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Abstract: Heart disease is one of the leading causes of mortality throughout the world. Among the
different heart diagnosis techniques, an electrocardiogram (ECG) is the least expensive non-invasive
procedure. However, the following are challenges: the scarcity of medical experts, the complexity
of ECG interpretations, the manifestation similarities of heart disease in ECG signals, and heart
disease comorbidity. Machine learning algorithms are viable alternatives to the traditional diagnoses
of heart disease from ECG signals. However, the black box nature of complex machine learning
algorithms and the difficulty in explaining a model’s outcomes are obstacles for medical practitioners
in having confidence in machine learning models. This observation paves the way for interpretable
machine learning (IML) models as diagnostic tools that can build a physician’s trust and provide
evidence-based diagnoses. Therefore, in this systematic literature review, we studied and analyzed
the research landscape in interpretable machine learning techniques by focusing on heart disease
diagnosis from an ECG signal. In this regard, the contribution of our work is manifold; first, we
present an elaborate discussion on interpretable machine learning techniques. In addition, we identify
and characterize ECG signal recording datasets that are readily available for machine learning-based
tasks. Furthermore, we identify the progress that has been achieved in ECG signal interpretation
using IML techniques. Finally, we discuss the limitations and challenges of IML techniques in
interpreting ECG signals.

Keywords: interpretable; machine learning; IML; ECG; heart disease

1. Introduction

Heart disease is one of the deadliest health conditions affecting the heart and blood
vessels. According to a World Health Organization (WHO) report, in the year 2019, around
17.9 million cardiovascular disease-related deaths were registered. This accounts for 32%
of all global mortality, and the highest among all non-communicable diseases [1]. In
addition, more than three-fourths of all these mortalities occur in low and middle-income
countries [1].

Clinicians diagnose heart disease via different techniques, including non-invasive
methods, such as an electrocardiogram (ECG) [2], echocardiogram [3], coronary computed
tomography angiogram (CCTA) [4], cardiac magnetic resonance imaging (MRI) [5], and
invasive techniques, such as blood tests [6] and coronary angiograms [7]. Among the listed
diagnosis techniques, ECG is a low-cost and non-invasive procedure that can easily be
administered for diagnosing heart disease [2]. Thus, an ECG-based diagnosis is used for
detecting and diagnosing various heart diseases, such as arrhythmia, pericardia, myocardia,
electrolyte disturbances, and pulmonary diseases [2,8]. However, physicians at all levels
experience difficulties in accurately interpreting ECGs [9]. J. Higueras et al. [10] reported
that from a study group of 195 physicians (where 153 of them were residents and 42 staff)
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that ECG interpretation skills among medical doctors are poor. According to the study,
heart disease, such as acute myocardial infarction (AMI), ventricular tachycardia (VT), and
a second degree AV block missed with 13.4 %, 44.1%, and 64.6% by the resident physicians,
respectively. In addition, the existence of different types of heart disease conditions poses a
challenge for making a diagnosis through reading an ECG signal, even by a well-trained
cardiologist. Moreover, the similarities of heart disease manifestations on ECG signals pose
extra challenges for properly distinguishing them. Apart from these challenges, the ECG
signal recording may show discrepancies for the same disease condition based on age, race,
and the overall physical conditions of patients [2].

To mitigate these challenges and aid physicians in the diagnosis of heart conditions, a
computerized interpretation of ECG records (CIE) was introduced [11]. However, studies
have shown significant inaccuracies of this method and limitations of computerized ECG
interpretation [12]. Thus, despite attempts to improve the accuracies of automated ECG
interpretation techniques, the final ECG interpretation still requires a physician re-read.
Furthermore, the lack of an internationally accepted standard for computerized ECG
interpretation poses a challenge to relying on CIE [11].

1.1. ECG Signal

ECG machines are used for the acquisition of electrical activities of the heart as
observed from the sensors/electrodes attached to a patient’s arms, legs, and chest, as
shown in Figure 1. The electrical signals picked by these electrodes are associated with a
12-lead ECG machine that records the aggregate electrical activity of the heart from distinct
angles over some time, commonly 12 s [13]. Among the 12-leads, the three bipolar leads
measure the potential differences between both arms, and one arm and the leg [14]. The
remaining nine electrodes are unipolar and consist of six chest leads (V1 to V6), which view
the heart in the horizontal plane, and six limb leads (I, II, III, aVR, aVL, and aVF), which
help to view the heart in the vertical plane [2,15], as shown in Figure 1. A standard ECG
record of a patient is shown in Figure 2.

Figure 1. The placement of ECG electrodes on the chest, arms, and legs [16].

A single cycle of an ECG contains a pattern of waves, as shown in Figure 3. When the
sinoatrial (SA) node triggers an impulse, the atrial fibers depolarize to produce a potential
difference called a P wave , leading to atrial contraction. In a normal ECG, as shown in
Figure 3, a P wave has a duration of about 0.08 s [14]. A P wave is seen in leads II and V1.
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Moreover, it leans inverted in the lead aVR and is upright in leads I and II, as shown in
Figure 2.

After the atrial fiber depolarization, the impulse reaches the ventricular fibers and
rapidly depolarizes them. Since the ventricular walls are thick, the depolarization results
in more electrical changes; it is called the QRS complex, which consists of Q, R, and S waves.
The QRS complex also lasts for about 0.08 s [14]. Then, as the ventricles repolarize, a T wave
is produced. The T wave is about 0.16 s in a normal ECG. It can be seen from Figure 3 that
the atrial repolarization is missing from the pattern due to atrial fiber repolarization at the
same time as ventricular fiber depolarization [14].

Figure 2. A standard 12-lead ECG of a single patient [15].

Figure 3. A single cardiac cycle of the ECG pattern[14].

As shown in Figure 3, the PR interval is the period between the P wave and the QRS
complex. The PR interval indicates the impulse transmission times between the SA and
atrioventricular (AV) nodes. It contains atrial depolarization, contraction, and depolar-
ization waves via the conduction system. The ST segment, on the other hand, occurs
during the depolarization of the ventricular myocardium, and it lasts about 0.22 s. The QT
interval that lasts about 0.38 s is a period from the start of ventricular depolarization to
repolarization [14]. The TP segment is an isoelectric region that indicates the absence of a
substantial amount of potential difference in the ventricular myocardial cells. It is a resting
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state of the ventricular myocardial cell and covers a time from the end of repolarization to
the onset of the next depolarization [17]. Any deviation from this normal cardiac cycle may
indicate heart disease and conduction system problems. As shown in Figure 4, for instance,
a QRS duration greater than 0.12 s, broad monophasic R waves in leads I, V5, and V6, and
the absence of Q waves in leads V5 and V6 are indications of the left bundle branch block
(LBBB) [2].

Figure 4. A 12-lead ECG of a patient with exam_id of 1503778 diagnosed for LBBB [18].

1.2. Machine Learning: In an ECG Signal Classification Prescriptive

Recently, several studies have examined the possibility of artificial intelligence (AI)
techniques in interpreting an ECG in the diagnosis of cardiovascular diseases [18–28]. In
addition, a review article written by Liu et al. [29] provided a detailed review of deep
learning techniques used for ECG diagnosis. Some of the literature examined AI-enabled
techniques to classify up to 66 multi-label heart abnormalities using 12-lead ECG readings
and reported promising results [30]. However, most of the literary studies focus on identi-
fying small types of heart abnormalities from among several types of heart disease [18,31].
Moreover, some of the literary studies only focus on normal and abnormal ECG signal
classes from a single lead ECG signal [23,26]. ML-based heart disease detection and clas-
sification methods from an ECG signal bring promising results and are active research
areas. Some of the reported results demonstrate that the performances of ML-based ECG
interpretation algorithms are better at approximating human experts compared to existing
CIE techniques [30].

However, the difficulty of a machine learning (ML) model’s interpretability has hin-
dered medical practitioners from having confidence in the diagnosis results of machine
learning models [32]. ML model interpretation techniques provide evidence for a particular
model’s output [32]. Moreover, these interpretation techniques enable human experts to
trust the model’s output, debug and troubleshoot the model, and avoid model bias [33].
However, the field of explainable AI is not mature, and researchers are focusing on intro-
ducing techniques that can provide the reasoning of the model behind a particular detection
or classification of abnormalities in healthcare settings [32] and other applications [33]. In
this systematic review work, IML techniques that were proposed in the literature to give
evidence-based ECG signal interpretations are discussed. Moreover, their performances
are presented in terms of qualitative and quantitative approaches. In addition, this work
focuses on pinpointing the strengths and limitations of the IML techniques in terms of
computational complexity and result presentation.

The remainder of the paper is organized as follows: Section 2 discusses the recent
related works to this systematic review work, and Section 3 elaborates on the techniques
used to conduct the review and research the questions addressed in this review work. The
most prominent (in terms of data size and disease class), i.e., annotated heart disease ECG
data repositories, are discussed in Section 4. IML techniques proposed in the literature for
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explaining the ML model output developed for ECG signal-based heart disease classifi-
cation are investigated and presented in Section 5. Section 6 discusses the performance
evaluation methods for IML techniques focusing on ECG signal-based heart disease classi-
fication. The findings of this review work and existing challenges and future directions are
discussed in Sections 7 and 8. Finally, Section 9 presents the conclusion.

2. Related Work

This section discusses the related systematic review works to examine state-of-the-art
research and challenges toward heart disease classification using interpretable machine
learning (IML)-based techniques from ECG signal. To the best of our knowledge, systematic
reviews that are related to IML-based heart disease classification from ECG signals are very
limited in number and scope. However, some works have investigated and discussed the
IML techniques from the point of view of healthcare applications, as well as the existing
challenges and future directions in the field of medicine [32,34–41].

Abdullah et al. [32] provided a comprehensive survey on the uses of IML techniques
in healthcare. The paper presented an in-depth theoretical discussion of the existing
well-known IML techniques. However, only a single piece of literature was reviewed
that focuses on the application of IML on ECG signal-based heart disease classification.
Similarly, Rasheed et al. [36] reviewed a single literature study on IML-based ECG signal
interpretation. However, they provide a comprehensive review of IML techniques that
explain the reason behind their decisions. Likewise, Yang et al. [37], Stiglic et al. [38], and
Jin et al. [41] did not provide reviews on the progress of interpretable techniques on ECG
signal-based heart disease diagnosis. Instead, they described the progress made in using in-
terpretable techniques in explaining black box ML models developed in different healthcare
solutions. In addition, Yang et al. [37] showcased the benefits of ML model interpretable
methods in explaining multi-modal and multi-fusion medical image segmentation. On the
other hand, Stiglic et al. [38] emphasized feature importance-based ML model explanations.
Whereas, Jin et al. [41] provided a discussion on the benefits and limitations of various
ML model interpretability techniques to acquaint researchers and practitioners with IML
in the fields of ML and medicine so that they can contribute to the field. However, the
mathematical foundations in ML interpretable methods are not briefly discussed in these
review works [36–38,41].

