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Abstract: We compared diagnostic performances between radiologists with reference to clinical infor-
mation and standalone artificial intelligence (AI) detection of breast cancer on digital mammography.
This study included 392 women (average age: 57.3 ± 12.1 years, range: 30–94 years) diagnosed with
malignancy between January 2010 and June 2021 who underwent digital mammography prior to
biopsy. Two radiologists assessed mammographic findings based on clinical symptoms and prior
mammography. All mammographies were analyzed via AI. Breast cancer detection performance was
compared between radiologists and AI based on how the lesion location was concordant between
each analysis method (radiologists or AI) and pathological results. Kappa coefficient was used to
measure the concordance between radiologists or AI analysis and pathology results. Binominal
logistic regression analysis was performed to identify factors influencing the concordance between
radiologists’ analysis and pathology results. Overall, the concordance was higher in radiologists’
diagnosis than on AI analysis (kappa coefficient: 0.819 vs. 0.698). Impact of prior mammography
(odds ratio (OR): 8.55, p < 0.001), clinical symptom (OR: 5.49, p < 0.001), and fatty breast density
(OR: 5.18, p = 0.008) were important factors contributing to the concordance of lesion location between
radiologists’ diagnosis and pathology results.

Keywords: artificial intelligence; breast neoplasm; mammography; radiologists

1. Introduction

Mammography, a basic imaging study for diagnosing breast cancer, has been used
for a long time as a standard screening modality [1]. Although mammography increases
cancer detection rate and reduces mortality rate, the possibility of missed diagnoses or
false positives remains. Diagnostic performances of radiologists can also vary [2–4]. A
computer-aided detection (CAD) technique has been introduced to facilitate mammography
interpretation. CAD was approved by the U.S. Food and Drug Administration (FDA) in
1998 [5]. Since then, it has been widely used. Early studies have shown that traditional
CAD might enable detection of microcalcifications and masses and result in reduced rate of
false negatives [6]. However, its effectiveness in clinical setting is still controversial due to
its low specificity, false-positive markings, and high recall rates [6–9].

Given the growing interest in the use of artificial intelligence (AI) in the medical
field, several novel algorithms from around the world have been developed and trialed.
Recent advances in convolutional neural networks (CNNs) and deep learning algorithms
have led to a dramatic evolution and implementation of AI in the medical field [10,11]. A
potential benefit of AI in the medical field has been suggested as radiological imaging data
continue to grow disproportionate to the number of available trained readers. The use
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of AI can improve the sensitivity and specificity of lesion detection and shorten reading
time [10,12–15].

Among many subspecialties in radiology, breast imaging is at the forefront of clinical
applications of AI. The performance level of AI in mammography evaluation is comparable
to that of experts [16–21]. It is expected that software for AI interpretation in conjunction
with radiological evaluation can induce a double reading effect [22–26].

Lunit INSIGHT MMG (Lunit, Seoul, Korea), a software that aids breast cancer detection
in a mammogram, was developed on the basis of deep convolutional neural net-works [16].
It used ResNet-34, one of the most popular CNN architectures, as a backbone network [27].
Lunit INSIGHT MMG used more than 200,000 cases analyzed in Korea, the United States,
and the United Kingdom to train the AI algorithm. It has received authorization from the
Korean Ministry of Food and Drug Safety.

Despite multiple benefits of AI, many papers report that additional tests, including
prospective studies, are needed to apply AI to real clinical practice. For example, Yoon
et al. reported that feasibility testing should be conducted while considering certain clinical
aspects, such as incorporating of AI in clinical practice [11]. Wallis et al. reported that
retrospective studies have failed to predict the real-world performance of radiologists and
machines. Therefore, it is important to conduct a prospective study before introducing
artificial intelligence into actual breast screening [28]. Sechopoulos et al. also empha-
size large-scale screening trials to compare the performance of AI and breast screening
radiologists in real-world screening domains [29].

In order to understand the limitation of AI and use it appropriately, it is important
to consider differences between image analyses performed by AI and radiologists in real
clinical environments. While a radiologist evaluates a mammography with reference
to more clinical information, the AI reads only the image based on its own algorithm.
Despite reports of increased cancer detection and decreased recall rate by AI, it is necessary
to determine whether differences exist between the evaluation performed by AI and a
radiologist in an actual clinical environment. Therefore, the objective of this study was
to compared performances of radiologists and AI in breast cancer detection on digital
mammography in real clinical practice.

