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Abstract: This study aimed to identify radiomic features of primary tumor and develop a model for
indicating extrahepatic metastasis of hepatocellular carcinoma (HCC). Contrast-enhanced computed
tomographic (CT) images of 177 HCC cases, including 26 metastatic (MET) and 151 non-metastatic
(non-MET), were retrospectively collected and analyzed. For each case, 851 radiomic features, which
quantify shape, intensity, texture, and heterogeneity within the segmented volume of the largest
HCC tumor in arterial phase, were extracted using Pyradiomics. The dataset was randomly split
into training and test sets. Synthetic Minority Oversampling Technique (SMOTE) was performed
to augment the training set to 145 MET and 145 non-MET cases. The test set consists of six MET
and six non-MET cases. The external validation set is comprised of 20 MET and 25 non-MET cases
collected from an independent clinical unit. Logistic regression and support vector machine (SVM)
models were identified based on the features selected using the stepwise forward method while the
deep convolution neural network, visual geometry group 16 (VGG16), was trained using CT images
directly. Grey-level size zone matrix (GLSZM) features constitute four of eight selected predictors of
metastasis due to their perceptiveness to the tumor heterogeneity. The radiomic logistic regression
model yielded an area under receiver operating characteristic curve (AUROC) of 0.944 on the test set
and an AUROC of 0.744 on the external validation set. Logistic regression revealed no significant
difference with SVM in the performance and outperformed VGG16 significantly. As extrahepatic
metastasis workups, such as chest CT and bone scintigraphy, are standard but exhaustive, radiomic
model facilitates a cost-effective method for stratifying HCC patients into eligibility groups of
these workups.

Keywords: computed tomography; radiomics; machine learning; clinical decision-making;
hepatocellular carcinoma; extrahepatic metastasis; oversampling

1. Introduction

Hepatocellular carcinoma (HCC) is found to account for approximately 10% of can-
cer death worldwide, and it is particularly prevalent in Eastern and Southeastern Asian
countries, including China [1]. The major risk factors of HCC are hepatic chronic diseases,
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especially the infection of hepatitis B virus and hepatitis C virus [2]. Despite improving
prognosis by virtue of structured surveillance on known high-risk patients, HCC has very
poor prognosis. Systemic therapy is conventionally used to treat patients with metastatic
HCC and Sorafenib is the most commonly used first line treatment. However, it is not
particularly well tolerated with treatment discontinuation due to side-effects in nearly 60%
of patients [3]. Furthermore, as a small molecule multikinase inhibitor, both the VEGF
receptor pathway and Raf kinase, critical to physiological function and homeostasis in
many organs are blocked by Sorafenib. This can result in life-threatening complications,
such as hemorrhage and cardiac events [4]. With locoregional therapies achieving excellent
outcomes, it is paramount to accurately diagnose extra-hepatic disease in HCC patients.

Although extrahepatic metastasis is commonly known to be associated with intrahep-
atic masses with high heterogeneity in computed tomography and vascular invasion, these
qualitative factors are relatively subjective as for individual radiologists. Thus, the dual-
tracer positron emission tomography (PET)/CT is an emerging modality that has shown
much promise due to its high reported sensitivity and accuracy for metastatic disease, but
its availability is limited [5–7]. Without a promising approach for indicating extrahepatic
metastasis clinically, the decision to obtain uniform metastasis workup is most likely made
by the treatment provider [8].

While several biomarkers are reported to have a possible association with occurrence
of metastasis of HCC, reliable biomarkers are yet to be standardized [9,10]. In past studies,
quantitative image analysis is stated to be useful for deriving tumor dynamics in cellular
and tissue level and developing imaging biomarkers, hence, could help to prognosticate
underlying tumor biology [11,12]. At the same time, studies on radiomics of computed
tomography (CT) of liver for predicting microvascular invasion (MVI), treatment outcome
and recurrence of HCC are pointing to the possibility of radiomics in discovering imaging
biomarkers related to HCC [12–15]. Prediction of MVI in 120 patients based on quantitative
CT features yielded an area under the receiver-operating characteristic (ROC) curve (AU-
ROC) of 0.80, positive predictive value of 63%, and negative predictive value of 85% [13].
A study proposed a radiomics Cox model for stratifying 88 patients with HCC treated with
transarterial chemoembolization (TACE) into the high and low risk groups and compared
its performance with the clinical score model [14]. Based on the proposed model, the
hazard ratio (HR) of the high-risk group with reference to the low-risk group attained
7.42, which was higher than HR based on the clinical score model, 4.84 [14]. Early HCC
recurrence prediction in 215 patients based on CT radiomics yielded an AUC of 0.817
(95% CI: 0.758–0.866), sensitivity of 0.794, and specificity of 0.699 [15]. The potential of
imaging biomarkers in predicting extrahepatic metastasis of HCC could probably promote
more efficient diagnosis and better treatment planning for the HCC patients.