Du et al. [39] and Carvalho et al. [40] presented the need that necessitates explaining
the prediction of complex ML models by providing human-friendly explanations within
societal ethics and legal framework. In this regard, Du et al. [39] discussed some IML
techniques and their categorization. Moreover, they outlined challenges to be addressed
while designing and evaluating these techniques. Similarly, Carvalho et al. [40] provided
an elaborated discussion on the categorization of IML techniques and presented the need
for explaining ML by focusing on the societal impacts. In addition, the literature focused
on identifying the mechanism for assessing the quality of the explanation and metrics to
evaluate the explanations provided by IML techniques.

Xiong et al. [34] reviewed the most popular deep learning algorithms for detecting
and locating myocardial infractions. Furthermore, the paper discussed the necessity of the
model’s explainability for evidence-based medical diagnosis. However, the review did not
include a discussion on IML-based myocardial infraction detection techniques. Similarly,
Somani et al. [35], reviewed deep learning-based literature aimed at detecting and classi-
fying five (5) types of heart disease from an ECG, including arrhythmia, cardiomyopathy,
myocardial ischemia, valvulopathy, and non-cardiac diseases. The article pinpointed the
potential of deep learning models in heart disease detection, especially for mass screening
purposes. However, a very limited and shallow discussion on the interpretable model was
presented. A summary of related works is given in Table 1.
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Table 1. Summary of related works.

Article, Year of Publication Contribution Limitation

Abdullah et al. [32], 2021
• Presented a comprehensive survey on the uses of IML techniques in healthcare;
• The paper presented an in-depth theoretical discussion of the existing well-

known IML techniques.

• Only a single piece of literature was reviewed that focuses on the application
of IML on ECG signal-based heart disease classification;

• Limited discussion on how to evaluate the performance of IML techniques.

Xiong et al. [34], 2022 • Reviewed the most popular deep learning algorithms for detecting and locat-
ing myocardial infractions.

• Did not include a discussion on the interpretability of ML models used for
myocardial infraction detection.

Somani et al. [35], 2021 • Reviewed deep learning-based literature aimed at detecting and classifying
five (5) types of heart disease from an ECG signal • Presented limited and shallow discussions on the interpretable model.

Rasheed et al. [36], 2021 • Provided a comprehensive review of IML techniques • Reviewed single literature on IML-based ECG signal interpretation.

Yang et al. [37], 2022 • Described the progress made in applying explainable AI in healthcare;
• Showcased the importance of explainable AI in clinical scenarios.

• The review did not include literature on interpreting ML models designed for
ECG signal-based heart disease classification.

Stiglic et al. [38], 2020 • Discussed the applicability and importance of interpretability for healthcare
applications

• Gave more emphasis to feature importance-based explanations and few dis-
cussions were provided for other ML model explanation techniques

• Limited discussion on the pros and limitations of interpretation techniques.

Du et al. [39], 2019
• Presented a clear overview of some of the existing IML techniques;
• Discussed challenges in the implementation and evaluation of IML techniques; • The review did not include literature on interpreting ML models designed for

ECG signal-based heart disease classification.

Carvalho et al. [40], 2019 • Explained how to evaluate the explanation quality of IML techniques;
• Outlined challenges to be addressed in the field of interpretable AI.

• Focused on the societal impact of interpretable AI;
• Limited discussions on the IML techniques used in the healthcare field in

general, and in ECG-based heart disease classification in particular.

Jin et al. [41], 2022
• Provided a discussion on the pros and limitations of various IML techniques

for general domain applications and of their adoption for healthcare;
• Discussed how to assess the credibility and trustworthiness of IML techniques.

• The review did not include literature on interpreting ML models designed for
ECG signal-based heart disease classification.
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3. Method

This section presents the methodology employed for reviewing the use of IML tech-
niques for the detection of heart disease using an ECG signal. To that end, the preferred
reporting items for systematic reviews and meta-analyses (PRISMA) [42,43] reporting tech-
nique is used to define the research questions, data sources (databases), and search strings
for this particular research study. Based on the PRISMA guideline, the following steps are
followed to accomplish our systematic review work.

• Defining the research questions;
• Based on the research questions, retrieving some keywords to create proper search strings;
• Identifying the databases for performing the search using the created search strings;
• Setting filtering criteria, including the chronological period, the quality, and the type

of literature to be included in the review;
• Skimming titles and abstracts to avoid unrelated articles and duplicates from the pool

of papers;
• Defining more detailed suitability criteria and using them in a full paper reading of the

outlived papers from the previous steps;
• Analyzing and interpreting the outlived articles from all the filtering procedures in

line with research questions defined in the beginning;
• Reporting and evaluating the systematic review.

3.1. Research Question

In synthesizing the empirical evidence for this systematic research work, four review
questions are coined with their rationale as shown in Table 2.

Table 2. Review questions with main motivations.

No. Review Question Aim to Answer

RQ1
Are there any freely available heart
ECG signal datasets? What are their
characteristics?

• Identify heart ECG signal datasets
• The characteristics, nature, and impor-

tant features of ECG

RQ2

What are IML techniques and
commonly investigated interpretable
techniques in ECG signal-based heart
disease diagnosis?

Identify and thoroughly discuss
interpretable machine learning that is
often used in classifying heart disease
from an ECG signal

RQ3

What is the overall progress and
performance of IML algorithms in
providing evidence-based heart disease
diagnosis?

Identify the progress that has been
made so far in providing
evidence-based ECG signal
interpretation using IML.

RQ4
Are there any limitations and
challenges in IML-based heart disease
classification?

Identify limitations, challenges, and
future directions in using an IML for
evidence-based ECG signal
interpretation

3.2. Search Strategy

The database and search strings are selected in a way to address the research questions
indicated in Table 2. The search focused on identifying the literature from the following
seven main databases:

1. Google Scholar, a scholarly literature search engine that encompasses a wide variety
of disciplines and publisher databases;

2. PubMed, a database consisted of a large number of literary studies in the biomedical
field, primarily from the MEDLINE database;
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3. IEEE Xplore, this database contains high-quality technical literature in the fields of
electrical engineering, electronics, computer science, and other related fields;

4. ScienceDirect, using this database, access to journals and technical articles published
by Elsevier is possible;

5. MDPI, a publisher of open-access peer-reviewed scientific journals;
6. Wiley Online Library, this is a repository of published articles in various disciplines,

including computational, intelligent systems, and life sciences;
7. SpringerLink, through this database, we can access scientific articles published by

Springer Nature.

By rigorously following the steps listed above, our systematic review work is aimed at
achieving three targets: (1) to be used as a reference in the existing IML techniques that
use ECG signals for heart disease classification; (2) to help researchers in avoiding work
redundancy; (3) to aid researchers in the area to identify research gaps in an evidence-based
heart disease diagnosis using IML.

To meet these targets, primarily, an elaborate discussion on interpretable machine-
learning techniques will be presented. In addition, it identifies and characterizes heart
disease ECG signal datasets that are readily available for machine learning-based research.
Furthermore, it identifies the progress that has been achieved in ECG signal interpretation
using IML techniques in terms of different IML model performance measuring techniques.
Finally, it discusses the limitations and challenges of IML techniques in interpreting an
ECG signal.

Search strings used to find the literature for this review work are tailored toward these
seven databases to specifically focus on not missing literature from each of them. As a result,
the search strings used for Google Scholar, ScienceDirect, PubMed, Wiley Online Library,
and SpringerLink are the following: [(“Explainable” OR “Interpretable”) AND (“Machine
learning Techniques” OR “Deep Learning Techniques”) AND (“Heart Disease”) AND
(“Electrocardiogram” OR “ECG”) AND (“Detection” OR “Classification”)], for IEEE Xplore
is: [(“All Metadata”: Interpretable) AND (“All Metadata”: Machine learning techniques)
OR (“All Metadata”: Deep learning techniques) AND (“All Metadata”: Heart disease
detection) AND (“All Metadata”: ECG signal)], and for MDPI is: [(“Interpretable OR
Explainable”) AND (“Machine learning” OR “Deep learning”) AND (“Heart disease”)
AND (“CG signal”)].

The inclusion and exclusion criteria for the identified literature are indicated in Table 3.
On the other hand, Figure 5 shows the literature selection process for our systematic review.
Furthermore, the total number of journal articles identified for the quantitative analysis,
and the stages for the inclusion and exclusion criteria used in the selection process are
clearly shown in Figure 5.

Table 3. Literature inclusion and exclusion criteria.

Inclusion Criteria (I) Exclusion Criteria (E)

I1: Published between 2018 and 2022
E1: White papers, MSc. thesis, Ph.D.
dissertation, magazines, and written other than
English language

I2: The journal article should focus on one or
more IML techniques in heart disease ECG
signal interpretation

E2: Articles that focus on non-ECG heart
diseases classification

I3: The study should clearly discuss the IML
method

E3: The study is not focused on the
interpretability or explainability of machine
learning models

I4: The study should quantify the
interpretability performance of the
IML method

E4: Results and findings of the study are not
clearly explained and plausible
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Figure 5. Flow diagram of paper selection.

4. Heart Electrocardiogram Diagnosis Datasets

In an ECG signal-based heart disease classification, several datasets exist and have
been used to train and test ML models. However, these datasets differ in various ways,
including sampling frequency, number of recording leads, and number of disease conditions
or classes. The most prominent heart ECG datasets (in terms of data and disease class size)
with their characteristics are given in Table 4.

The 2020 PhysioNet challenge dataset is compiled from five multiple data sources,
which are the China physiological signal challenge [44], St. Petersburg INCART 12-lead
arrhythmia database [45], PTB-XL ECG dataset [46], Georgia 12-lead ECG challenge [47],
and undisclosed sources [47]. Other dataset repositories, such as MIT-BIH arrhythmia
database [48], MIT-BIH atrial fibrillation database [49], MIT-BIH normal sinus rhythm
database [50], BIDMC congestive heart failure database [51], normal sinus rhythm RR
interval database [52], and many more have also been used to test different IML techniques.
However, their data size are very few and provide beat- and -rhythm level annotations, as
given in Table 5.