2. Materials and Methods
2.1. Study Population

This retrospective study was reviewed and approved by our Institutional Review
Board (IRB). The requirement for informed consent was waived by the IRB due to its
retrospective nature. From January 2010 to June 2021, a total of 1314 patients underwent
ultrasound-guided core biopsy in our hospital, of which 532 patients were diagnosed
with malignancy. Among these patients, we excluded those without mammography
(n = 52), those with film mammography (n = 14), and those with computed radiography
(n = 74). Finally, this study included 392 women (average age: 57.3 ± 12.1 years, range:
30–94 years) diagnosed with malignancy who underwent digital mammography prior to
biopsy. Each patient’s clinical symptoms (no symptom, palpation, pain, discharge, other),
final pathological diagnostic method (biopsy, breast conservation surgery, or mastectomy),
lesion location confirmed pathologically (right, left, both), and histology were reviewed
based on their medical records.

2.2. Imaging Modalities

All mammographic examinations were bilateral and performed in four craniocaudal
(CC) and mediolateral oblique (MLO) views. There were 378 mammographies performed in
our hospital and 14 digital mammographies performed externally. Digital mammographic
images in our hospital were obtained with a Selenia Full-Field Digital Mammography Unit
(Hologic Inc.). Lunit INSIGHT MMG (version 1.1.3.0, Lunit), an artificial intelligence-based
diagnostic software tool, was used to determine the probability of malignancy scores and
markings of suspected lesion.
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2.3. Imaging Analysis

Mammography was reviewed by two radiologists in consensus. Breast composition
was evaluated according to the Breast Imaging Reporting and Data System (BI-RADS)
(American College of Radiology). Breast compositions ‘a’ and ‘b’ were classified as fatty,
while breast compositions ‘c’ and ‘d’ were classified as dense. Mammographic lesions
were categorized into the following categories: invisible, mass, calcifications, mass with
calcification, asymmetry, asymmetry with calcifications, architectural distortion, and others.
The lesion location on mammography was classified as invisible, right, left, or both. In
order to analyze the impact of previous mammography on the interpretation, the existence
of comparable past mammography and its influence were observed. The effect of previous
mammography was defined as follows: newly developed lesion, or interval change in size
or density of previously noted lesion.

For AI analysis, 392 mammographies were interpreted using the Lunit system. In
a study that validated vendor data, the probability of malignancy scores of 10% corre-
sponded to AI’s breast cancer detection sensitivity of 90% and was used as the criterion for
determining significance. Therefore, we adopted the score criterion, and a score below 10%
was considered insignificant. AI displayed results of four standard mammographic views
as values ranging between 0 and 100%. It visually highlighted each suspicious lesion with
scores of 10% or higher. Based on the score criteria set at 10%, a lesion was diagnosed if any
score in the CC or MLO view on each side was 10% or higher. However, if four views of
both breasts were less than 10% without marking, it was classified as ‘invisible’. ‘Invisible’
means ’undetected’ in AI or radiologists’ analysis. This is a case where AI or a radiologist
misses the lesion despite the presence of a lesion, or the lesion is not visible because it is
masked by the breast parenchyma. The representative score of each case was determined
using the largest score of the four views in each mammography.

For analysis, we used the probability of malignancy scores with the following quartile
values, referring Lunit’s reader study [16,30]: below 10%, from 10% to less than 50%, from
50% to less than 90%, and 90% or higher.

2.4. Data Analysis

Clinicopathologic characteristics are expressed as mean and standard deviation for
age or number with percentage for other features. Kappa coefficient was used to measure
the concordance between radiologists’ diagnosis or AI analysis and pathology results. The
strength of concordance was evaluated based on the following criteria: slight, kappa vale
of 0–0.2; fair, kappa vale of 0.2–0.4; moderate, kappa vale of 0.4–0.6; substantial, kappa
vale of 0.6–0.8; and almost perfect, kappa vale of 0.8–1.0 [31]. Binominal logistic regression
analysis was performed to identify factors influencing the concordance of lesion location
between radiologists’ analysis and pathology results. Statistical analyses were performed
using Jamovi software (Version 1.2.22, Jamovi Project) [32]. Statistical significance was set
at p < 0.05.