Radiomics is a developing field of image analysis that utilizes multiple data-mining al-
gorithms to collect image features that are not visible to the naked eye and integrate them to
obtain information for prediction or prognosis [11,16]. By constructing models accordingly,
it could perform successful prediction and evaluation in certain clinical tasks [16]. Multi-
ple studies have reported clear correlations between CT radiomics and clinical outcomes,
while a further combination with selected clinical factors could achieve higher accuracies
and clinical benefits [12–16]. Despite the potential, the generalization of radiomics as a
clinical indicator still requires numerous refinements and standardizations to allow clini-
cians to confidently implement radiomics in patient management [11,17]. From previous
studies, CT radiomics has shown the potential to predict MVI in HCC and recurrence of
HCC [13,15], whereas the metastatic rate was predicted by clinical features only [5,8]. As
far as we know, no published study has assessed the association between CT radiomics
of HCC tumor and its metastatic risk. A pilot study would provide ground for deeper
exploration in this aspect.

Contrast-enhanced CT is preliminarily used for diagnosis and staging of HCC, which
is currently irreplaceable standard-of-care modality in HCC management [18]. If the
radiomic features related to extrahepatic metastasis could be mined from the CT images
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of liver, additional information can be obtained without extra radiation exposure on the
potential metastatic sites. The purpose of this study is to investigate the possibility of
using radiomics features, obtained from contrast-enhanced CT images of the liver by a
computational approach, to identify extrahepatic metastasis in HCC patients.

2. Materials and Methods

Approval from the Research Ethics Committee of the affiliated institution has been
obtained for this retrospective data analytical study (HKU/HA HKW IRB reference no.:
UW 19-072; HKU-SZH IRB reference no.: [2019]324). In addition, all adopted methods
in the study follow the Declaration of Helsinki as monitored by the Institutional Review
Board of the clinical units.

2.1. Patient Characteristics and Imaging Criteria

The retrospective data collected for this study initially consisted of the radiologist
reports and CT images of 177 patients (mean age, 63.4 years; range, 31–83) from the image
repository internally hosted by Department of Diagnostic Radiology, University of Hong
Kong (HKU) and 45 patients (mean age, 55.4 years; range, 15–85) from University of
Hong Kong-Shenzhen Hospital (SZH). To ensure confidentiality and privacy, all cases
have undergone deidentification by the clinical staff who is not in research team before the
data collection. The CT examinations were either requested for surveillance, diagnosis, or
follow-up and were performed in the clinical unit between 2010 and 2019. The diagnosis of
HCC was verified based on the radiologist reports and further confirmed by our supporting
experienced radiologist (K.W.H.C.) according to guideline of American Association for the
Study of Liver Diseases (AASLD)/Liver Imaging Reporting and Data System (LI-RADS)
or European Association for the Study of the Liver (EASL). The inclusion criteria were
HCC (s) with a radiologic diagnosis; multi-phasic contrast-enhanced liver CT images
available. Exclusion criteria were treatment or resection conducted; recurrence; non-HCC
primary tumor; significant artefacts including breathing, moving, shunts, or the iodized
oils artefact arisen from the procedures of transjugular intrahepatic portosystemic shunt
(TIPS), TACE or transcatheter oily chemoembolization (TOCE). Artefacts are regarded as
significant when they visually distort the original appearance of HCC tumors. Due to
the ghosting or smearing of the tumor region by breathing and motion, as well as the
high attenuation of X-ray by the iodized oils and shunts near the tumors, untruthful pixel
values within the tumor region would be resulted. Hence, these artefacts are regarded as
significant. Inclusion of these artefacts would otherwise lead to inaccurate quantitative
radiomics analysis. As shown in Figure 1, the cases collected from HKU were divided into
metastatic group (n = 26; mean age, 61.6 years; range, 46–80) and non-metastatic group
(n = 151; mean age, 63.7 years; range, 31–83), constituting the training and test sets. The
cases collected from SZH were divided into metastatic group (n = 20; mean age, 55.4 years;
range, 26–85) and non-metastatic group (n = 25; mean age, 55.32 years; range, 15–72),
constituting the external validation set. Metastatic group was defined as reported metastasis
to lymph node, lung, or any other regions except liver in the radiologist reports collected.
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Figure 1. Flowchart of research case inclusion; Significant artefacts include breathing, moving, shunts
or the iodized oils artefacts.