Except for the CODE dataset [18], the remaining data sources indicated in Table 4 are
publicly available through their respective URLs. The CODE dataset is not public, although
it can be obtained by signing data usage agreements with authors. However, 15% of the
dataset is publicly available through the URL-indicated Table 4.
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Table 4. Heart ECG signal diagnosis datasets.

Dataset # of Lead # of Records
# of Classes
[Including
Normal]

Samp. Freq.
(Hz) Website URL 1

Hannun et al. [53] Single lead 91,232 12 200 https://irhythm.github.io/
cardiol_test_set/ 2

2017 PhysioNet
Challenge [54,55] Single lead 8528 4 300

https://archive.physionet.org/
physiobank/database/challenge/

2017/

2020 PhysioNet
Challenge [47,56] 12-lead 43,101 111 257,

500
https://physionet.org/content/

challenge-2020/1.0.2/

Chapman University,
Shaoxing People’s
Hospital [57]

12-lead 10,646 11 500
https:

//physionet.org/content/ecg-
arrhythmia/1.0.0/#files-panel

China Physiological
Signal Challenge [44] 12-lead 6877 9 500 http:

//2018.icbeb.org/Challenge.html

PTB-XL ECG
dataset [46,58] 12-lead 21,837 71 500 https://physionet.org/content/

ptb-xl/1.0.1/

Shandong Provincial
Hospital [59] 12-lead 25,770 44 500

https:
//springernature.figshare.com/
collections/A_large-scale_multi-
label_12-lead_electrocardiogram_

database_with_standardized_
diagnostic_statements/5779802/1

CODE dataset [18] 12-lead 2,322,513 7 300–600 https://zenodo.org/record/4916
206#.Y1eIWuxBxmo 3

1 All website URLs were accessed on 25 October 2022. 2 Only test data are available through this URL. The
complete dataset can be obtained upon request from Hannun et al. [53] . 3 Only 15% is available through this
URL. The complete dataset can be obtained upon requesting from Ribeiro et al. [18].

Table 5. Beat, rhythm, and signal quality level of the annotated heart ECG signal datasets.

Dataset # of
Lead # of Records Annotation

Type
# of Classes
[Including Normal]

Samp.
Freq.
(Hz)

Website URL 1

MIT-BIH
Arrhythmia
database [48]

2 leads
48 two-channel
half-hour
recordings

• Beat
• Rhythm
• Signal

quality

• 20 classes of ar-
rhythmia beats

• 15 classes of ar-
rhythmia rhythms

• 5 classes of signal
quality

360 https://physionet.org/
content/mitdb/1.0.0/

MIT-BIH Atrial
Fibrillation
Database [49]

2 leads 25 two-channel
10-h recordings • Rhythm • 4 classes of

rhythms 250 https://physionet.org/
content/afdb/1.0.0/

MIT-BIH Normal
Sinus Rhythm
Database [50]

2 leads 18 two-channel
24-h recordings

• Beat
• Rhythm

• Normal beats and
rhythms 128 https://physionet.org/

content/nsrdb/1.0.0/

BIDMC-
Congestive Heart
failure (CHF)
database [51]

2 leads 15 two-channel
20-h recordings • Beat • CHF (NYHA

class 3–4) 250 https://physionet.org/
content/chfdb/1.0.0/

https://irhythm.github.io/cardiol_test_set/
https://irhythm.github.io/cardiol_test_set/
https://archive.physionet.org/physiobank/database/challenge/2017/
https://archive.physionet.org/physiobank/database/challenge/2017/
https://archive.physionet.org/physiobank/database/challenge/2017/
https://physionet.org/content/challenge-2020/1.0.2/
https://physionet.org/content/challenge-2020/1.0.2/
https://physionet.org/content/ecg-arrhythmia/1.0.0/#files-panel
https://physionet.org/content/ecg-arrhythmia/1.0.0/#files-panel
https://physionet.org/content/ecg-arrhythmia/1.0.0/#files-panel
http://2018.icbeb.org/Challenge.html
http://2018.icbeb.org/Challenge.html
https://physionet.org/content/ptb-xl/1.0.1/
https://physionet.org/content/ptb-xl/1.0.1/
https://springernature.figshare.com/collections/A_large-scale_multi-label_12-lead_electrocardiogram_database_with_standardized_diagnostic_statements/5779802/1
https://springernature.figshare.com/collections/A_large-scale_multi-label_12-lead_electrocardiogram_database_with_standardized_diagnostic_statements/5779802/1
https://springernature.figshare.com/collections/A_large-scale_multi-label_12-lead_electrocardiogram_database_with_standardized_diagnostic_statements/5779802/1
https://springernature.figshare.com/collections/A_large-scale_multi-label_12-lead_electrocardiogram_database_with_standardized_diagnostic_statements/5779802/1
https://springernature.figshare.com/collections/A_large-scale_multi-label_12-lead_electrocardiogram_database_with_standardized_diagnostic_statements/5779802/1
https://springernature.figshare.com/collections/A_large-scale_multi-label_12-lead_electrocardiogram_database_with_standardized_diagnostic_statements/5779802/1
https://zenodo.org/record/4916206#.Y1eIWuxBxmo
https://zenodo.org/record/4916206#.Y1eIWuxBxmo
https://physionet.org/content/mitdb/1.0.0/
https://physionet.org/content/mitdb/1.0.0/
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/afdb/1.0.0/
https://physionet.org/content/nsrdb/1.0.0/
https://physionet.org/content/nsrdb/1.0.0/
https://physionet.org/content/chfdb/1.0.0/
https://physionet.org/content/chfdb/1.0.0/
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Table 5. Cont.

Dataset # of
Lead # of Records Annotation

Type
# of Classes
[Including Normal]

Samp.
Freq.
(Hz)

Website URL 1

Normal sinus
rhythm RR
interval database
[52]

2 leads
54 two-channel
half-hour
recordings

• Beat • Normal beats 128 https://physionet.org/
content/nsr2db/1.0.0/

1 All website URLs are accessed on 25 October 2022.

5. Interpretable Machine Learning (IML)

The need to determine the rationale behind the output decisions of the ML models
began in the 1970s [60]. However, considerable advancements in the field of IML were
attained in the last few years. Nevertheless, its conceptual foundation is still underdevel-
oped [61].

Currently, there is no well-established mathematical definition for the interpretability
of ML models.It can also be called explainable artificial intelligence (XAI), and there is
no well-agreed definition [62]. However, Murdoch et al. [63] defined the focus of an IML
as “. . . the extraction of knowledge from an ML model concerning relationships either
contained in data or learned by the model . . .”. According to their definition, knowledge
is relevant if it provides insight for a particular audience in a given context. Based on the
problems to be solved and users that use the output of an IML, this insight can be in the
form of visual presentation, human-understandable languages, or mathematical equations.

5.1. Taxonomy of IML

When explaining the output and the behavior of ML models, different explanation tech-
niques have been proposed in the literature. Based on discussions in the
literature [39,40,62,64,65], in this article, we propose a taxonomy for IML techniques as
shown in Figure 6. Here, the classification of IML techniques is based on their interpretation
result presentation, scope, model specificity of the method, and the complexity of the ML
model. However, the IML technique can hold a place in more than one of the classes in tax-
onomy. In subsequent sections, a detailed elaboration is provided based on the taxonomy
given in Figure 6. In addition, the main concepts behind IML techniques and their usage
for an ECG signal-based heart disease diagnosis of the heart are subsequently discussed.

Figure 6. Taxonomy of machine learning interpretability.

https://physionet.org/content/nsr2db/1.0.0/
https://physionet.org/content/nsr2db/1.0.0/
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5.2. Result Presentation in IML

In IML, there are various ways of presenting the results of the interpretation method
that can provide insightful information to the user. Some result presentation methods in-
clude feature relevance, the model’s learned internal parameters, visual-based explanations,
and example-based explanations.

5.2.1. Interpretation Result Presentation Using Feature Relevance

Feature relevance-based ML model explanation is a technique used for interpreting
the model’s output after the model training process. This technique provides a score
on the contribution of each feature to the prediction output of the trained model [62,65].
Mathematically, it is possible to give the score for the feature contribution in the model
output in terms of the input/output behaviors of the model. Thus, in the feature relevance-
based explanation, the explanation is quantified using input features, x := (x1, . . . , xM)
and the degree to which a given input feature xi contributes to the output of the model
f (x1, . . . , xM). Several techniques use future relevance to explain the AI models. However,
this sub-section briefly discusses SHapley Additive exPlanations (SHAP), local interpretable
model-agnostic explanations (LIME), and permutation feature importance.

SHapley Additive exPlanations (SHAP)

SHapley Additive exPlanations are derived from game theory; the SHapley values
explain the marginal contribution of each player to the team. In interpreting ML models,
these SHapley values indicate the contribution of each feature for a given black box model’s
prediction or classification output. In determining the feature importance in the model
output prediction or classification, SHapley values can be calculated depending on the
complexity of the ML model. As a result, there are different techniques for determining
SHaplely values, such as linear SHAP, kernel SHAP, and Deep SHAP [66,67]. The linear
SHAP explains the feature importance in linear ML models. Given S ⊆ F, where S is
a subset of all features F = {X1, X2, . . . , Xk, . . . , XM}, where Xk represents features of a
dataset at kth column in a dataset of size NxM. The contribution of feature Xi to the output
of a model f is performed in two different ways. First, the model training is underway
with the presence of feature Xi, and the resulting model is represented as fS∪{i}, then it
is retrained without the feature Xi, which is represented as fS. Secondly, the originally
trained model f helps to obtain both fS∪{i} and fS. Then, the SHapley value, φi, for the
feature Xi is determined using Equation (1) [66]:

φi = ∑
S⊆F\{i}

|S|!(|F| − |S| − 1)!
|F|! [ fS∪{i}(xS∪{i})− fS(xS)] (1)

where xS represent the input feature values in a set S, fS(xS) represents the marginal value
of f for the features present in S, and fS∪{i}(xS∪{i}) denotes the marginal value of f for the
feature values present in S plus feature Xi. Thus, Equation (1) computes the disparity over
all possible subsets S ⊆ F\{i} weighed by the number of features in the S from the total
number of features, F.