3. Results
3.1. Clinicopathological Characteristics

While the majority (212/392, 54.1%) of cases had no clinical symptoms, palpation of a
mass was the most common symptom (153/392, 39%). A total of 242 patients underwent
core biopsy alone and 150 underwent surgeries, including breast conserving surgery
(90 cases) and mastectomy (60 cases). Similar proportions of lesions were located bilaterally
(right, 202/392, 51.5%; left, 181/392, 46.2%). The most common histology was invasive
ductal carcinoma (310/392, 79.1%), followed by ductal carcinoma in situ (42/392, 10.7%),
invasive lobular carcinoma (12/392, 3.1%), mucinous or tubular carcinoma (8/392, 2%
each), and other histologic types (12/392, 3.1%). Table 1 summarizes clinicopathological
characteristics of patients.
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Table 1. Clinicopathological characteristics of study subjects.

Clinicopathological Characteristics

Age (Years) 57.3 ± 12.1
Patient’s symptoms

None 212 (54.1)
Palpation 153 (39.0)
Pain 13 (3.3)
Discharge 8 (2.0)
Others 6 (1.5)

Confirmation method
Biopsy 242 (61.7)
BCS 90 (23.0)
Mastectomy 60 (15.3)

Location of pathologic lesion
Right 202 (51.5)
Left 181 (46.2)
Both 9 (2.3)

Histology
Invasive ductal carcinoma 310 (79.1)
Ductal carcinoma in situ 42 (10.7)
Invasive lobular carcinoma 12 (3.1)
Mucinous carcinoma 8 (2.0)
Tubular carcinoma 8 (2.0)
Invasive micropapillary carcinoma 3 (0.8)
Invasive tubulolobular carcinoma 2 (0.5)
Encapsulated papillary carcinoma 2 (0.5)
Metaplastic carcinoma 2 (0.5)
Adenoid cystic carcinoma 1 (0.3)
Papillary ductal carcinoma in situ 1 (0.3)
Lobular carcinoma in situ 1 (0.3)

Abbreviations: BCS, breast-conserving surgery. Data are presented as mean ± standard deviation for age or
number (%) for categorical variables.

3.2. Analysis of Mammography by Radiologists and AI

Breast composition ‘c’ was the most common breast density. Dense breast was found
in a total of 282 (71.9%) cases. Old mammograms were present in 159 (40.6%) patients,
with 103 (26.3%) cases influencing mammographic interpretation. The most common mam-
mographic lesion type was ‘mass’ (142/392, 36.2%), followed by ‘calcifications’ (77/392,
19.6%). In terms of lesion location, there were 36 (9.2%) invisible cases in radiologists
analysis compared with 57 (14.5%) cases in AI analysis. Majority (232/392, 59.2%) of cases
showed lesion scores 90% or higher (Table 2).

3.3. Concordance of Lesion Location between Mammography and Pathology

The concordance of lesion location between mammography and pathology results
was higher in radiologists’ analysis than in AI analysis of all cases (kappa = 0.819 vs.
0.698). In cases manifesting the effect of previous mammography, the concordance between
radiologists’ analysis and pathological results was stronger than that between AI and
pathology (kappa = 0.944 vs. 0.707). Similarly, radiologists’ analysis demonstrated an
almost perfect concordance (kappa = 0.917) when patients had clinical symptoms. In terms
of breast density, both radiologists’ diagnosis (kappa = 0.948 vs. 0.773) and AI analysis
(kappa = 0.804 vs. 0.660) showed a higher level of concordance for fatty breast than for
dense breast (Table 3).
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Table 2. Analysis of mammography by radiologists and AI.