2.2. Training and Test Sets

The 177 cases are further divided into training and test sets by random split where six
metastatic (MET) cases and six non-metastatic (non-MET) cases were randomly assigned
to the test set. The remaining 20 metastatic cases and 145 non-metastatic cases were
allocated in the training set. The demographic information and clinical characteristics of
the training and test sets are compared in Table 1. No statistically significant difference in
these parameters was found between the training and test sets.

Table 1. Demographics and characteristics of 177 HCC cases in training and test sets.

Characteristics Training Cohort (n = 165) Test Set (n = 12) p 1

Mean age 63.4 63.8 0.894
Sex 0.758

Male 130 9
Female 35 3

Hepatitis B 79 5 0.677
Liver cirrhosis 79 6 0.887
Mean tumor diameter (largest lesion, cm) 5.44 6.94 0.380
Mean number of HCC lesions 2.44 3.83 0.204
Portal invasion 35 3 0.758

1 p-value for independent group comparison indicates that there is not any subject assignment bias.

2.3. Image Acquisition

Non-contrast and triple-phase CT images were acquired using 64-Multiple Detector
CT (64-MDCT) scanners with a slice thickness of 1.25 mm in soft tissue window. The image
acquisition of all cases was performed according to the same liver protocol, including the
plain, arterial, portal venous, and delayed phase, with breath being held by the patients
as instructed. The parameters of image acquisition protocol are shown in Table 2. The
images at arterial phase were chosen for extraction of features. The arterial enhancement of
HCC tumor allows accurate segmentation, i.e., the outlining of the HCC tumor, for further
radiomics analysis [14].
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Table 2. Image acquisition protocol of MDCT examinations.

Protocol Item Parameter

Scan parameters
Peak kilo voltage output 120 kV
X-ray tube current 700 mA

Contrast medium injection parameters
Contrast agent Iopamidol/Iohexol
Concentration 350–370 mg/mL
Volume 100–120 mL
Flow rate 3–5 mL/s

2.4. Segmentation of HCC

Segmentation was performed on arterial phase CT images. It is important to note that
radiomics has no restraint to any particular contrast-enhanced phase nor image modalities.
Arterial phase was selected to undergo image analysis in this study because it has more
radiological information on HCC compared to other phases [14]. Segmentation of the region
of interest (ROI) of the largest primary HCC was performed by the research personnel with
free segmentation software (Slicer 4.10.2). The contours were traced initially by trained
operators and confirmed by an experienced radiologist (K.W.H.C.). An example of ROI
segmentation is shown in Figure 2.
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Figure 2. 54-year-old man with hepatocellular carcinoma (HCC). (a) Original arterial phase CT scan
slice shows the HCC lesion (yellow arrow). (b) ROI (green area) manually drawn in accordance with
the HCC lesion. (c) Arterial phase CT scan slice shows an overlapped image of ROI (green area) and
raw CT image.