Though the interpretation obtained from the SHapely values of the features can be
comprehended and thoroughly tested for interpreting ECG-based ML models [68–71], the
SHapley technique still has limitations. The major challenge is the computational burdens
associated with calculating SHapley values for all feature subsets where the computational
complexity is exponential [72]. In addition, it does not consider the correlation between
the features. Instead, it takes all features as independent [66,73]. However, to mitigate
these limitations, techniques, such as restricting the subset permutation using the causal
relationship of features [74] and incorporating the constraint of correlations among feature
values [75,76] have been proposed.

Moreover, to overcome the computational expensiveness of Equation (1), kernel
SHAP [72], and treeSHAP [77] have been introduced. However, the computational com-
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plexities of SHAP-based post hoc model explanation techniques are still expensive. In
addition, they can be tricked to rationalize decisions made by an unfair black box ML
model; that is, they can be fooled [78].

Local Interpretable Model-Agnostic Explanations (LIME)

LIME is initially introduced by Ribeiro et al. [79], LIME approximates complex non-
linear ML models with a locally interpretable surrogate model to explain which features
hold the greatest contribution to the output of the black box ML model. This approximation
relies on the assumption that complex models are linear on the local scale. Thus, approxi-
mating the complex model in the vicinity of individual instances to be explained may be
feasible. This neighborhood significance is measured by the penalty function πx(z) that
measures the proximity between perturbed instances, z ∈ R, around an instance feature
vector, x. Thus, given f , a black box ML model to be explained, and g being a surrogate
model best approximates f among a class of potential interpretable models G, i.e., g ∈ G.
The explanation ξ(x) for an instance feature vector x produced by LIME is obtained by
minimizing the objective function L( f , g, πx) + Ω(g), as given in Equation (2) [79]:

ξ(x) = argmax
g∈G

(L( f , g, πx) + Ω(g)) (2)

where L is a locality-aware loss function for measuring how g is unfaithful in closely
resembling f in the locality defined by πx and Ω(g), a measure of g’s complexity.

LIME uses a set of d
′

interpretable representation features x
′ ∈ {0, 1}d

′
that are

sampled from the original feature space of the dataset, x ∈ X. By using binary vector repre-
sented perturbed instances z

′
around non-zero elements of x

′
, a label for the explanation

model, f (z), is obtained. The mapping of the binary vector representation of features to
the original real-valued representation is performed via a mapping function hx, such that
hx : z

′ → z, i.e., z = hx(z
′
). Thus, using this dataset, Z, of perturbed samples with their

labels, i.e., {(z′ , f (z))}, the locality-aware loss function is defined as Equation (3) [79]:

L( f , g, πx) = ∑
z,z′∈Z

πx(z)( f (z)− g(z
′
))2 (3)

Few pieces of literature have attempted to show the applicability of LIME in inter-
preting ECG signal-based heart disease classification ML model outputs [80,81]. LIME
provides an easily understandable explanation, although it depends on the complexity
of the local surrogate models. The interpretations made by the local surrogate models
use features sampled from the original dataset. This process adds to the importance of
LIME techniques, specifically when complex features are employed to train the black box
ML model. However, the feature importance scores in a LIME do not add up to give
the prediction probabilities that create ambiguity. Moreover, they do not deliver a global
explanation of the learned complex ML model over the entire spectrum of feature values. In
addition, the random perturbations of feature instances left the LIME techniques to suffer
from the instabilities that pose challenges in reproducing the explanations. Furthermore,
LIME can be manipulated to hide biases [78]. As a result, different techniques have been
proposed in the literature to mitigate this instability and the resulting unfaithfulness of
LIME [82–85].

Permutation Feature Importance (PFI)

PFI measures the change in the performance of the black box ML model while shuffling
any given feature of the test dataset. Thus, PFI interprets the black box ML model by
describing the contribution of a feature in the ML model’s output accuracy [86]. Given a
trained model f , such that f (x(i)) ≈ y(i), where x(i) = (x1

(i), x2
(i), . . . , xj

(i), . . . , xM
(i)) are

feature vectors and y(i) is a target of the ith instance. The PFI calculates the contribution of
a given feature j in predicting y(i) as indicated in Equation (4) [87,88]:



Diagnostics 2023, 13, 111 14 of 37

PFI( f , j) =
1

nk

n

∑
i=1

k

∑
l=1

[L[y(i), f (x(τl)
(i)

j )]−L[y(i), f (x(i))]] (4)

where τl is a random permutation vector of instances in a dataset, D = {x(i), y(i)}n
i=1, with

n instances for l = 1, . . . , k permutations. L is a loss function linking the model output f (x)

to the target pair y. Thus, L[y(i), f (x(τl)
(i)

j )] is the loss function linking the perturbed output

of the model f (x(τl)
(i)

j ) = f (x1
(i), x2

(i), . . . , xj
(τl)

(i)
, . . . , xM

(i)) to the target y(i) with respect

to the perturbed feature xj and L[y(i), f (x(i))] gives a baseline loss linking the baseline
output of the model and f (x(i)) to the target pair y(i) for the instance i.

PFI has been experimented with to explain the classification output of ML mo; PFI can
give model-agnostic global insight into the black box model, f . It also takes into account
the dependency between features while determining their importance. In addition, it
avoids retraining a model with a different subset of features, which saves time and even
circumvents from reaching a new model due to the retraining process. Furthermore, the
computational complexity associated with PFI is small enough to make the implementation
easy. However, PFI needs a labeled ground truth of a given instance to calculate the feature
importance. This limitation allows PFI to be used only during the model’s development,
i.e., in the training and testing of an ML model. Likewise, in situations where strongly
correlated features exist in a dataset, the result from PFI may be biased to the extent that
less important features can take the highest importance value [89].

5.2.2. Interpretation Result Presentation by Learned Internal Parameters of the Model

Explaining the internal learned parameters of the model is a commonly used inter-
pretability technique in inherently transparent machine learning algorithms. For instance,
in tree structures, the learned parameters include the features and splitting criteria [90].
This form of a result presentation is also used in deep learning models, such as interpretable
filters of a CNN model [91].

Tree-based ML models, including decision tree, random forest, xGboost, and AdaBoost,
techniques work by splitting the dataset using criteria, such as Gini impurity, mean squared
error, and information gain, based on the feature value of the dataset. Each splitting creates
different subsets from the dataset of the final, intermediate, and first subsets, respectively,
called leaf nodes, split nodes, and root nodes [64,90,92]. Mathematically, the predicted
instance, ŷ, obtained from the leaf node is represented in terms of feature x, as given in
Equation (5) [92]:

ŷ =
k

∑
l=1

µm I{x ∈ Rm} (5)

where µm is the average value of all elements present in the subset (Rm), I{x ∈ Rm} is a
binary identity function that gives 1 if x is in the Rm subset, or else it returns 0. As stated
earlier, the criteria used to generate the Rm subsets can be the Gini impurity index, mean
squared error, or information gain based on the problem and data type of the dataset.

In tree-based ML models, the learned parameters, including the splitting threshold
values of a feature, the Gini impurity index value, and the number of data points of the
model are explained more easily. However, as the tree depth increases, the interpretation
becomes difficult, and the model becomes opaque. In addition, the interpretation of
truthfulness is affected by the poor generalization properties of the tree models themselves,
where most tree-based ensemble models lack stability, especially while modeling complex
interactions among several features [64,93–96].

5.2.3. Interpretation Result Presentation through Visual Explanation

One way of interpreting the prediction output of the black box machine learning
model is by highlighting the important segments in the data that contribute the most to the
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decision of an ML model [97]. Visual explanation-based result presentation techniques have
been extensively tested in interpreting black box machine learning classifiers in an ECG
signal-based heart disease diagnosis. Some of them include class activation map-based tech-
niques [98–101], saliency maps [102,103], layer-wise relevance propagation [104], occlusion
maps [102], and attention maps [105–108]. Moreover, LIME [80], and SHAP [70,109–111]
are used to explain the decision of the ML techniques by visually representing the important
regions of an ECG signal, which contributes most to the decision. To acquaint the reader
with the pros and limitations of these techniques, a brief discussion on some of the methods
is presented as follows.

Class Activation Maps

The class activation map technique introduced by Zhou et al. [112] provides a visual
explanation by localizing the important regions in input data that play major roles in the
decisions of ML models. In class activation, the descriptive regions of input data that an
ML model used for classification are highlighted [113]. The class activation map calculates
the contribution of units (Lc

ij) in the last layer activation filter map (Fk
ij) of the convolutional

layer for the class prediction score (yc) of the output layer. The CAM technique proposed
by Zhou et al. [112] used global average pooling (GAP) and fully connected layers (FC) to
obtain Lc

ij. In [112], Fk
ij and yc have a linear relationship as given in Equation (6).

yc = ∑
k

wc
k ∑

i
∑

j
Fk

ij (6)

where wc
k is the weight of the FC for filter k; classes c, i, and j are indices of the last feature

map units; c is the class category; and k is a filter index.
The main aim of CAM is to find the contribution of the last feature maps that satisfy

yc = ∑i,j Lc
ij. Thus, the contribution of each unit in the last feature map, Lc

ij, can be obtained
from Equation (6), as shown in Equation (7):

Lc
ij = ∑

k
wc

kFk
ij (7)

In a single-dimensional time series signal, such as an ECG signal, the class activation
map for class c at the specific temporal instance t is as indicated in Equation (8):

Lc
t = ∑

k
wc

kFk
t (8)

where Fk
t is the activation of filter k in the last conventional layer at the temporal instance t,

and Lc
t indicates the importance of the activation at the temporal location t leading to the

categorization of a signal into class c.
CAM has been used for interpreting an ECG signal classification result of a convo-

lutional neural network [114]. Accordingly, it allows the visualization of segments of an
ECG signal that the classification model mainly uses in its decision. Techniques, such as
Grad-CAM [98,99,115–123], Grad-CAM++ [101,124], and guided Grad-CAM [125] have
been proposed in the ECG signal-based heart disease classification. However, the linear lay-
ers vanish the non-linearity of deep classifiers. In addition, the integration of CAM changes
the network architecture and needs retraining [126]. Moreover, these gradient-based CAMs
suffer from a gradient saturation problem that results in inaccurate localization of relevant
regions. In addition, the localization of the descriptive signal part is highly affected by
small perturbations of the input signal. Furthermore, the explanation is noisy and contains
discontinuities [126].