Radiologists

Breast density
a 39 (9.9)
b 71 (18.1)
c 195 (49.7)
d 87 (22.2)

Presence of previous MG
Nonexistent 233 (59.4)
Existent 159 (40.6)

Effects of past MG
Nonexistence 289 (73.7)
Existence 103 (26.3)

Lesion type
Invisible 36 (9.2)
Mass 142 (36.2)
Calcifications 77 (19.6)
Mass + Calcifications 61 (15.6)
Asymmetry 46 (11.7)
Distortion 20 (5.1)
Asymmetry + Calcifications 6 (1.5)
Other 4 (1.0)

Location of lesion
Invisible 36 (9.2)
Right 178 (45.4)
Left 171 (43.6)
Both 7 (1.8)

AI

Location of lesion
Invisible 57 (14.5)
Right 163 (41.6)
Left 157 (40.1)
Both 15 (3.8)

Lesion score
<10 57 (14.5)
10≤_<50 43 (11.0)
50≤_<90 60 (15.3)
90≤ 232 (59.2)

Abbreviations: MG, mammography; AI, artificial intelligence.

Table 3. Concordance of lesion location between mammography and pathology.

Analysis by
n Radiologists AI

Kappa

All 392 0.819 0.698
Surgical validation 150 0.833 0.701
Effect of previous MG

Nonexistent 289 0.778 0.694
Existent 103 0.944 0.707

Symptoms
Nonexistent 212 0.742 0.636
Existent 180 0.917 0.777

MG density
Fatty (a, b) 110 0.948 0.804
Dense (c, d) 282 0.773 0.660

Abbreviations: MG, mammography; AI, artificial intelligence. Data include number of cases (n) and concordance
with kappa coefficient.
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3.4. Predictors of Concordance of Lesion Location with Pathology

In binomial logistic regression analysis, the effect of previous mammogram was a
significant factor contributing to the concordance of lesion location with pathology (odds
ratio (OR): 8.55; p < 0.001). Existence of symptoms also had a substantial effect on the
concordance of lesion location with pathology (OR: 5.49; p < 0.001). When compared
with dense breasts, fatty breasts were more consistent regarding lesion locations based on
pathology (OR: 5.18; p = 0.008) (Table 4).

Table 4. Binomial logistic regression analysis for predicting concordance of lesion location between
radiologists’ analysis and pathology results.

Predictor Estimate a Standard Error p-Value Odds Ratio
95% Confidence Interval
Lower Upper

Previous MG
influence (E/N) 2.146 0.625 <0.001 8.55 2.51 29.09

Symptoms (E/N) 1.703 0.422 <0.001 5.49 2.40 12.55
MG density (F/D) 1.644 0.622 0.008 5.18 1.53 17.51

Abbreviations: MG, mammography; E/N, ratio of existent to nonexistent reference; F/D, ratio of fatty breast to
reference dense breast. a Estimates represent log odds of concordance vs. discordance.

3.5. ‘Invisible’ Cases in Radiologists’ and AI Analyses

The number of cases with ‘invisible’ lesion type was 36 in radiologists’ analysis and
57 in the AI analysis. Four (11.1%) of these 36 invisible cases in radiologists’ analysis
were concordant between AI analysis and pathology results, while 27 (47.4%) of 57 invis-
ible cases in AI analysis were concordant between radiologists’ analysis and pathology
results (Table 5).

Table 5. Concordance of ‘invisible’ lesions between pathology results and radiologists’ analysis or
AI analysis.

Pathology AI
(Invisible in Radiologist)

Radiologists
(Invisible in AI)

Concordance 4 27
Discordance 32 30

Total 36 57
ns: AI, Artificial intelligence. Data include number of cases.

Among these 27 concordant cases only in radiologists’ analysis, 13 cases showed the
influence of previous mammography and 10 cases had clinical symptoms. The average size
measured in mammography was 1.3 cm and the average AI score was 2.6% (Table 6).

Table 6. Invisible cases in AI and concordant cases only in radiologists’ analysis.