2.5. Feature Extraction

Radiomic features within the ROIs were computed using Pyradiomics, which is a
Python package for quantitative radiographic analysis [19]. A set of 107 features was
extracted from the original images according to 7 categories: 2D and 3D shape-based
(14 features), first-order statistics (18 features), grey level cooccurrence matrix (GLCM)
(24 features), grey level dependence matrix (GLDM) (14 features), grey level run length
matrix (GLRLM) (16 features), grey level size zone matrix (GLSZM) (16 features), and
neighboring grey tone difference matrix (NGTDM) (5 features). For additional feature
extraction, images were further filtered by 8 Laplacian of Gaussian (LoG) wavelet transform
filters and underwent the same algorithm. A set of 93 features were extracted (with shape-
based features exempted) from each filtered image, and a total of 851 features was obtained
for each tumor. Appendix A gives more detailed information of the 851 features.

2.6. Data Refinement

As the extracted features are distributed with different scales and significant diversity,
it is necessary to transform them to a normal distribution with the same scale so that
valid results could be obtained from logistic regression [20]. Rank-based inverse normal
transformation was applied to every feature in the training, test and external validation
sets separately [21].
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Additionally, with the imbalanced data in the training set (20:145), the result would
become biased and have low statistical significance [22]. In this regard, the synthetic
minority oversampling technique (SMOTE) was applied to the training set to synthesize
new examples for insufficient metastatic cases [22]. The SMOTE parameters, sampling
strategy: ‘auto’, random state: ‘none’ and neighbors: 5, were used. A set of 125 new data
samples were generated based on the existing samples so that the MET and non-MET
groups of the training set have 145 cases each for analysis.

While 851 features were extracted and normalized to include the greatest extent
of radiological information possible, the number of features was far more substantial
compared to the number of the training cases, i.e., 290. Therefore, we need to sort out a
more compact set of features for easier analysis and converged results with less redundancy
and over-fitting [23]. We adopted a “feature ranking” approach to figure out the most
essential and informative features in the training sets to be included in the model building.
The feature ranking was performed by an automated univariate logistic regression in
Python. All 851 features were automatically put through univariate forward regression
one by one to obtain the prediction score for each feature based on the training set. The
features were ranked by the prediction score in descending order, and the top 200 features
were shortlisted for model building according to methods used by Aerts et al. (2014) [24].
The other feature selection methods were not applied in this study because the current
approach is repeatable without specifying a random seed and the convergence to a unique
model can be guaranteed.

2.7. Model Building and Statistical Analysis

Logistic regression is one of the most widely used machine learning algorithms that
utilizes the supervised learning technique. We adopted stepwise forward binary logistic
regression to determine features that can predict metastasis because logistic regression
could produce more stabilized and reproducible results without fixing a particular random
seed [25]. The patients are stratified into high or low risk of having extrahepatic metastasis
by a logistic regression equation [26]:

Logit (YDM) = b0 + b1X1 + b2X2 + . . . + bnXn, (1)

where Xn represents the value of the nth radiomic features and bn the corresponding
coefficient related to the prediction of metastasis.

While logistic models are believed to have more consistent and less overfitting results
with a ratio of 13 samples per predictor, we would select the top 8 features according to the
training set of more than 124 cases (greater than 13 × 8) to construct the logistic regression
model [27]. The performance of the model was indicated by sensitivity, specificity, AUC,
and accuracy. Statistical analysis was performed with IBM SPSS Statistics 26. A p-value
smaller than 0.05 indicated the effect or difference is statistically significant.

Deep learning and support vector machine (SVM) models were also trained using the
training set and their performance metrics on the external validation set were compared
with that of the logistic model. The statistical significance of difference in performance
was determined by DeLong’s test for AUC and McNemar’s test for accuracy, sensitivity,
and specificity.

3. Results
3.1. Patient Characteristics

The clinical features of 177 patients in the training and test sets are shown in Tables 1 and 3.
There were 151 metastatic cases and 26 non-metastatic cases. As shown in Table 3, cases
with extrahepatic metastasis from HCC had statistically significantly larger tumor diameter
(mean value: 5.10 cm vs. 8.06 cm, p = 0.007) and number of HCC lesions (mean value: 2.13
vs. 4.8, p = 0.011), while tumor diameter was also included as one of the radiomic features
to be analyzed in the study. No statistically significant difference was found in other clinical
features, such as hepatitis B and portal invasion (p > 0.05).
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Table 3. Comparison of demographic information and clinical characteristics between metastatic and
non-metastatic groups.