Saliency Maps

Feature saliency map highlights the regions of a signal that are most relevant for
categorizing the input signal into a given class. The saliency map can be built using
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gradients of the output, yc(x), of an ML model over the input, x, for the class c [102]. The
idea is that the class score yc can be approximated by using the first-order Taylor expansion
as given in Equation (9):

yc(x) ≈ wTx + b (9)

where b is a scalar, and w, as indicated in Equation (10)), is the gradient that provides an
explanation for the model classification outcome:

w =
∂yc(x)

∂x
(10)

Among other techniques, the saliency map can be generated using guided backpropa-
gation where the gradient of each neuron is calculated and those with the highest gradient
values are activated to form a heatmap [103]. The heatmap shows the most salient parts of
the signal that contribute most to classifying the input x to class c.

Saliency maps were experimented with for explaining complex ML models in ECG
signal-based heart disease diagnosis [102,103,127,128]. Although the backpropagation
gradient saliency map can visually enhance regions of the input signal that contribute
the most to classification, it has certain limitations. At first, the backpropagation saliency
suffers from a gradient saturation problem mainly because saliency maps are based on
input sensitivity [129]. Next, the generated gradient heatmap often does not explain
the direct relation to the classifier’s decision. Instead, it only indicates the important
signal segments used by the model for classification [130]. More importantly, the saliency
method is susceptible to small shifts in the input signal so that its explanation may not be
reliable [131].

Layer-Wise Relevance Propagation (LRP)

An LRP provides an explanation through the decomposition via computing a relevance
score (Rn) based on the contribution of each input element xn for the model’s ( f ) output
prediction y = f (x), given the input sample, x = [x1, . . . , xn, . . . , xN ]. Thus, an LRP
explains the ML model’s output by attributing relevant values to the essential components
of the input by tracing back the trained model layer by layer, starting from the final output
node [132]. This layer-by-layer relevance propagation holds the layer-wise conservation
property, given that i and j are neurons at two consecutive layers of a neural network, l
and l + 1, respectively. The overall sum of the ith neuron’s relevance score sums to R(l)

i ,
such that relevance conservation property is maintained:

R(l)
i = ∑

j
R(l,l+1)

i←j such that i contributes to j (11)

The propagation of relevant scores Rj of layer l + 1 onto neurons of the l layer can be
achieved using different types of rules. Moreover, different rules can be used at each layer
of the network architecture [133]. One of the simplest rules is given in Equation (12) [132]:

Ri = ∑
j

aiwij

∑0,i aiwij
Rj (12)

where ai is an activation of the neuron i, wij is the weight connecting neuron i to neuron
j, and ∑0,i indicates the sum over all neurons j in the l layer. Moreover, the rule satisfies
the basic properties in which deactivated neurons, neurons with no connection, and zero
weight has no relevant value.

LRP has been used for interpreting the DL model output through heat mapping
the relevant regions of the input that contribute most to the output prediction. Having
fewer noises around the target class and the capacity to show the part of a signal that
negatively contributes to the output, LRP is superior over gradient-based explanation
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techniques [133,134]. However, the heatmap produced by an LRP is still noisy due to the
initialization of the non-target class to zero relevance value. Moreover, it has a limitation
in discriminating targets that produce identical heatmaps for different entities in an input
signal [135]. Furthermore, the selection of propagation rules is problem-dependent, and
obtaining the best parameters is trivial [136]. As a result, different techniques, such as
contrastive LRP [137], selective LRP [135], and a softmax–gradient LRP [138] are being
proposed in the literature to alleviate these challenges.

Occlusion Map

The occlusion map is one of the attribution-based techniques where the model output
is explained by changing part of the input data with different values [139]. The input
can be altered on a specific location, for instance, in a time series signal such as an ECG
with total h time points, the alteration can cover certain time step durations (d) with an
occlusion window of (w). For a signal x = {t1, t2, . . . , th}, the locally altered signal (x̂) can
be obtained as follows Equation (13) [139]:

x̂ = (x�m1) + ovm2 (13)

where m1 and m2 are masks that complement each other, i.e., m2 = ¬m1 and ov are the
occluding values. The values for m1, m2, and ov are determined based on the required
modifications on x.

The occlusion-based ML model’s interpretation algorithms are simple to implement.
Moreover, it can measure the marginal effects of each windowed region of the input signal
given that the segments of the input are independent [140,141]. In addition, the occlusion
method is used to interpret the output of non-differentiable ML models, unlike gradient-
based explanation techniques [102]. However, similar to other perturbation-based model
output explanation methods, such as LIME and SHapley value maps, the computational
complexity associated with the input occlusion is high [142,143].

Attention Mechanisms

Attention mechanisms are commonly used in time-series data because of their ability
to improve the limitation of traditional encoder–decoder-based models [106,144]. The
attention mechanism can be incorporated into ML networks and it allows the ML model
to focus on specific regions of an input signal that contributes most to the output predic-
tion [105,106,144–148]. Moreover, domain-specific knowledge can be integrated to guide
attention mechanisms so that the contribution of each segment of a signal in the model’s
classification output is captured [145].

The attention mechanism takes the encoder output (latent vector) as the input and
performs three consecutive computations, which are alignment scoring (eij), computing
attention weights, and attention score vector computation, as given in Equation (14),
Equation (15), and Equation (16) [149], respectively.

eij = a(si−1, hj) (14)

where a is an alignment model whose score eij measures how well the input around
position j of the encoder’s hidden state hj matches the previous decoder hidden state si−1 at
position i just before emitting. Then, the attention weight score (αij) of each hj is computed
by applying an activation function, for instance, the softmax activation function, on the
alignment score as shown in Equation (15).

αij =
exp(eij)

∑T
k=1 exp(eij)

(15)
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where T is the number of the encoder’s hidden states. Finally, the attention score vector,
which is the output of the attention mechanism, is computed as a weighted sum of all
encoder hidden states, as shown in Equation (16).

ci =
T

∑
j=1

αijhj (16)

Based on the techniques employed for generating attention scores, attention mecha-
nisms are broadly classified into deterministic attention and stochastic attention [150]. In
the case of a deterministic, attention scores are calculated as the weighted sum of all hidden
states, whereas, in stochastic attention, attention scores are determined by selecting one of
the hidden states, hj.

The attention mechanism introduces the model’s output interpretability scheme, in
addition to improving the performance of the ML model’s ECG signal-based heart disease
classification [105–108,144]. However, the computational complexity associated with an
attention mechanism is one of the limitations that need to be improved [144].

5.2.4. Interpretation Result Presentation Using an Example-Based Explanation

Example-based ML model’s output explanation techniques inform end-users about
the ML model’s output prediction on a particular sample instance by selecting example
data from the training set [62,151]. The concept in an example-based explanation technique
is that if two data instances (Xi and Xj) are similar and the ML model’s ( f ) output for input
data instance Xi is y = f (Xi), then the model output for a data instance Xj is also y.

Example-based ML output explanations include counterfactual [152,153] and adversar-
ial examples [154]. Moreover, inherently interpretable (transparent) shallow ML algorithms
include the k-nearest neighbor (KNN) [65,155] work based on an example-based approach.
These techniques work through minimizing a loss function, commonly a distance metric
between the instance to be explained z and its perturbed form z’. In this method, the
ML model’s output is explained by finding the extent of perturbations on the input in-
stance that brings changes to the outcome of the ML model. Formally, given an ML model
f : Z → Y, a data instance z ∈ Z with model output y = f (z), and the desired model
output target y′ ∈ Y\{y}, a counterfactual explanation solves the objective function, d,
given in Equation (17) [152]:

minimize
z’∈Z

d(z’, z) s.t. f (z’) = y′ (17)

where d is any distance metric.
Example-based explanation techniques highlight part of an input instance or feature

values changed to give the target class y′. In other words, the explanation gives the
difference between z and z’, such that f (z) 6= f (z’). In addition, an example-based
explanation is easily implemented because of the objective function that can be easily
optimized [156,157]. However, there will be more than one example for a single sample
instance that results in a lack of obtaining a unique explanation for a particular input
instance. Moreover, several challenges need to be addressed, including limitations in
visualizing results [157].

5.3. Scope of IML Techniques

Based on whether the explanation is for a specific sample instance of the input or
via comprehending how the complete model works, IML models are classified as locally
or globally interpretable. Local interpretable methods are scoped to explain how the
individual output of an ML model is done on a single instance input. On the other hand,
globally scoped interpretable methods explain the whole logic of the model and the entire
reasoning follows for all possible outcomes of the model [39,62,63].

Local model interpretation methods focus on answering ’why an ML model makes
a given specific prediction?’. Moreover, these methods can reveal the effects of a specific
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segment of input instances or feature values on the output of the model [62,84]. Thus,
these techniques help to understand the causal relations between specific input instances
and their corresponding ML model outputs [39]. However, the explanation obtained
from these techniques is valid only for a single input instance and does not generalize. In
addition, the explanation result obtained from these techniques lacks stability. That means
the explanation generated through consecutively running these techniques may result in a
different outcome. Furthermore, the local surrogate model may spuriously approximate
the complex ML models, i.e., the explanation outcome may have no real connection with
the ML model [158,159].

On the other hand, global model interpretation methods focus on answering ’how an
ML model makes a prediction?’. These methods can try to understand how subsets of the
model influence the model’s decisions. Global interpretability can be achieved through
training interpretable constraints together with the input data [39]. In addition, it can also
be achieved by demonstrating the statistical contribution of each feature in the decision of
the underlying black box model. Furthermore, the global explanation can also be obtained
by capturing representation at the intermediate layers of complex DL models. Thus, these
techniques help to understand the inner working mechanisms of ML models and increase
the model’s transparency [39]. However, globally scoped interpretation techniques often
miss explaining a model output for specific input instances. However, different methods
have been proposed in the literature for obtaining a global explanation of the black box
model through aggregating local explanations [160].

5.4. Specificity of IML Techniques

Based on their capacity to transcend for different ML models, interpretability tech-
niques categorized into model-specific and model-agnostic [62] techniques. The model-
specific interpretation techniques are used to explain specific model classes and the use
of internal model parameters to explain the ML model’s output [39]. On the other hand,
model-agnostic IML techniques provide explanations independent of internal model pa-
rameters. Instead, they give explanations by relating the input of a black box ML model to
its output [65].

Model-specific explanation techniques not only explain the model outputs based on
the model characteristics but also help in improving the efficiency of the ML model by
investigating the characteristics. Moreover, model-specific interpretation techniques have
high translucency in which they can rely on more information to generate an explana-
tion [62]. However, they are limited to a specific model and are less portable to explain
other models. On the other hand, model-agnostic interpretable techniques are indepen-
dent of the model to be explained and can be applied to any model [65]. However, due
to the approximation and assumptions made in constructing model-agnostic interpreta-
tion techniques, their explanation results may become less accurate and even vulnerable
to adversarial attacks [65,78,154]. In addition, it may be difficult to faithfully detail the
explanation produced by model-agnostic methods, as to how they truly reflect the decision-
making processes of the ML model [39]. Furthermore, the computational complexities of
model-agnostic techniques, such as SHapley values, grow exponentially as the number of
input features increases [159].