Case No.
Age

(Year)
Symptom

Radiologists AI

MG
Density

Lesion
Location

Lesion
Type

Previous MG
Influence

Lesion size
on MG (cm)

AI Score
(%)

Location
by AI

R1 66 none c R Asymmetry - 0.5 8.46 R
R2 38 palpation c R Calcification - 0.4 0.1 L
R3 53 none b L Asymmetry Existence 0.4 1.3 L
R4 53 palpation c L Mass - 3.7 0.85 L
R5 67 pain a L Asymmetry - 1.6 2 L
R6 58 none c L mass Existence 0.7 7.5 L
R7 48 palpation c L asymmetry - 4 0.17 L
R8 40 palpation d R asymmetry - 3.2 0.28 R
R9 44 none d R distortion - 1.5 0.01 R

R10 45 none d R calcification - 1.6 6.53 R
R11 47 none d R calcification Existence 0.5 1.92 L
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Table 6. Cont.

Case No.
Age

(Year)
Symptom

Radiologists AI

MG
Density

Lesion
Location

Lesion
Type

Previous MG
Influence

Lesion size
on MG (cm)

AI Score
(%)

Location
by AI

R12 45 palpation d R mass - 1.5 0.15 R
R13 51 none c R calcification - 0.5 3.5 R
R14 66 none a R mass Existence 0.6 0.01 L
R15 59 none b L other Existence 2.7 0.83 L
R16 66 discharge c L asymmetry Existence 0.7 3.5 L
R17 42 none b L mass - 1 0.68 L
R18 67 none b R asymmetry - 0.7 0.21 R
R19 46 palpation c L mass - 1.5 1.03 L
R20 56 none c L mass Existence 0.8 2.53 R
R21 70 none c L distortion Existence 1 5.27 L
R22 50 palpation c R asymmetry Existence 1 0.13 R
R23 47 none d L calcification - 0.5 6.29 L
R24 78 none c R asymmetry Existence 1 0.08 R
R25 46 none c L distortion Existence 0.8 8.72 L
R26 68 palpation b L distortion Existence 1.5 7.06 L
R27 59 none c R asymmetry Existence 1.4 0.34 L

Abbreviations: AI, Artificial intelligence; MG, mammography; L, left; R, right.

The largest lesion was a 3.7 cm oval mass and palpable (Figure 1). Four cases were
concordant only in AI analysis. The mammography showed dense breasts and the av-
erage AI score was 26.3% (Table 7). The largest AI score was 35. 4% marked in a single
mammographic view (Figure 2).
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Figure 1. An invisible case in AI that is concordant only in radiologist’s analysis. A 53-year-old
woman presented at the hospital with a palpable mass of her left breast. (A) Mammography showed
a dense breast with a 3.7-cm-sized well-circumscribed oval mass in the left mediocentral breast
(arrows). (B) Artificial intelligence revealed no abnormal lesion on the mammogram. The largest
malignancy probability score was 0.85% of the left craniocaudal view and the abnormality score of
the case was shown as ‘low’. The patient underwent ultrasound-guided core needle biopsy. She was
diagnosed with invasive mucinous carcinoma.
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Table 7. Invisible cases in radiologist and concordant cases only in AI analysis.

Case No. Age (Year) Symptom MG Density AI Score (%) Lesion Location

A1 35 Palpation d 14.48 L
A2 49 Other c 35.46 R
A3 46 Palpation c 30.86 L
A4 42 Palpation c 24.49 L

Abbreviations: AI, Artificial intelligence; MG, mammography; L, left; R, right.
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Figure 2. An invisible case in radiologist’s analysis that is concordant only in AI analysis. A 49-
year-old woman had a breast checkup. (A) Mammography revealed a dense breast without any
abnormal lesions in both breasts. (B) However, artificial intelligence highlighted a suspicious area
on the right mediolateral oblique view and presents an abnormality score of 35%. (C) Ultrasound
revealed a 0.8 cm irregular hypoechoic mass with angular margin in the right lower central breast
(arrow). Ultrasound-guided core needle biopsy revealed invasive ductal carcinoma.
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4. Discussion

Currently, many studies investigating the application of AI in mammography have re-
ported decreases in false-positive and recall rate with an increase in cancer
detection [16,22,24,33]. A reduction in radiologist’s workload is also expected [13,18,19,34].
However, image analysis via AI differs from the actual image reading performed by a
radiologist. A radiologist’s analysis is not only based on images, but also based on addi-
tional information such as the patient’s clinical symptoms and comparison with previous
mammography. A radiologist’s workload includes not only the number of mammogra-
phies to be read, but also the time required to evaluate the information in a single study.
Therefore, we analyzed differences between radiologists’ analysis and AI analysis in real
clinical practice and identified factors affecting the diagnostic performance of radiologists.