Characteristics No Metastasis (n = 151) Metastasis (n = 26) p 1

Mean age 63.7 61.6 0.353
Sex 0.413

Male 117 22
Female 34 4

Hepatitis B 73 11 0.569
Liver cirrhosis 76 9 0.138
Mean tumor diameter
(largest lesion, cm) 5.10 8.06 0.007 *

Mean number of HCC lesions 2.13 4.80 0.011 *
Portal invasion 29 9 0.077

1 p-value for independent group comparison indicating that there is not any subject assignment bias, except mean
tumor diameter and mean number of HCC lesions. * indicates statistically significant.

3.2. Training of Logistic Regression Model

Among the top 200 features shortlisted from 851 extracted features, eight reproducible
features were selected to form our predictive model in accordance with the logistic regres-
sion result (see Figure 3). The selected features, corresponding coefficients, and p-values of
the trained logistic regression model are:

• maximum 2D diameter row (b1 = 2.371, p = 3.249 × 10−8),
• first-order total energy with wavelet LHL (b2 = 2.006, p = 0.067),
• first-order maximum with wavelet HLH (b3 = 0.476, p = 0.119),
• GLSZM size zone nonuniformity normalized with wavelet HHH (b4 = 0.986,

p = 4.341 × 10−6),
• GLSZM grey level nonuniformity with wavelet LHL (b5 = −2.148, p = 0.050),
• GLSZM large area high grey level Emphasis in original image (b6 = 1.732, p = 0.024),
• GLSZM size zone nonuniformity with wavelet HLL (b7 = −2.001, p = 0.177), and
• GLDM small dependence low grey level emphasis with wavelet LLL (b8 = 1.439,

p = 4.018 × 10−3).

The constant of logistic regression model is given by b0, −1.030 (p = 2.998 × 10−7).
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3.3. Training of Deep Learning Model

Visual Geometry Group with 16 convolutional layers (VGG16) was used [28]. The
training converged to optimal loss in 15 epochs with batch size of 18 and validation split of
0.2. The model attained an accuracy of 77.9%, with sensitivity of 77.9%, specificity of 80.7%,
and AUC of 0.951 on the training set.

3.4. Training of SVM Model

SVM was used to identify the machine learning model. The input vector consists of
eight radiomic features selected by logistic regression and linear kernel was used. With
five-fold cross-validation, the hyperparameter C was optimized by searching seven grid
points from −3 to 3. The model attained an accuracy of 90.0%, with sensitivity of 95.2%,
specificity of 84.8%, and AUC of 0.938 on the training set.

3.5. Test and External Validation of Models

On the test set, the trained logistic regression model attained accuracy of 83.3%,
sensitivity of 66.6%, specificity of 100% and AUC of 0.944 (see Figure 4). On the external
validation set, accuracy, sensitivity, specificity, balanced accuracy, F1, Matthews correlation
coefficient (MCC), and AUC of logistic regression, SVM, and VGG16 were compared in
Table 4 and the ROC curves were shown in Figure 5. Although there is no significant
difference in AUC, accuracy, sensitivity, and specificity, all the performance metrics of
logistic regression were higher than or equal to those of SVM. In contrast, logistic regression
outperformed VGG16 significantly in terms of specificity (p = 0.021) and AUC (p = 0.044).
Again, all the performance metrics of logistic regression were higher than or equal to those
of VGG16. In the external validation, the logistic regression model attained accuracy of
73.3%, sensitivity of 55%, specificity of 88%, and AUC of 0.744.
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Specificity 0.88 0.88 0.56 p = 1.000 p = 0.021
Balanced accuracy 0.715 0.640 0.544
F1 0.647 0.516 0.539
MCC 0.462 0.324 0.089
AUC 0.744 0.744 0.542 p = 0.905 p = 0.044



Diagnostics 2023, 13, 102 9 of 16

Diagnostics 2022, 12, x FOR PEER REVIEW 9 of 16 
 

 

 

Figure 4. ROC curve and confusion matrix of the logistic regression model for identifying hepato-

cellular carcinoma (HCC) metastasis on the test set. 