5.5. Complexity of ML Models

Based on the complexity of an ML model to be explained, the interpretability methods
are categorized into intrinsic and post hoc. In intrinsic interpretability, the explanation
is based on understanding how the ML model works. On the other hand, in post hoc
interpretability, the explanation is provided by extracting a piece of information from a
trained complex black box ML model [62].

The intrinsic explanation methods used for ML models have simple architecture by
design and provide self-explanatory results. However, these ML models cannot be used
to solve complex problems and suffer a lot from capturing nonlinearity in the data. In the
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literature, methods have been proposed to mitigate the trade-off in reducing the model
performance for interpretability. One of the methods is adding semantically meaningful
constraints to complex models to improve interpretability without a significant loss in the
performance [91]. Moreover, domain-specific knowledge can be integrated with complex
ML models through attention mechanisms to improve interpretability, as discussed in
Section 5.2.3 of this article.

The post hoc explanation methods are usually applied after the ML model is trained
and provide an explanation without modifying the trained model. Moreover, the complex
ML model can be approximated by surrogate models, such as decision trees and shallow
neural networks. These surrogate models provide a global post hoc model-agnostic expla-
nation by mimicking the complex ML model [161–163]. These techniques are much more
flexible and can switch to explain different black box ML models. However, the post hoc
methods compromise the fidelity of the explanation. In addition, they may fail to represent
the behavior of the complex ML model [39].

5.6. Summary of Taxonomy of IML Techniques

Both globally and locally scoped interpretable techniques can be ML model specific or
model agnostic and used for intrinsic model explanations or post hoc explanations [39].
IML techniques that are commonly used in ECG-based heart disease diagnoses are given
in Table 6.

Table 6. Summary of commonly used techniques for ML interpretation in ECG-based heart dis-
ease classification.

Technique Scope Specificity Complexity Result Presentation

LIME [80,81] Local Model-agnostic Post hoc

• Relevant features of an ECG are
identified or highlighted regions of
an ECG signal containing the rele-
vant features.

Feature importance
(FI) [80,164,165] Global Model-agnostic Post hoc

• Features that have meaningful
clinical significance are identified
based on their importance in the
ML model’s output classification.

SHAP [68–71,80,109–111] Local/Global Model-agnostic Post hoc

• Rank the global feature importance
of an ECG signal and provide a lo-
cal explanation for the model clas-
sification output. Moreover, it can
highlight descriptive morphologi-
cal segments of an ECG signal.

Attention mechanisms
(AMs) [105,106,144–148] Local Model-specific Intrinsic

• Visual explanation: uses attention
weights to interpret classification
or detection output by visually
specifying the segments of the in-
put signal.

Layer-wise relevance
propagations (LRPs) [104,132] Local Model-agnostic Post hoc

• Highlights regions of the input
signal to indicate the contribution
of each region through the back-
propagating relevance score from
the ML model’s final output.

Occlusion Maps
(OMs) [102,141] Local Model-agnostic Post hoc

• Identify segments of an ECG signal
by replacing parts of the signal and
observing the change in the output.
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Table 6. Cont.

Technique Scope Specificity Complexity Result Presentation

Class-Activation
Maps [98–101,107,113–123,125] Local Model-specific [for

CNN only]
Post-hoc [needs

retraining]

• Highlights segments of an EG sig-
nal to indicate the contribution of
each region by outputting the av-
eraged and concatenated feature
maps or by calculating the impor-
tance score through computing the
gradients of the output class to the
final convolutional layer.

Saliency Maps
(SMs) [102,103,127,128] Local Model-agnostic [for

any NN] Post hoc

• Suggests a segment of an ECG sig-
nal that contributes the most to
classifying a particular input in-
stance to an output class.

Learned internal parameters
(LIPs) [94–96] Global Model-specific Intrinsic

• Provide the internal parameters
of the ML models. For instance,
the splitting conditions of the tree
structure are based on functional
feature components and provide
the final decision probabilities on
the leaf nodes.

Example-based (EB) [155] Local Model-agnostic Post hoc

• The explanation output consists
of raw and combined information
about ECG signals that are nearest
neighbors to the ML model’s input
ECG tracing.

6. Performance Evaluation of Interpretability Methods

The black box nature of ML models has been a challenge in implementing ML-based
solutions in healthcare and other critical tasks where knowing the reason behind the
ML decision is essential. As a result, several ML model interpretability techniques have
been proposed in the literature, as discussed in Figure 5 of this paper, to mitigate these
challenges and improve the ML model’s output explanation. Moreover, the performance
of IML techniques in explaining the complex ML model should be measurable so that
users can easily pick the best technique for a particular problem. In addition, researchers
can compare and improve the limitations of IML techniques. Carvalho et al. [40] and
Zhou et al. [166] provided a detailed discussion on IML technique performance evaluation
methods and metrics. They indicated the difficulties in finding a fit for all evaluation
metrics for measuring the performances across all IML techniques and domain problems.
Thus, this section focuses on the methods and metrics used in the literature for measuring
the explanation of the IML techniques in an ECG signal-based heart disease diagnosis. We
can broadly classify these metrics into qualitative and quantitative.

In qualitative explanation metrics, a human user (expert) evaluates the goodness of
the explanation obtained from the IML method mainly through observation and compares
it with clinical findings. However, most researchers claim their proposed technique suf-
ficiently explains the prediction output of the black box ML model without validating
their methods by human experts in the field. The quantitative metrics evaluate the ex-
pressiveness of the explanation result using metrics, such as attention score, Jaccard index,
and performance decrease. However, it is worth noting that there are commonly agreed
quantitative evaluation metrics for IML techniques [167].
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6.1. Visual Observation

In a visual observation evaluation, the ML models are usually explained by showing
segments of an ECG signal that contribute most to the ML model’s output prediction.
This metric demands a human expert to visually inspect the explanation generated by
the IML. Moreover, the metric can serve as a gold standard since the visual justification
produced by IML techniques is easy to understand for physicians. However, validating
an explanation using visual checking is time-consuming and does not guarantee complete
insight into the underlying disease condition [147]. Tables 7–9 list the IML techniques
evaluated using visual evidence. These visual explanations can be taken as a proof concept
in which highlighting segments of an ECG can contribute to explaining a complex ML
model output. However, these techniques cannot provide a reason for the question, ’why
are these regions highlighted?’; this poses difficulties for physicians in understanding the
explanation. In addition, IML technique evaluations through visual observation must
incorporate human expert intervention for validating the explanation output. However,
this is a highly challenging task due to the expense of preparing ground truth benchmarks
for evaluation and the time requirement. As a result, except for Bleijendaal et al. [141], all
articles reviewed in Table 7–9 are not validated by human experts or cardiologists.

Table 7. Attention mechanism-based–visual observation-based IML technique performance evaluation.

Method Literature Dataset Disease class Remark

Attention
Mechanism

Mousavi et al. [105]
• MIT-BIH Atrial Fibrillation [49]
• 2017 PhysioNet Challenge [54,55]

• Atrial Fibrillation (AF)
• Non-Atrial Fibrillation

The method highlights
important heartbeats
from an ECG signal.

Jin et al. [106]
• MIT-BIH Arrhythmia

Database [48]
• China Physiological Signal Chal-

lenge [44]

• Normal sinus rhythm (NSR)
• AF
• Premature Atrial Contraction

(PAC)
• Premature Ventricular Contrac-

tion (PVC)
• Others

Authors claimed they
made a comparison

against the ground truth
medical basis.

Hong et al. [145] • 2017 PhysioNet Challenge [54,55] • AF
• Non-Atrial Fibrillation

Authors showed the
proposed explanation is
less affected by noises.

Yao et al. [146] • China Physiological Signal Chal-
lenge [44]

• NSR, AF, I-AVB 1, LBBB 2,
STE 3, RBBB 4, PAC, PVC,
STD 5

A visual illustration was
given only for PAV, PVC,

and AF.

Elul et al. [147]

• Normal Sinus Rhythm RR Inter-
val Database [52]

• Long-Term AF Database [168]
• MIT-BIH Atrial Fibrillation [49]
• MIT-BIH Arrhythmia

Database [48]
• Telemetric and Holter ECG Ware-

house [169]
• 2017 PhysioNet Challenge [54,55]

• NSR, AF, LP-NSR 6, SVT 7,
VT 8, Vent. trig. 9, Vent. big. 10,
At. big. 11, Brady. 12, IR 13

The proposed model is
compared against

Grad-CAM both in
terms visual explanation
and quantitatively using

attention scores.

Mousavi et al. [148] • MIT-BIH Atrial Fibrillation [49] • Atrial Fibrillation (AF)
• Non-atrial fibrillation

The most important
segments of an ECG are

highlighted to give a
visual explanation for
the predicted output.

1 First-degree atrioventricular block, 2 Left bundle branch block, 3 ST-segment elevation, 4 Right bundle branch
block, 5 ST-segment depression, 6 Latent pathology normal sinus rhythm, 7 Supraventricular tachycardia,
8 Ventricular tachycardia, 9 Ventricular bigeminy, 10 Ventricular trigeminy, 11 Atrial Bigeminy, 12 Bradycardia,
13 Idioventricular rhythm.
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Table 8. Class activation maps based visual observation based IML techniques performance evaluation.

Method Literature Dataset Disease Class Remark

Class Activation
Maps

Goodfellow
et al. [114]

• 2017 PhysioNet Chal-
lenge [54,55]

• NSR
• AF
• Other Rhythm

The CAM gives a visual
presentation of segments of ECG

signal that the ML model used more
for making classification decision.

Goswami
et al. [113]

• MIT-BIH Arrhythmia
Database [48]

• PVC
• Control [other beats]

CAM is used to reveal the prominent
segments of the ECG signal in

heuristically driven heartbeat level
weakly supervised learning.

Gradient-based
CAMs

Porum et al. [98]
• MIT-BIH Normal Sinus

Rhythm [50,55]
• BIDMC-Congestive Heart

Failure Database [51]

• Congestive Heart Fail-
ure (CHF)

• Control [normal beats]

Grad-CAM heat map based
visualization of individual

heartbeats contributed for CHF
classification is implemented.