In our study, radiologists’ analysis was strongly consistent with pathology results in
terms of overall lesion location. The number of cases with ‘invisible’ lesions was lower in
radiologists’ analysis than in AI analysis. For ‘invisible’ cases, the concordance between
radiologists’ analysis and pathology results was higher than that between AI analysis and
pathology results.

The concordance strength was especially increased when the influence of old mammo-
gram and clinical symptoms were present. First, the effect of old mammography was an
important factor determining the concordance between radiologists’ analysis and patholog-
ical results. The concordance also increased compared with the case where no influence
of an old mammography was detected. Thirteen of 27 cases that were concordant only
in radiologists’ analysis were newly discovered or found due to an increase in size or
density compared with previous mammography. In general, these lesions were small or
showed subtle findings, suggesting that humans were more accurate than AI in evaluating
and interpreting ambiguous mammographic findings based on old and recent studies.
Rodriguez-Ruiz et al. [18] have also suggested that an ideal AI system should overcome
limitations of the imaging method itself and detect occult cancer mammographically while
minimizing false-positive results. Second, clinical symptoms were also important factors
contributing to the concordance between radiologists’ analysis and pathological results. It
is presumed that patients who experience clinical symptoms are more likely to manifest
breast lesion progression, with a high probability of detection via imaging. Additionally,
clinical information makes the radiologists carefully evaluate images, even when findings
are minimal. Clinical symptoms were present in 10 of 27 cases that were concordant only
in radiologists’ analysis. Among them, five cases showed small imaging findings with
symptoms on palpation. The remaining 10 cases without symptoms or influence of old
mammography showed small or subtle mammographic findings, which were undetected
in AI analysis.

Both radiologists’ and AI analyses demonstrated poor concordance in lesions involving
dense breasts than fatty breasts. Breast density is an independent risk factor for cancer
by masking lesions in mammography [35–37]. Radiologists’ and AI analyses tended to
reveal breast lesions better in fatty breasts than in dense breasts. Breast density was
also an important contributing factor to the concordance of radiologists’ analysis with
pathology results.

In our study, there was a lesion that evaded AI detection, although it was large and
clearly visible. Lång et al. [38] have also reported a similar case. Figure 1 shows a case
that could be identified by radiologists but missed by AI. The large mass in the left breast
was apparent. However, the AI neglected the lesion and yielded a score of 0.85%, which
could be explained by its somewhat benign looking oval and well-defined margin, which
might have prompted the AI algorithm to perceive the lesion as benign. However, Figure 2
shows the ability of AI to detect tricky malignant findings that were missed by radiologists.
Initially, radiologists assessed the mammogram as BI-RADS category 1, whereas the AI
outlined the area of suspicion in the right breast and provided a lesion score of 35%. A
subsequent ultrasound examination revealed an irregular hypoechoic mass of 0.8 cm in
size in the right lower central breast, which was consistent with the location indicated by
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the AI. In a retrospective review, a subtle distortion in the breast parenchyma on the right
medio-lateral oblique view was observed.

In our study, the detectability of AI was somewhat lower than that of radiologists.
We used 10% as a valid set score of AI suggested by the manufacturer. Therefore, if the
score was less than 10%, the marking was ‘invisible’ in AI analysis. However, a review of
raw-score data revealed that in 22 of 27 cases detected only by radiologists, AI also gave
a score less than 10% for the exact location of the lesion. With the low scores, the AI’s
abnormal markings did not appear in the images. That is, if the 10% limit was not applied,
AI could also detect the exact lesion location even in those 22 cases. This suggested that AI’s
threshold score was not an absolute indicator of malignancy. In addition, an abnormality
score ranging from 10 to 100 is rather broad for discriminating suspicious malignancies,
underscoring the need for appropriate classification of scores generated by an AI algorithm.