Table 4. Performance of logistic regression, SVM and VGG16 on external validation set. 

Performance Logistic SVM VGG16 Logit vs. SVM Logit vs. VGG16 

Accuracy 0.733 0.666 0.533 p = 0.223 p = 0.066 

Sensitivity 0.55 0.40 0.50 p = 0.083 p = 0.763 

Specificity 0.88 0.88 0.56 p = 1.000 p = 0.021 

Balanced accuracy 0.715 0.640 0.544   

F1 0.647 0.516 0.539   

MCC 0.462 0.324 0.089   

AUC 0.744 0.744 0.542 p = 0.905 p = 0.044 

 

Figure 5. ROC curves of logistic regression, SVM and VGG16 model and confusion matrix of the 

logistic regression model for identifying hepatocellular carcinoma (HCC) metastasis on the external 

validation set. 

4. Discussion 

In the present study, we explored the possibility of using radiomics in contrast-en-

hanced CT to be a predictive indicator for metastasis disease in HCC patients. A radiomic 

Figure 5. ROC curves of logistic regression, SVM and VGG16 model and confusion matrix of the
logistic regression model for identifying hepatocellular carcinoma (HCC) metastasis on the external
validation set.

4. Discussion

In the present study, we explored the possibility of using radiomics in contrast-
enhanced CT to be a predictive indicator for metastasis disease in HCC patients. A radiomic
model was constructed, and it showed its potential to individually identify HCC patients
with high likelihood to have extrahepatic metastasis.

CT Imaging has become a crucial imaging modality in the management of HCC [18].
In recent years, the application of radiomics has allowed researchers to mine clinical and
prognostic information from medical images by quantifying the phenotypic characteristics
of tumors [16,29]. Various studies showed that CT images could predict the prognosis of
HCC patients [12–16]. Detection of extrahepatic metastasis allows physicians to provide
appropriate treatments for HCC patients although no previous study has explored the
use of radiomics [6]. Thus, we designed this study to investigate possible predictors of
extrahepatic metastasis, an important factor for patient prognosis and survival [5].

Radiomic features of different categories can quantify distinct intratumoral charac-
teristics and thus reflect tumor complexity in multiple aspects. Despite the large number
of features being tested, we further performed binary logistic regression and selected the
first eight features of higher reproducibility and stability to avoid possible over-fitting
of our model [25,26]. Half of the eight selected radiomic features were GLSZM based,
one of them was shape based, one of them was GLDM based, and two of them were of
first-order category.

GLSZM based features measure the spatial interrelationship of adjacent groups of grey
level voxels in 13 directions three-dimensionally [30]. Four GLSZM features relevant to the
nonuniformity of the grey level of the tumor in CT images were identified, indicating that
the tumor heterogeneity was closely related to the possibility of metastasis. With generally
higher magnitudes in GLSZM features of metastatic cases, the result can be related to
the finding that textural heterogeneity in tumors could probably indicate metastasis, and
hence poor prognosis and survival [12,31]. GLSZM based features have an advantage
in that they are relatively more reproducible regardless of the segment accuracy and the
interobserver reliability. Less precise segmentation could still generate similar results as
the heterogeneity is often more significant in the center of the tumor but more subtle on the
edges of ROIs [32].

Shape features quantify the shape and size of the ROI, including diameter, surface area
and irregularity [30]. The selected shape feature measures the maximum axial diameter
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of the HCC drawn. Similar to the findings of Natsuizaka et al. [6], our results show that
the longer the mean tumor diameter, the more likely the patient belonged to the metastatic
group (p = 0.007).

GLDM based features mathematically describe the distributions of different grey
levels within the ROI [33]. The small dependence low grey level emphasis measures the
magnitude of low grey level distribution and indicates the density of voxels with low
grey value in the ROI. We found that a smaller distribution of low grey value voxels may
indicate higher likelihood of metastasis. This finding was consistent with the study by
Mao, et al. [34], who found that less distribution of low grey level in ROI of arterial phase
CT could be correlated to high-grade HCC, as it might reflect higher contrast enhancement
and vascularity. High vascularity of HCC often promotes faster growth, infiltration, and
invasion, thus increasing the likelihood of extrahepatic metastasis [5].