Wang et al. [115]
• MIT-BIH Arrhythmia

Database [48]
• PTB-XL ECG dataset [46,58]

• Normal (N)
• Supraventricular-

ectopic beats (S)
• Fusion beats (F)
• Ventricular ectopic

beats (V)
• Unknown beats (Q)

Grad-CAM is used to visualize
regions of heartbeats contributed

most for the classification.

Raza et al. [116] • MIT-BIH Arrhythmia
Database [48] • N, S, F, V, Q

Grad-CAM is used to visualize the
contribution of beat segments in the

classification output.

Ganeshkumar
et al. [117]

• China Physiological Signal
Challenge [44]

• NSR, AF, I-AVB, LBBB,
RBBB, PAC, PVC, STD,
STE

Grad-CAM is used to visualize the
contribution of ECG segments in the

classification output.

Jahmunah
et al. [99]

• PTB Diagnostic ECG
Database [170]

• Myocardial Infraction
(MI)

• Control [normal beats]

Grad-CAM is used to visualize the
contribution of ECG segments for

MI classification.

Lopes et al. [118]
• Phospholamban (PLN) car-

diomyopathy dataset [141]

• Phospholamban
• Control (Non-

phospholamban)

Important regions of an ECG that
contributes the most to the model
classification are visualized using

Grad-CAM. The result showed QRS
complex played a major role.

However, other authors reported
PLN detection is dependent on

T-wave [141].

Cho et al. [120] • 12- and 6-lead ECG com-
piled by authors.

• MI
• Control [non-MI]

Grad-CAM is used to highlight the
ECG signal segments based on their
contribution for final segmentation.

Kwon et al. [121] • 12-, 6-, and 1-lead ECG com-
piled by authors.

• Cardiac arrest event
• Control [non-event]

A heatmap from Grad-CAM is used
to visualize important regions of an

ECG signal-based on their
contribution to the model’s

prediction.

Lee and Shin [107] • 2017 PhysioNet Chal-
lenge [54,55]

• NSR, AF, other rhythm
abnormalities, noisy

The article presented Grad-CAM
localized regions on

electrocardiomatrix (ECM) at the
intermediate block of the model.

However, the general interpretability
of the overall technique is not simple
to be understood by physicians, this

is mainly, the signal domain
transformation.

Li et al. [119] • 12-lead ECG compiled by
authors.

• NSR, AF, I-AVB,
CRBBB 1, LAFB 2,
PVC, PAC, ER 3,
TWC 4

Grad-CAM heatmap is used to
visually highlight the important
segments of an ECG used for the

classification. However, the
explanation technique is not well

experimented.

Sangha et al. [122] • 12- lead CODE dataset [18]
• I-AVB, RBBB, LBBB,

SB 5, AF, ST 6

A model trained with mage based
ECG is explained using a

Grad-CAM for properly classified 25
RBBB and LBBB cases.

Kwon et al. [123] • 12-lead ECG compiled by
authors.

• Aortic Stenosis
• Control [non-aortic

stenosis]

A model trained with demographic
information, hand-crafted ECG
features and raw ECG signals.
Grad-CAM is used to explain

model’s prediction output through
generating a heatmap with scale

importance.
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Table 8. Cont.

Method Literature Dataset Disease Class Remark

Guided Grad-CAM Aufiero et al. [125]
• 12-lead ECG compiled by

authors and not available
publicly.

• Congenital long QT syn-
drome (LQTS)

• NSR (Control)

Grad-CAM score is used to
explain the component of an ECG

signal that contributes most for
LQTS detection. The Grad-CAM

explanation score is obtained after
experimenting on correctly

classified test dataset.

Grad-CAM++

Fang et al. [101] • PTB-XL ECG
dataset [46,58]

• MI
• Control [Healthy]

A Grad-CAM++ is used to
visualize an MI prediction model

output of a 3-D ECG image.

Jiang et al. [124] • China Physiological Sig-
nal Challenge [44]

• NSR, AF, IAVB, LBBB,
RBBB, PAC, PVC, STD,
STE

Grad-CAM++ generates a
heatmap that superimposed on an

ECG signal to provide an
visualize the contribution of

various ECG segments.
1 Complete right bundle branch block, 2 Left anterior fascicular block, 3 Early repolarization, 4 T-wave change,
5 Sinus Bradycardia,6 Sinus Tachycardia.

Table 9. Occlusion Maps, Saliency Maps, and LRP based Visual observation based IML techniques
performance evaluation.

Method Literature Dataset Disease Class Remark

Occlusion Maps

Bodini et al. [102] • 2020 PhysioNet Chal-
lenge [47,56]

• PR 1, LQT 2, AF, AFL 3,
LBBB, QAb 4, TAb 5,
LPR 6, LQRSV 7, I-AVB,
PAC, LAD 8, SB, Brady.,
NSR, ST, PVC, SA 9,
LAFB, RAD 10, Tinv 11,
NSIVCD 12, IRBBB 13,
CRBBB

Relevance of three ECG signal
components, i.e., P-wave, QRS

complex, and T-wave computed
after occlusion and the visual

explanation shows the important
regions of an ECG signal.

Bleijendaal
et al. [141]

• PLN dataset collected by
authors.

• PLN cardiomyopathy
• Control (non-PLN)

Occlusion maps are generated
through the setting-occluded

segment of the ECG’s signal to zero.
The visual result shows the most

important regions of the ECG that
the model used for identifying PLN.

Furthermore, the technique was
validated by an expert cardiologist

and showed comparable results.

Saliency Maps

Bodini et al. [102] • 2020 PhysioNet Chal-
lenge [47,56]

• PR, LQT, AF, AFL, LBBB,
QAb, TAb, LPR, LQRSV,
I-AVB, PAC, LAD, SB,
Brady., NSR, ST, PVC,
SA, LAFB, RAD, Tinv,
NSIVCD, IRBBB, CRBBB

The visual saliency maps with
quantitative relevance values of

each segment of an ECG is
provided.

Bridge et al. [103]

• Authors claimed the
scanned-ECG data
are taken from Deng
et al.[171] and not publicly
available

• NSR
• Abnormal rhythm

The visual explanation is provided
by saliency map. However, the

model is trained with a very limited
scanned ECG image data.

Kwon et al. [127] • Authors collected the
dataset

• Pulmonary hypertension
(PH)

• Non-pulmonary hyperten-
sion

Saliency map is used to visually
explain the regions of an ECG that
contributes the most in the model’s

classification output.

Jo et al. [128] • Authors collected the
dataset

• NSR, AF, SVT, VT, PM 14,
JR 15, CAVB 16, 2AVB-T2 17,
2AVB-T1 18

Saliency method is used to visually
explain the regions of an ECG

signal that contributes the most for
detecting the ECG features such as

AV sequencing.

Layer-wise relevance
propagation (LRP) Strodthoff et al. [104]

• PTB-XL ECG
dataset [46,58]

• China Physiological Signal
Challenge [44]

• PVC
• PACE

The proof of concept of LRP based
visual explanation is provided only

done for PVC and rhythm PACE.

1 Pacing rhythm, 2 Prolonged QT interval, 3 Atrial flutter, 4 Q-wave abnormal, 5 T-wave abnormal, 6 Prolonged PR
interval, 7 Low QRS voltage, 8 Left axis deviation, 9 Sinus arrhythmia, 10 Right axis deviation, 11 T-wave inversion,
12 Nonspecific intraventricular conduction disorder, 13 Incomplete right bundle branch block, 14 Pacemaker
rhythm, 15 Junctional rhythm, 16 Complete atrioventricular block, 17 Second-degree atrioventricular block Mobitz
type II, 18 Second-degree atrioventricular block Mobitz type I.
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6.2. Feature Effect

This technique sometimes overlaps with the visual observational-based evaluation
of explanations obtained from IML methods. For instance, some of the SHAP based
techniques [70,80,110] discussed in Table 10 provide explanations for the model output
by highlighting the segments of an ECG signal. However, these techniques focus on the
contribution and association of ECG signal features for the ML model’s output prediction.
Interpretations obtained from feature attribution-based IML techniques are often evaluated
using the feature effect techniques by comparing the explanation results with prior domain
knowledge. Thus, examining the feature effects requires human expert intervention to
determine the explanation’s clarity and soundness [166].

Table 10. Analysis of the feature effects via SHAP, feature importance, and a LIME-based IML
performance evaluation.

Method Literature Dataset Disease class Remark

SHAP

Angelaki et al. [68] • Authors collected the
dataset

• Normal Geometry
• Left ventricular hyper-

trophy (LVH)
• Concentric remodeling

(CR)

The SHAP ranked the global feature
importance of an ECG signal and

provided a local explanation for the
model’s classification output.

Rouhi et al. [69] • 2017 PhysioNet Chal-
lenge [54,55]

• AF
• Control group [ NSR,

Other Rhythm, Noisy
recording]

The authors did not evaluate the
clarity and soundness of their

proposed technique but showed the
improvement SHAP techniques

bring to the random forest classifier.

Anand et al. [70] • PTB-XL ECG dataset [46,58] • CD, HYP, MI, NSR,
STTC

The SHAP highlights the important
morphological segments of an ECG

signal to emphasize the features
that lead the model to the particular

classification output.

Ibrahim et al. [71] • ECG-ViEW II [172]
• Acute Myocardial Infrac-

tion (AMI)
• Control (not AMI)

The SHAP ranked the ECG signal
features on their level of impact on

the model output.

Neves et al. [80] • MIT-BIH Arrhythmia
Database [48] • N, S, F, V, Q

The SHAP identified morphological
regions of an ECG signal to
emphasize the features that

contribute the most to the model to
decide the classification output. In

addition, to measure the
interpretation performance, the

authors used quantitative
techniques.

Al-Mahfuz
et al. [111]

• MIT-BIH Arrhythmia
Database [48]

• N, LBBB, RBBB, PVC, PB

The SHAP values showed the
contribution of the ECG signal

frequency components in output
prediction using a time-frequency
representation of the ECG signal.

Wickrammsinghe
and Athif [109]

• China Physiological Signal
Challenge [44]

• PR, LQT, AF, AFL,
QAb, TAb, LPR, LQRSV,
I-AVB, LAD, SB, ST,
SA, RAD, Brady., NSR,
LAFB, Tinv, NSIVCD,
IRBBB, BBB 1, PRWP 2,
[CRBBB, RBBB],
[CLBBB, LBBB], [PAC,
SVPB 3], [PVC, VPB 4]

The SHAP values showed features
around a segment of an ECG signal

that dominates the classification
output

Zhang et al. [110] • China Physiological Signal
Challenge [44]

• NSR, IAVB, AF, LBBB,
RBBB, PAC, PVC, STD,
STE

The SHAPs the important
morphological segments of an ECG

signal to emphasize the features
that lead the model to the particular

classification output.
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Table 10. Cont.