Our study has several strengths and limitations. The strength was that we analyzed
clinical symptoms and compared with a previous study to assess their influence on the
accuracy of mammography interpretation by human experts. This allowed a more direct
comparison between AI and radiologists analysis in real-world clinical setting. The limita-
tion was that this study was performed retrospectively with a single AI vendor at a single
medical center using a relatively small volume of data. Therefore, it is necessary to validate
study findings with a larger population in the future.

In conclusion, radiologists’ interpretation of mammography in real clinical practice
is superior to AI algorithm’s analysis in detecting breast cancer via digital mammogra-
phy. Based on a comparison with previous study and reference to clinical symptoms, the
evaluation by human experts significantly improved the accuracy of mammography inter-
pretation. Although reducing the workload of radiologists through the triage of negative
mammograms is one of the advantages of AI, AI has a limitation in that it cannot refer to
various clinical information in the analysis process. Therefore, if the patient has symptoms
or has had previous mammograms, confirmation by the radiologists should be considered,
even if the AI classifies it as a negative mammogram. Breast density affected the detection
of malignant lesions in both radiologists’ diagnosis and AI analyses. It is also necessary to
validate the appropriate reference score for clinical use of AI.
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improve radiologists’ performance in breast cancer screening. IEEE Trans. Med. Imaging 2019, 39, 1184–1194. [CrossRef] [PubMed]
24. Rodríguez-Ruiz, A.; Krupinski, E.; Mordang, J.-J.; Schilling, K.; Heywang-Köbrunner, S.H.; Sechopoulos, I.; Mann, R.M. Detection

of breast cancer with mammography: Effect of an artificial intelligence support system. Radiology 2019, 290, 305–314. [CrossRef]
[PubMed]

25. Watanabe, A.T.; Lim, V.; Vu, H.X.; Chim, R.; Weise, E.; Liu, J.; Bradley, W.G.; Comstock, C.E. Improved cancer detection using
artificial intelligence: A retrospective evaluation of missed cancers on mammography. J. Digit. Imaging 2019, 32, 625–637.
[CrossRef]

26. Sasaki, M.; Tozaki, M.; Rodríguez-Ruiz, A.; Yotsumoto, D.; Ichiki, Y.; Terawaki, A.; Oosako, S.; Sagara, Y.; Sagara, Y. Artificial
intelligence for breast cancer detection in mammography: Experience of use of the ScreenPoint Medical Transpara system in 310
Japanese women. Breast Cancer 2020, 27, 642–651. [CrossRef]

27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

28. Wallis, M.G. Artificial intelligence for the real world of breast screening. Eur. J. Radiol. 2021, 144, 109661. [CrossRef]

http://doi.org/10.1148/radiol.2017161519
http://www.ncbi.nlm.nih.gov/pubmed/28244803
http://doi.org/10.3348/kjr.2018.0193
https://www.accessdata.fda.gov/scrIpts/cdrh/cfdocs/cfpma/pma.cfm?id=P970058
https://www.accessdata.fda.gov/scrIpts/cdrh/cfdocs/cfpma/pma.cfm?id=P970058
http://doi.org/10.2214/ajr.181.3.1810687
http://doi.org/10.1259/bjr.20190580
http://doi.org/10.1007/s10278-018-0168-6
http://doi.org/10.1001/jamainternmed.2015.5231
http://doi.org/10.1038/s41568-018-0016-5
http://doi.org/10.3348/kjr.2020.1210
http://doi.org/10.1148/ryai.2020190208
http://www.ncbi.nlm.nih.gov/pubmed/33937844
http://doi.org/10.1148/radiol.2019182908
http://www.ncbi.nlm.nih.gov/pubmed/31385754
http://doi.org/10.2214/AJR.16.17224
http://www.ncbi.nlm.nih.gov/pubmed/28125274
http://doi.org/10.1016/j.ejrad.2018.06.020
http://www.ncbi.nlm.nih.gov/pubmed/30017288
http://doi.org/10.1016/S2589-7500(20)30003-0
http://www.ncbi.nlm.nih.gov/pubmed/33334578
http://doi.org/10.1001/jamaoncol.2020.3321
http://www.ncbi.nlm.nih.gov/pubmed/32852536
http://doi.org/10.1093/jnci/djy222
http://doi.org/10.1016/S2589-7500(20)30185-0
http://doi.org/10.1177/0846537120949974
http://doi.org/10.1016/j.clinimag.2018.08.014
http://doi.org/10.1038/s41586-019-1799-6
http://www.ncbi.nlm.nih.gov/pubmed/31894144
http://doi.org/10.1109/TMI.2019.2945514
http://www.ncbi.nlm.nih.gov/pubmed/31603772
http://doi.org/10.1148/radiol.2018181371
http://www.ncbi.nlm.nih.gov/pubmed/30457482
http://doi.org/10.1007/s10278-019-00192-5
http://doi.org/10.1007/s12282-020-01061-8
http://doi.org/10.1016/j.ejrad.2021.109661