First-order features quantify the histogram distribution of the intensity values of
the voxels in the ROI [35]. The two identified first-order features indicated that a his-
togram with higher total energy and maximum could stipulate extrahepatic metastasis.
Kim et al. [14] reported a similar relationship between high energy in histogram and HCC
tumor heterogeneity which could be related to metastasis, while a study by Peng, et al. [36]
reported that a higher maximum in histogram could indicate microvascular invasion which
directly increases the risk of extrahepatic metastasis. The first-order features we identified
agreed with those in previous research.

On the external validation, the performance metrics of logistic regression were all
comparable or better than SVM and VGG16. Significant difference in specificity and
AUC between logistic regression and VGG16 was identified. VGG16 performed poorly
because the relatively small training set was inadequate to train a very large network with
huge number of weights. Although no significant difference between logistic regression
and SVM was identified, the logistic regression yielded a more meaningful model where
the coefficients represent the change in log odds of metastasis per unit change in the
corresponding radiomic features. Based on logistic regression, the resultant radiomic
model had AUCs of 0.914, 0.944, and 0.744 on the training, test and external validation sets
respectively, which was comparable if not better than the performance of various similar
radiomic models established by other researchers for predicting pathological or surgical
outcomes of HCCs (AUCs: 0.670–0.859) [13,15,34,36–38]. The innovation of this study is
that the radiomic model based on the image information of tumor region only can stratify
the HCC patients into risk groups of extrahepatic metastases and support the decision for
metastasis workups.

In the present study, we also identified some clinical features that might also have
the capability to predict extrahepatic metastasis of HCC, including tumor diameter and
number of lesions. While the clinical significance of tumor diameter was stated by various
studies and was reflected in our radiomics model, the predictive power of number of
lesions is controversial [5,6]. We performed univariate analysis on the HCC lesion numbers
of cases and ranked it with the radiomic features extracted. The number of lesions was
found to have less significant effect on extrahepatic metastasis when compared to the
radiomic features. We also built a second model by combing the 8 selected radiomic
features and the number of lesions and tested it using the same test set. The accuracy of the
second model was not superior to our original model (accuracy: 75.0% vs. 83.3%). While
our findings suggest that tumor numbers have limited predictive power for extrahepatic
metastasis, studies by Uchino et al. [5] and by Natsuizaka et al. [6] reported it as an essential
indicator for HCC metastasis in clinical practice. These contradictory conclusions might
be resulted by various reasons. First, with a limited number of samples in our study, we
might be unable to fully stratify metastatic and non-metastatic patients by a single clinical
factor. Moreover, the number of tiny satellite lesions may not be completely reported
in the radiologist reports, badly affecting the representing power of tumor numbers in
our analysis. It is undeniable that number of lesions is a clinical feature that is far more
accessible to the clinicians when compared to radiomic features, which might also be a
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reason for the tumor number to be a prognostic indicator for extrahepatic metastasis in
hospital settings.

Our study has some limitations. The analytical results might be subjected to different
standards in image acquisition, postprocessing and reconstruction across centers. Batch
harmonization techniques, such as global scaling and z-standardization, were proposed
to minimize feature variabilities [39]. A thorough assessment of the most appropriate
technique is required for developing a radiomic model involving multiple centers. The
study was also limited by a small sample size that could lead to instability in extraction and
analysis of radiomic features, while the imbalanced data set might also cause inaccuracies
in feature selection and analysis, although it has undergone SMOTE. Future studies with
more comprehensive and larger samples are required to further verify our findings. We
only extracted radiomic features from the largest HCC lesion in each case, as there were
satellite lesions that were difficult to draw and might be subjected to measurement error [40].
The CT images were acquired by several different CT scanners over a few years of time.
Differences between CT scanners, a change in protocols, use of different contrasts, and
evolved reconstruction and postprocessing techniques might affect the radiomic features.
Although the effects could be unintentionally reflecting the clinical reality that multiple
CT scanners and protocols might be used clinically, it is still one of the limitations of our
research design [14,40]. Since additional information, such as histological features, were
not quite considered in the present study, future studies are needed to further interpret the
radiomic features with biological markers. We believe that the modification of the model
into a cluster-based search algorithm will allow clinicians to retrieve cases with similar
radiomics features and clinical metastatic factors. Then, the model can assist clinicians in
determining the MET possibility of a newly registered HCC case and suggesting which
organs are at a higher MET risk.