Method Literature Dataset Disease class Remark

Feature-Importance

Neves et al. [80] • MIT-BIH Arrhythmia
Database [48] • N, S, F, V, Q

The authors used PFI to measure
the importance of a feature through

perturbing it and witnessing the
model’s output performance. The

more important the feature, the
higher the loss in performance

Krasteva et al. [164] • 2017 PhysioNet Chal-
lenge [54,55]

• NSR, AF, Other arrhyth-
mia, Noise

Authors identified influential
features by their relative

importance for the ML classification
output.

Hua et al. [165] • Hefei Hi-tech competition • NSR, AF, QRS low voltage,
Short PR interval

Authors identified features that
have meaningful clinical context.

LIME

Bodini et al. [81] • The PTB Diagnostic ECG
Database [170]

• STE-MI
• Healthy Control

A LIME is used to localize segments
of an ECG signal that contributed

most for the classification.

Neves et al. [80] • MIT-BIH Arrhythmia
Database [48] • N, S, F, V, Q

A local surrogate model is used to
identify important features that

contribute the most to the model’s
output classification.

1 Bundle Branch Block, 2 Poor R wave progression, 3 Supraventricular Premature Beats, 4 Ventricular
Premature Beats.

6.3. Attention Score

The attention score evaluates the explanation performance of an IML technique quanti-
tatively. Elul et al. [147] attempted to compare the performances of the attention mechanism
and Grad-CAM IML techniques in explaining the ML model’s prediction output. In ad-
dition, they demonstrated that attention score assists in identifying the influential ECG
tracing leads that have meaningful clinical information in diagnosing heart disease, such as
AF, ST, and VT.

6.4. Jaccard Index

The Jaccard index, also known as intersection over union, is one of the most commonly
used similarity measures that enable us to find the similarity among two finite sets P and Q.
The Jaccard index has been used to measure the performances of computer vision models
applied in various application domains [173–176].

As given in Equation (18), Neves et al. [80] measured the performance of their pro-
posed IML method’s explanation results, showing the most relevant segments of an ECG
signal (Ww) against shapelet-based classifiers. Equation (18) computes the intersection
divided by the union of the number of elements between two sets, shapelets and Ww [80].
The value of Equation (18) is in the range of 0 and 1. J = 0 indicates that there is no match
between the shapelets and Ww, and J = 1 indicates that shapelets and Ww fully match.

J(shapelets, Ww) =
(shapelets ∩Ww)

(shapelets ∪Ww)
(18)

Neves et al. [80] uses the shapelet classifier [177,178] output as a ground truth to
measure the performances of IML methods. However, it is worth knowing that the shapelet
classifier has associated performance issues. Thus, the result obtained from Equation (18)
may not faithfully measure the performance of the IML methods in reality.

6.5. Performance Decrease

In the performance decrease approach, first, the most relevant regions of an ECG
tracing identified by the IML method (Ww) are replaced from the original signal. Then, the
performance of the black box ML model is recalculated [80]. To replace the relevant parts
of the original ECG signal, techniques such as random perturbation, making the region
zero, or swapping can be used [80].
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The performance decrease-based approach does not need ground truth to measure the
performances of IML techniques. Thus, IML method performance results obtained from
this approach may not be feasible to be used in reality.

7. Discussion

The non-invasive diagnosis test nature of an ECG and its associated lower cost has
made it one of the most commonly used tools in heart disease diagnosis. However, most
physicians, irrespective of their experience and specialty level, face challenges in accurately
reading ECG tracings. This challenge often arises due to several types of heart disease,
the indistinguishable manifestation of heart disease in an ECG tracing, and the variation
of ECG tracings because of the patient’s age, race, and physical condition. Recently, ML-
based heart disease classification techniques using ECG tracings have been proposed in
the literature to aid physicians in reading an ECG tracing. However, the black box nature
of ML techniques has left physicians from knowing the reason behind the ML model’s
classification output and faithfully using the model’s results. As a result, different IML
techniques have been suggested for explaining ML model outputs. As shown in Figure 7,
the number of literary studies that proposed IML methods for interpreting the reason
behind the result of the ML model’s heart disease classification (from an ECG signal) is
increasing; this is an active research area.

This systematic review work presented a thorough investigation of IML methods used
in explaining outputs of heart disease classification results of black box ML models. Among
the IML techniques proposed in the literature, the class activation maps and their variants,
such as Grad-CAM, guided Grad-CAM, and Grad-CAM++ took the lion’s share, as shown
in Figure 8. These techniques localize in the form of heatmaps, i.e., the regions of an ECG
signal where the black box ML model is used in its classification output. However, apart
from localization inaccuracy, the explanation presentation technique via the heatmap might
not be well understood by expert physicians.

Similarly, most of the IML techniques proposed in the literature for explaining black
box heart disease classification ML models attempted to localize segments of an ECG signal
that the ML used for output prediction. However, for a physician who has no exposure
to the concepts of IML or machine learning, these types of explanations may not help
in obtaining an evidence-based diagnosis. In addition, the performances of these IML
techniques were not measured against ground truth, partially because of the unavailability
of the annotated dataset and commonly agreed-on quantitative metrics. For instance,
the ECG heart disease dataset presented in Table 4 was annotated only by disease types
and did not incorporate clinical reasons or findings. As per our knowledge, no publicly
available ECG heart disease dataset contains the clinical descriptions for categorizing the
ECG tracings into their respective disease class. Moreover, most IML methods proposed in
the literature for explaining the ECG signal-based heart disease ML classification outputs
are adopted from computer vision and other applications where the model training data
are either images or tabular formats.

Integrating IML methods in the workflow of the ML model development for heart
disease classification from an ECG signal is in its infancy stage and not well tested. As
shown in Figure 9, almost half of the published articles attempted to integrate and test their
proposed IML methods to explain the classification outputs of only two disease conditions.
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8. Challenges and Future Direction

The benefits of developing a ML model that classifies heart disease from an ECG signal
are immense. However, the black box nature of these models coupled with ECG signal
complexities pose difficulties with their integration into clinical diagnosis workflows. As a
result, IML techniques are proposed in the literature to explain the classification outputs
of the black box ML models. However, to reap the application of IML in interpreting the
ECG signal-based ML models, existing challenges should be addressed. These challenges
include limited concepts in choosing and designing IML methods, a lack of well-defined
use cases, and the absence of standardized performance evaluation metrics.

First, the process of choosing a method that suits a particular application (from existing
IML methods) is a challenging task. In addition, designing new techniques will require the
collaboration of interdisciplinary experts from different domains. This is partially because
the output of the IML methods should be usable by human experts to improve their faith
in the ML classification model’s results.

Secondly, the use cases of IML methods in interpreting the classification output of an
ECG signal should address the physician’s needs. The existing IML techniques attempted
to merely highlight or give feature characteristics of the ECG segments. These techniques
may not be well-understood by physicians. Thus, integrating physicians in the process of
the IML method development aids in developing a use case where the explanation output
of IML aligns with physician reasoning in diagnosing heart disease from ECG tracings.

Apart from the above two situations, the lack of commonly agreed-upon metrics
used to measure the performances of IML methods poses a challenge in evaluating the
quality of the proposed techniques. Thus, it is critical to strengthen the few existing
practices and devise new metrics for measuring the performances of IML methods through
rigorous testing.

9. Conclusions

Heart disease diagnosis from ECG tracings is difficult for physicians across different
levels. This difficulty necessitates the intervention of ML models. However, the black
box nature of these ML models and their limited performances have reduced their trust-
worthiness. Thus, the usefulness of interpreting the output of black box ML models is
undeniable in earning the trust of physicians. Thus, in this systematic review work, we first
identified the available heart electrocardiogram diagnosis datasets. Then, we discussed the
taxonomy of IML methods in terms of the result presentation method, scope, specificity,
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and complexity of the ML model. In addition, we briefly examined these methods with
their strengths and weaknesses. Furthermore, we present the progress made in integrating
the IML methods in an ECG signal-based heart disease diagnosis through a few established
performance evaluation metrics. Finally, we discussed the existing challenges in IML
techniques and their mitigation options.

The main findings of this review work, in terms of the research questions listed in
Section 3.1, are summarized as follows:

• RQ1: Are there any freely available heart ECG signal datasets? What are their characteristics?
As discussed in Section 4, there are several annotated heart disease ECG tracing
datasets in repositories. These datasets are composed of single-lead and 12-lead ECG
tracings (sampled at different sampling frequencies). In addition, the number of
recordings in the dataset and classes annotating heart disease also vary. Moreover,
the disease classes in these datasets are not balanced. Furthermore, some annotations
are at the heartbeat level and others involve whole ECG tracing. Above all, these
repositories are not fit for developing and testing IML methods as they do not have
clinical reasoning, such as location and morphological manifestations of abnormalities
in ECG tracing.

• RQ2: What are IML techniques and commonly investigated interpretable techniques in ECG
signal-based heart disease diagnoses?
As discussed in Section 5, we identified IML methods and categorized them in a
taxonomy to discuss their working principles and spot their gaps. These IML methods
attempt to localize the regions of an ECG signal that contributes the most to the classi-
fication process. However, they have limitations, such as computational complexity,
gradient saturation problem, lack of generalization, and susceptibility to input ECG
signal perturbation.

• RQ3: What is the overall progress and performance of IML algorithms in providing evidence-
based heart disease diagnoses?
The proposed methods in the literature explain the ML model’s output in terms of
visual presentation, feature importance, internal ML model parameters, and factual
examples. However, the explanations provided are not easily understandable. In
addition, due to the lack of commonly agreed-upon performance evaluation metrics
and ground truth, the methods are not rigorously evaluated.

• RQ4: Are there any limitations and challenges in IML-based heart disease classifications?
Section 8 clearly identifies the existing challenges, such as the absence of standardized
evaluation metrics, lack of well-defined use cases, explanation clarity, and ground
truth dataset. In addition, future directions are highlighted.

In conclusion, the promising results achieved so far should be strengthened by defining
the use cases of IML methods together with expert physicians. In addition, new techniques
should be designed, and existing ones need to be customized to achieve physician-level
reasoning behind ML model decisions. Furthermore, the research community has to devise
performance evaluation metrics to evaluate the IML methods.
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