Diagnostics 2023, 13, 117 12 of 12

29. Sechopoulos, I.; Teuwen, J.; Mann, R. Artificial intelligence for breast cancer detection in mammography and digital breast
tomosynthesis: State of the art. Semin. Cancer Biol. 2021, 72, 214–225. [CrossRef]

30. Nikitin, V.; Filatov, A.; Bagotskaya, N.; Kil, I.; Lossev, I.; Losseva, N. Improvement in ROC curves of readers with next generation
of mammography CAD. ECR 2014. [CrossRef]

31. Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [CrossRef]
32. The Jamovi Project. jamovi (Version 1.6) [Computer Software]. Available online: https://www.jamovi.org (accessed on 23

September 2021).
33. Geras, K.J.; Mann, R.M.; Moy, L. Artificial intelligence for mammography and digital breast tomosynthesis: Current concepts and

future perspectives. Radiology 2019, 293, 246. [CrossRef]
34. Rodriguez-Ruiz, A.; Lång, K.; Gubern-Merida, A.; Teuwen, J.; Broeders, M.; Gennaro, G.; Clauser, P.; Helbich, T.H.; Chevalier, M.;

Mertelmeier, T. Can we reduce the workload of mammographic screening by automatic identification of normal exams with
artificial intelligence? A feasibility study. Eur. Radiol. 2019, 29, 4825–4832. [CrossRef] [PubMed]

35. Lian, J.; Li, K. A review of breast density implications and breast cancer screening. Clin. Breast Cancer 2020, 20, 283–290. [CrossRef]
[PubMed]

36. Nazari, S.S.; Mukherjee, P. An overview of mammographic density and its association with breast cancer. Breast Cancer
2018, 25, 259–267. [CrossRef] [PubMed]

37. Freer, P.E. Mammographic breast density: Impact on breast cancer risk and implications for screening. Radiographics
2015, 35, 302–315. [CrossRef] [PubMed]

38. Lång, K.; Dustler, M.; Dahlblom, V.; Åkesson, A.; Andersson, I.; Zackrisson, S. Identifying normal mammograms in a large
screening population using artificial intelligence. Eur. Radiol. 2021, 31, 1687–1692. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.semcancer.2020.06.002
http://doi.org/10.1594/ecr2014/C-2315
http://doi.org/10.2307/2529310
https://www.jamovi.org
http://doi.org/10.1148/radiol.2019182627
http://doi.org/10.1007/s00330-019-06186-9
http://www.ncbi.nlm.nih.gov/pubmed/30993432
http://doi.org/10.1016/j.clbc.2020.03.004
http://www.ncbi.nlm.nih.gov/pubmed/32334975
http://doi.org/10.1007/s12282-018-0857-5
http://www.ncbi.nlm.nih.gov/pubmed/29651637
http://doi.org/10.1148/rg.352140106
http://www.ncbi.nlm.nih.gov/pubmed/25763718
http://doi.org/10.1007/s00330-020-07165-1
http://www.ncbi.nlm.nih.gov/pubmed/32876835

	Introduction 
	Materials and Methods 
	Study Population 
	Imaging Modalities 
	Imaging Analysis 
	Data Analysis 

	Results 
	Clinicopathological Characteristics 
	Analysis of Mammography by Radiologists and AI 
	Concordance of Lesion Location between Mammography and Pathology 
	Predictors of Concordance of Lesion Location with Pathology 
	‘Invisible’ Cases in Radiologists’ and AI Analyses 

	Discussion 
	References