5. Conclusions

Contrast-enhanced computed tomography (CECT) is commonly used for the diagno-
sis and staging of HCC to guide treatment options. However, certain information which
are the clues of metastasis might not be perceived by human eyes. Compared with the
traditional ways of confirming extrahepatic metastasis, including chest CT and bone scintig-
raphy, which entail exhaustiveness, higher cost, and limited availability, radiomics play
an important role by allowing efficient quantification of multiple features extracted from
arterial phase of liver CT images which are clinically significant but beyond human per-
ception to detect extrahepatic metastasis in HCC patients. The developed model with top
eight features selected with higher relevance and reproducibility in this study has shown
its potential to perform better prediction than reported clinical features of metastasis of
HCC and other existing radiomics models. Our findings could be useful for predicting
the pathological status of HCC. Thus, this could possibly eliminate the need for extra
metastatic scanning with radionuclide imaging to aid more timely decision-making to
facilitate early targeted therapy and reduce unnecessary locoregional therapy for patients
with extrahepatic metastasis. As a result, the model has shown its potential to increase
patients’ survival rate while lowering patient anxiety and medical burdens.
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Appendix A

The following radiomic features were extracted:

Table A1. From original image only.

Shape Elongation
(14 features) Flatness

Least axis length
Major axis length

Maximum 2D diameter column
Maximum 2D diameter row
Maximum 2D diameter slice

Maximum 3D diameter
Mesh volume

Minor axis length
Sphericity

Surface area
Surface volume ratio

Voxel volume

Table A2. From original image and images filtered by 8 wavelet transform filters (HHH, HHL, HLH,
HLL, LHH, LHL, LLH, LLL).

First order 10 percentiles
(18 features) 90 percentiles

Energy
Entropy

Interquartile range
Kurtosis

Maximum
Mean absolute deviation

Mean
Median

Minimum
Range

Robust mean absolute deviation
Root mean squared

Skewness
Total energy
Uniformity

Variance
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Table A2. Cont.

GLCM Autocorrelation
(24 features) Cluster prominence

Cluster shade
Cluster tendency

Contrast
Correlation

Difference average
Difference entropy
Difference variance
Inverse difference

Inverse difference moment
Inverse difference moment normalised

Inverse difference normalised
Informational measure of correlation 1
Informational measure of correlation 2

Inverse variance
Joint average
Joint energy
Joint entropy

Maximal correlation coefficient
Maximum probability

Sum average
Sum entropy
Sum squares

GLDM Dependence entropy
(14 features) Dependence nonuniformity

Dependence nonuniformity normalised
Dependence variance

Grey level nonuniformity
Grey level variance

High grey level emphasis
Large dependence emphasis

Large dependence high grey level emphasis
Large dependence low grey level emphasis

Low grey level emphasis
Small dependence emphasis

Small dependence high grey level emphasis
Small dependence low grey level emphasis

GLRLM Grey level nonuniformity
(16 features) Grey level nonuniformity normalised

Grey level variance
High grey level run emphasis

Long run emphasis
Long run high grey level emphasis
Long run low grey level emphasis

Low grey level emphasis
Run entropy

Run length nonuniformity
Run length nonuniformity normalised

Run percentage
Run variance

Short run emphasis
Short run high grey level emphasis
Short run low grey level emphasis
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Table A2. Cont.

GLSZM Grey level nonuniformity
(16 features) Grey level nonuniformity normalised

Grey level variance
High grey zone emphasis

Large area emphasis
Large area high grey level emphasis
Large area low grey level emphasis

Low grey level zone emphasis
Size zone nonuniformity

Size zone nonuniformity normalised
Small area emphasis

Small area high grey level emphasis
Small area low grey level emphasis

Zone entropy
Zone percentage

Zone variance

NGTDM Busyness
(5 features) Coarseness

Complexity
Contrast
Strength
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