found in patients with
severe COVID-19 in this study, point to their potential role as regulators of cellular processes
in SARS-CoV-2 infections. Therefore, the expression levels of these dysregulated miRNAs
could be of diagnostic and prognostic value as biomarkers to predict the severity of the
disease and to develop therapeutic strategies against the virus through their regulation. To
our knowledge, this is the first study reflecting miRNA dysregulation in severe Mexican
COVID-19 patients and their association with inflammation, immune system, and vascular
complications leading to organ failure. Since several studies about miRNA dysregulation
are based on bioinformatic prediction, the validation of these findings, such as we are
presenting here, will contribute to the inclusion of these molecules in multiomics prognostic
panels. However, we need to acknowledge study limitations. Sample size was the major
limitation, which makes it conflictive to establish highly accurate models of prediction.
Moreover, the sample amount (volume) limited the validation of targets by traditional
methods such as Western blot.

For future studies, the sample size needs to be increased, including patients with mild
COVID-19. miRNAs could also be evaluated in survivors and non survivors, as well as in
other types of samples that could be less invasive, such as urine, sputum, saliva, etc.
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